用户名: 密码: 验证码:
相对论自治角动量投影壳模型及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据原子核结构研究的需要,我们根据相对论平均场理论,发展了一个基于球形谐振子基可用于带有形变的原子核的自洽计算的相对论平均场计算程序,通过引入角动量投影方法在相对论平均场的基础上计算具有固定形变原子核的转动谱,这就是相对论自洽角动量投影壳模型(RECAPS)。RECAPS兼有相对论平均场自洽性好,预言能力强和投影壳模型计算组态空间小,物理信息直观的优点。
     我们分别在本文的第二章、第三章论述了相对论平均场和角动量投影方法的原理以及RECAPS的具体实现方法,并简单介绍了RECAPS程序的结构和使用。在第四章,我们用RECAPS计算了幻数核包括~(18)O、-~(90)Zr、~(140)Ce和~(208)Pb,以及变形核~(20)Ne、~(176)Yb、~(168)Er、~(160)Gd、~(160)Dy等多个核素,把我们的计算、别人的计算以及实验做了进行比较,证明了我们的程序是可靠的。我们还估算了~(16)O、~(40)Ca、~(208)P单极巨共振能量,所得到的结果与实验符合很好。除了稳定核,我们还研究了Li丰中子同位素以及~(32)Ca和~(19)B的独特性质,分析了晕现象,并结合我们程序的特点给出一个晕的判断方法。另外,我们还计算并简单分析了114号和116号超重元素。在本文的第五章,我们利用RECAPS计算了~(176)Yb、~(168)Er、~(160)Gd、-~(160)Dy和~(165)Ho的基带转动谱以及电磁跃迁B(E2)。并就~(165)Ho的特殊情况论述了对单核子运动对平均场的反作用。
     这些计算都表明,RECAPS是描述和预言原子核性质的便利手段,相对论自洽角动量投影壳模型将可能成为用来研究原子核结论领域中各种现象和问题的强有力工具。
     原子核是量子体系,量子体系模拟的理想工具是量子计算机。我们在第六章中介绍了量子计算机,并且研究了量子搜索算法的相位匹配,全同二玻色子的纠缠刻画等问题。
Due to the requirement of nuclear physics studying for new tools, we have developed the relativistic consistent quangular-momentum projected shell model(RECAPS) by combining relativistic mean field theory in spherical harmonic basis, which can give a self-consistent calculation for deformed nuclei, and the angular momentum projection method, which can calculate the rotational energy levels of nuclei with constant deformation. It has both the advantages of the self-consistent calculation with relativistic mean field, which is self-consistent and can predict many ground state properties of nuclei(but not excited states), and angular momentum projection method, which can describe both ground and excited states with a small basis space(but not self-consistent). The new model is self-consistent in calculation, also can describe or predict the properties of both ground and excited rotational band.
    The fundamentals and the way of imlementation of RECAPS are discuessed in chapter 2 and chapter 3. The Fortran code is described, too. The spherical nuclei 16O, 90Zr, 140Ce and 208Pb, and the deformed nuclei 20Ne, 176Yb, 168Er, 160Gd and 160Dy and some other nuclei are calculated by RECAPS in chapter 4 and the results are also compared with others' calculations and experiments, which suggested that the RECAPS is reliable. The giant monopole resonance in 16O, 40Ca and 208Pb are claculated. The numeric results agree with experiments well. Besides stable nuclei, the unstabel nuclei such as Li's isotopes with very neutron-rich and 32Ca and 19B's characters are studied, too. The halo phenomena is analized carefully and a new way by our model's speciality to tell if a nuclei has halo. Then super heavy element 114 and 116 are also calculated and studied. In chapter 5, the ground rotational energy levels and corresponding electromagnetic transitions for 176Yb, 168Er, 160Gd, 160Dy and 165Ho are calculated. 165Ho's ro
    tating band, as an special case, is studied on the counteraction of single nucleon in the mean field.
    The calculations show that RECAPS is indeed a good method in description and prediction for the properties of nuclei. RECAPS is a useful model and may be a powful tool to study phenomena and problems in nuclear research.
    
    
    Nuclei are quantum systems. Quantum computer is a perfect tool to simulate such systems. Quantum computer is described in chapter 6. The phase matching in the quantum searching algorithm is studied. The description of entanglement in identical two-particle systems is discussed, too.
引文
[1] (?),上海:上海翻译出版公司,1987.
    [2] 颜一鸣,编.原子核物理学,北京:原子能出版社,1990.44~45.
    [3] Dechargé J and Gogny D. Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C, 1980, 21:1568~1593.
    [4] 廖继志.近代原子核模型,成都:四川大学出版社,1990.1~24.
    [5] 徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.28~43.
    [6] 颜一鸣,编.原子核物理学,北京:原子能出版社,1990.24~45.
    [7] Mayer MG. On close shells in nuclei. Phys. Rev, 1948, 74:235~239.
    [8] Mayer MG. On close shells in nuclei. Ⅱ. Phys. Rev, 1949, 75:1969~1970.
    [9] Mayer MG. Nuclear configurations in the spin-orbit coupling model. Ⅰ. Empirical evidence. Phys. Rev, 1950, 78:16~21.
    [10] Mayer MG. Nuclear configurations in the spin-orbit coupling model. Ⅱ. Theoretical considerations. Phys. Rev, 1950, 78:22~23.
    [11] Jensen JHD Haxel O and Suess HE. On the "Magic Number" in Nuclear Structure. Phys. Rev., 1949, 75:1766~1766.
    [12] Mayer MG and Jensen JD. Elementary theory of nuclear shell structure. New York: John Wiley & Sons, 1955.
    [13] Heyde KLG. The Nuclear Shell Model, Beijing: World Publishing Corporation, 1992.54~135.
    [14] 廖继志.近代原子核模型,成都:四川大学出版社,1990.25~72.
    
    
    [15] 徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.53~139.
    [16] 颜一鸣,编.原子核物理学,北京:原子能出版社,1990.46~86.
    [17] 曾谨言,孙洪洲.原子核结构理论,上海:上海科学技术出版社,1987.51~118.
    [18] Brown BA. Large-basis calculations: Present results and future directions. Nucl. Phys. A, 1990, 507:25C~42C.
    [19] Schmid KW. Structure of the giant multipole resonances in ~(20)Ne and ~(28)Si. Phys. Rev. C, 1981, 24:1283~1321.
    [20] Schmid KW and DoDang G. Microscopic study of the giant multipole resonances in light deformed nuclei via radiative capture reactions. Phys. Rev. C, 1977, 15:1515~1529.
    [21] Schmid KW and DoDang G. Microscopic study of the giant multipole resonances in light deformed nuclei via radiative capture reactions. Ⅱ. Phys. Rev. C, 1978, 18:1003~1010.
    [22] Schmid KW and Grümmer F. Z. Phys. A, 1979, 292:15~26.
    [23] Grümmer F Schmid KW and Faessler A. Nuclear structure theory in spinand number-conserving quasiparticle configuration spaces: General formalism. Phys. Rev. C, 1984, 29:291~307.
    [24] Schmid KW, Grümmer F and Faessler A. Hartree-Fock-Bogoliubov theory with spin and number projection before the variation: An application to ~(20)Ne and ~(22)Ne. Nucl. Phys. A, 1984, 431:205~229.
    [25] Schmid KW, Grümmer, Hammaren E and Faessler A. VAMPIR calculations for ~(128)Ba and ~(130)Ce: Two mechanisms of backbending. Nucl. Phys. A, 1985, 436:417~437.
    
    
    [26] Hammaren E Kyotoku M Schmid KW, Grümmer and Faessler A. Alignment and electromagnetic properties of the yrast bands in ~(128)Ba and ~(130)Ce: An analysis of the VAMPIR wave functions. Nucl. Phys. A, 1986, 456:437~456.
    [27] Kyotoku M other Schmid KW, Grümmer. Selfconsistent description of nonyrast states in nuclei: The excited VAMPIR approach. Nucl. Phys. A, 1986, 452:493~512.
    [28] Bohr A. Mat. Fys. Medd. Dan. Vid. Selsk., 1952, 26 no 14.
    [29] Bohr A and Mottelson BR. Mat. Fys. Medd. Dan. Vid. Selsk., 1953, 27 no 16.
    [30] Bohr A and Mottelson BR. Nuclear structure. New York: Benjamin WA, 1969.
    [31] 廖继志.近代原子核模型,成都:四川大学出版社,1990.73~162.
    [32] 徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.286~337.
    [33] Kumar K. Dynamic deformation model. Prog. Particle Nucl. Phys., 1983, 9:223~279.
    [34] Kumar K. Nuclear Models and the Search for Unity in Nuclear Physics. Bergen: Universitesforlaget, 1984.
    [35] Gneuss G and Greiner W. Collective potential energy surfaces and nuclear struc- ture. Nucl. Phys. A, 1971, 171:449~479.
    [36] Suhonen J and Lipas PO. An extended phonon projection model for even-even nuclei. Phys. Lett. B, 1985, 150:327~330.
    [37] Suhonen J and Lipas PO. Extended phonon projection model and its application to the mass region A=142-174. Nucl. Phys. A442, 1985, 442:189~214.
    [38] Elliott JP. Collective motion in the nuclear shell model I. Classification schemes for states of mixed configurations. Proc. Roy. Soc. A, 1958, 245:128~145.
    
    
    [39] Elliott JP. Collective motion in the nuclear shell model Ⅱ. The introduction of intrinsic wave-functions. Proc. Roy. Soc. A, 1958, 245:562~581.
    [40] 廖继志.近代原子核模型,成都:四川大学出版社,1990.224~295.
    [41] 徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.202~246.
    [42] 曾谨言,孙洪洲.原子核结构理论,上海:上海科学技术出版社,1987. 189~250.
    [43] Iachello F and Arima A. Boson symmetries in vibrational nuclei. Phys. Lett. B, 1974, 53:309~312.
    [44] Iachello F and Arima A. the Interacting Boson Model. Cambridge: Cambridge University Press, 1987.
    [45] Arima A and Iachello F. Collective nuclear states as representations of SU(6) group. Phys. Rev. Lett., 1975, 35:1069~1072.
    [46] Arima A and Iachello F. Interacting boson model of collective states Ⅰ. the vibrational limit. Ann. Phys., 1976, 99:253~317.
    [47] Arima A and Iachello F. Interacting boson model of collective states Ⅱ. the rotational limit. Ann. Phys., 1978, 111:201~238.
    [48] Arima A and Iachello F. Interacting boson model of collective states Ⅳ. the O(6) limit. Ann. Phys., 1979, 123:468~492.
    [49] Meyer RA and Paar V, 编. Nuclear Structure, Reactions and Symmetries. Singapore: World Scientific, 1986.
    [50] Eillott JP. The interacting boson model of nuclear structure. Rep. Prog. Phys., 1985, 48:171~221.
    [51] Casten RF and Warner DD. The interacting boson approximation. Rev. Mod. Phys., 1988, 60:389~470.
    
    
    [52] Steffen W other Bohle D, Richter A. New magnetic dipole excitation mode studied in the heavy deformed nucleus ~(156)gd by inelastic electron scattering. Phys. Lett. B, 1984, 137:27~31.
    [53] Lo Iudice N and Palumbo F. New isovector collective modes in deformed nuclei. Phys. Rev. Lett., 1978, 41:1532~1534.
    [54] Lo Iudice N and Palumbo F. Positive parity isovector collective states in deformed nuclei. Nucl. Phys. A, 1979, 326:193~208.
    [55] Iachello F other Arima A, Otsuka T. Collective nuclear states as symmetric couplings of proton and neutron excitations. Phys. Lett. B, 1977, 66:205~208.
    [56] Iachello F other Otsuka T, Arima A. Shell model description of interacting bosons. Phys. Lett. B, 1978, 76:139~143.
    [57] Iachello F. Electron scattering in the interacting boson model. Nucl. Phys. A, 1981, 358:89C~112C.
    [58] Faessler A. E2-oberflchenresonanzen in sphrischen kernen. Nucl. Phys., 1966, 85:635~669.
    [59] Irbck A Hamilton W D and Elliott JR Mixed-symmetry interaction-bosonmodel states in the nuclei ~(140)Ba, ~(142)Ce and ~(144)Nd with N=84. Phys. Rev. Lett., 1984, 53:2469~2471.
    [60] Iachello F and talmi I. Shell-model foundations of the interacting boson model. Rev. Mod. Phys., 1987, 59:339~362.
    [61] Bonsigneri G other Allaart K, Boeker E. The broken pair model for nuclei and its recent applications. Phys. Rep., 1988, 169:209~292.
    [62] Kuyucak S and Morrison I. 1/N Epansion in the interacting boson model Ⅱ. The neutron-proton degree of freedom. Ann. Phys., 1989, 195:126~166.
    
    
    [63] Bonatsos D. Interacting Boson Models of Nuclear-Structure. Oxford: Clarendon, 1988.
    [64] Iachello F and Van Isacker P. The interacting Boson-Fermion Model. Cambridge: Cambridge University Press, 1990.
    [65] Chiang HC other Sun HZ, Han QZ. Coefficients of fractional parentage of a boson system with F-spin. J. Phys. A, 1995, 28:19~32.
    [66] Sun HZ Han QZ and Li GH. Dynamical sysmmetry of the interacting boson model in light nuclei. Phys. Rev. C, 1987, 35:786~793.
    [67] Zhang JY other Sun HZ, Long GL. The F-spin formalism of the neutron-proton interacting boson model. Commun. Theor. Phys., 1998, 29:411~424.
    [68] Sun HZ other Long GL, Tian L. Band structure in ~(96)sr. Phys. Lett. B, 1995, 345:351~354.
    [69] Long GL. Algebra Expressions for SU(3)(?)R(3) Wigner coefficients for (λ, 0)× (3, 0). J. Phys. A, 1995, 28:6417~6421.
    [70] Long GL. Collective backbending effect in the interacting boson model. Phys. Rev. C, 1997, 55:3163~3165.
    [71] Gan CY Long GL and Shen TY. The rotational limit of the interacting boson model 3. Commun. Thero. Phys., 1997, 27:317~324.
    [72] Ji HY Long GL, Shen TY and Zhao EG. Analytical expressions for electromagnetic transition rates in the su(3) limit of the spdfinteracting boson model. Phys. Rev. C, 1998, 57:2301~2307.
    [73] Nilsson SG and Tsang CF. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A, 1969, 131:1~66.
    [74] Mottelson BR and Nilsson SG. Mat. Fys. Medd. Dan. Vid. Selsk, 1959, 1(No.8).
    [75] Nilsson SG. Mat. Fys. Medd. Dan. Vid. Selsk, 1955, 29(No.16).
    
    
    [76]廖继志.近代原子核模型,成都:四川大学出版社,1990.163~171.
    [77]徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.247~273.
    [78]颜一鸣,编.原子核物理学,北京:原子能出版社,1990.131~136.
    [79]徐四大,编.核物理学,北京:清华大学出版社,1992.41~41.
    [80]曾谨言.量子力学卷Ⅰ,北京:科学出版社,1995.283~290.
    [81]颜一鸣,编.原子核物理学,北京:原子能出版社,1990.136~142.
    [82]Stephens FS Asaro F and Perlman Ⅰ. Complex alpha spectra of radiothorium (Th~(228)) and Thorium-X(Ra~(224)). Phys. Rev., 1953, 92:1495~1500.
    [83]Asaro F Stephens FS and Perlman Ⅰ. Low-lying 1-states in even-even nuclei. Phys. Rev., 1954, 96:1568~1572.
    [84]Asaro F Stephens FS and Perlman Ⅰ. Radiations from 1-states in even-even nuclei. Phys. Rev., 1955, 100:1543~1545.
    [85]Huus T other Alder K, Bohr A. Study of nuclear structure bye electromagnetic excitation with accelerated ions. Rev. Mod. Phys., 1956, 28:432~542.
    [86]Lee K and Inglis DR. Stability of pear-shaped nuclear deformations. Phys. Rev., 1957, 108:774~778.
    [87]Nilsson SG Mller P and Sheline RK. Octupole deformations in the nuclei beyond ~(208)Pb. Phys. Lett. B, 1972, 40:329~332.
    [88]de Voigt MJA, Dudek J and Szymanski Z. High-spin phenomena in atomic nuclei. Rev. Mod. Phys., 1983, 55:949~1046.
    [89]Szymanski Z. Fast Nuclear Rotation. Oxford: Oxford University Press, 1983.
    [90]曾谨言,孙洪洲.原子核结构理论,上海:上海科学技术出版社,1987.317~373.
    
    
    [91] 徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.338~398.
    [92] Strutinsky VM. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A, 1967, 95:420~442.
    [93] Strutinsky VM. "Shells" in deformed nuclei. Nucl. Phys. A, 1968, 122:1~33.
    [94] Ring P and Schuck P. The Nucear Many-Body Problem. New York: Springer, 1980.
    [95] 廖继志.近代原子核模型,成都:四川大学出版社,1990.171~211,335~345.
    [96] Hara K and Iwasaki S. On the quantum number projection (Ⅰ). General theory. Nucl. Phys. A, 1979, 332:61~68.
    [97] Hara K and Iwasaki S. On the quantum number projection (Ⅲ). Simultaneous J- and N-projection. Nucl. Phys. A, 1980, 348:200~220.
    [98] Hara K and Iwasaki S. An analysis of odd-mass rare-earth nuclei using angular momentum projection. Nucl. Phys. A, 1984, 430:175~188.
    [99] Hara K and Sun Y. Projected shell model and high-spin spectroscopy. Inte. Jour. Mod. Phys.E, 1995, 4:637~785.
    [100] Hara K and Sun Y. Fortran code of the projected shell model: feasible shell model calculations for heavy nuclei. Comp. Phys. Commun., 1997, 104:245~258.
    [101] Hara K and Sun Y. Studies of high-spin states in rare-earth nuclei using the angular momentum projection method (Ⅰ). Back-bending and plateau of moments of inertia. Nucl. Phys. A, 1991, 529:445~466.
    [102] Hara K and Sun Y. Studies of high-spin states in rare-earth nuclei using the angular momentum projection method (Ⅱ). Signature inversion in doubly odd nuclei. Nucl. Phys. A, 1991, 531:221~236.
    
    
    [103] Hara K and Sun Y. Studies of high-spin states in rare-earth nuclei using the angular momentum projection method (Ⅲ). Signature splitting in odd mass nuclei. Nucl. Phys. A, 1992, 537:77~99.
    [104] Hartree DR. Proc. Camb. Phil. Soc., 1928, 24:111.
    [105] Fock V. Z. Phys., 1930, 61:126.
    [106] Slater JC. Note on Hartree's method. Phys. Rev., 1930, 35:210~211.
    [107] Peng HW. A general theory of self-consistent field beyond Hartree-Fock. Commun. Theor. Phys., 1993, 20:239~242.
    [108] 曾谨言.量子力学卷Ⅱ,北京:科学出版社,1995.100~110.
    [109] 喀兴林.高等量子力学,北京:高等教育出版社,1999.553~565.
    [110] Ⅱ,1995.110~120.
    [111] 徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.273~285.
    [112] 曾谨言,孙洪洲.原子核结构理论,北京:上海科学技术出版社,1987.251~290
    [113] Greiner W and Maruhn JA. Nuclear Models, Springer, 1996.269~292.
    [114] 曾谨言,孙洪洲.原子核结构理论,上海:上海科学技术出版社,1987.290~297.
    [115] Iwasaki S Hara K and Tanabe K. On the quantum number projection (Ⅱ). Projection of particle number. Nucl. Phys. A, 1979, 332:69~81.
    [116] Serot BD and Walecka JD. The relativistic nuclear many-body problem. Advances in nuclear physics, 1967, 16:1~327.
    [117] Serot BD and Walecka JD. Recent progress in quantum hadrodynamics. Inte. Jour. Mod. Phys. E, 1997, 6:515~631.
    
    
    [118] Walecka JD. A theory of highly condensed matter. Ann. Phys., 1974, 83:491~529.
    [119] Gambhir YK, Ring P and Thimet A. The relativistic mean field theory for finite nuclei. Ann. Phys., 1990, 198:132~179.
    [120] Ring P, Gambhir YK and Lalazissis GA. Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei. Comp. Phys. Commun., 1997, 105:77~97.
    [121] Yukawa H. Proc. Phys.-Math. Soc. Jpn. Ser. 3, 1935, 17:48.
    [122] Green AES and Sawada T. Meson theoretic N-N interactions for nuclear physics. Rev. Mod. Phys., 1967, 39:594~610.
    [123] Proca A. J. Phys. Rad., 1936, 7:347.
    [124] Kemmer N. Proc. Roy. Soc. London Ser. A, 1935, 166:127.
    [125] Schwinger J. Nuclear Forces. Amsterdam, 1948.
    [126] Wentzel G. Quantum Theory of Fields. New York: Interscience, 1949.
    [127] Schiff LI. Nonlinear meson theory of nuclear forces. Ⅰ. Neutral scalar mesons with point-contact repulsion. Phys. Rev., 1951, 84:1~9.
    [128] Schiff LI. Nonlinear meson theory of nuclear forces. Ⅱ. Nonlinearity in the meson-nucleon coupling. Phys. Rev., 1951, 84:10~11.
    [129] Johnson MH and Teller E. Classical field theory of nuclear forces. Phys. Rev., 1955, 98:783~787.
    [130] Duerr HP. Relativistic effects in nuclear forces. Phys. Rev., 1956, 103:469~480.
    [131] Rozsnyai B. Self-consistent nuclear model. Phys. Rev., 1961, 124:860~867.
    [132] Chin SA and Walecka JD. An equation of state for nuclear and higher-density matter based on relativistic mean-field theory. Phys. Lett. B, 1974, 52:24~28.
    
    
    [133] Boguta J and Bodmer AR. Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A, 1977, 292:413~428.
    [134] Boguta J and Rafelski J. Thomas Fermi model of finite nuclei. Phys. Lett. B, 1977, 71:22~26.
    [135] Serot BD. A relativistic nuclear field theory with π and ρ mesons. Phys. Lett. B, 1979, 86:146~150.
    [136] Serot BD and Walecka JD. Properties of finite nuclei in a relativistic quantum field theory. Phys. Lett. B, 1979, 87:172~176.
    [137] Lee S J, Fink J, Balantekin AB, et al. Relativistic Hartree calculations for axially deformed nuclei. Phys. Rev. Lett., 1986, 57:2916-2919.
    [138] Nagarajan MA Sharma MM and Ring P. Rho meson coupling in the relativistic mean field theory and description of exotic nuclei. Phys. Lett. B, 1993, 312:377~381.
    [139] Sharma MM and Ring P. Neutron skin of spherical nuclei in relativistic and nonrelativistic mean-field approaches. Phys. Rev. C, 1992, 45:2514~2517.
    [140] Knig Lalazissis GA and Ring P. New parameterization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C, 1997, 55:540~543.
    [141] Gupta RK Patra SK and Greiner W. Relativistic mean-field theory and the structural from proton- to neutron-drip lines. Inter. Jour. Mod. Phys. E, 1997, 6:641~667.
    [142] 喀兴林.高等量子力学,北京:高等教育出版社,1999.433~439.
    [143] Heyde KLG. The Nuclear Shell Model, Beijing: World Publishing Corporation, 1992.61.
    [144] 王竹溪,郭敦仁.特殊函数概论,北京:北京大学出版社,2000.318~323.
    
    
    [145] 曾谨言.量子力学卷Ⅰ,北京:科学出版社,1995.353.
    [146] Meng J. Relativistic continuum Hartree-Bogoliubov theory with both zero range and finite range Gogny force and their application. Nucl. Phys. A, 1998, 635:3~42.
    [147] 曾谨言.量子力学卷Ⅱ,北京:科学出版社,1995.371~376.
    [148] 王竹溪,郭敦仁.特殊函数概论,北京:北京大学出版社,2000.337~343.
    [149] 李庆扬,王能超,易大义,编.数值分析,1995.,3 edition 136~144.
    [150] Dechargé J and Gogny D. Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C, 1980, 21:1568~1593.
    [151] 高早春.反射不对称壳模型:[博士学位论文].北京:中国原子能科学研究院,2000.
    [152] Vautherin D and Brink DM. Hartree-Fock calculations with Skyrem's interaction. I. Spherical Nuclei. Phys. Rev. C, 1972, 5:626~647.
    [153] Koepf W and Ring P. A relativistic description of rotating nuclei: The yrast line of ~(20)Ne. Nucl. Phys. A, 1989, 493:61~82.
    [154] 徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.600~612.
    [155] Yang YT Xu GO and Wang SJ. Generator coordinate method adn nuclear collective motions: Coupling between single particle and collective motion. Scientia Sinca, 1981, 114:1085~1095.
    [156] 徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.150~163.
    [157] Giai NV Ma ZY and Toki H. Compressibility of nuclear matter and breathing mode of finite nuclei in relativistic random phase approximation. Phys. Rev. C, 1997, 55:2385~2388.
    
    
    [158] Ring P Stoitsov MV and Sharma MM. Generator coordinate calculations for breathing-mode giant monopole resonance in the relativistic mean-field theory. Phys. Rev. C, 1994, 50:1445~1455.
    [159] Behnsch R Pschl W Vretenar D, Lalazissis GA and Ring P. Monopole giant resonances and nuclear compressibility in relativistic mean field theory. Nucl. Phys. A, 1997, 621:853~878.
    [160] 曾谨言.量子力学卷Ⅰ,北京:科学出版社,1995.101~107.
    [161] Hashimoto O other Tanihata. I, Hamagaki H. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett., 1985, 55:2676~2679.
    [162] Meng J and Ring P. Relativistic Hatree-Bogoliubov Description of the Neutron Halo in ~(11)Li. Phys. Rev. Lett., 1996, 77:3963~3966.
    [163] Shen YS and Ren ZZ. Skyrme-Hartree-Fock calculation on He, Li and Be isotopes. Phys. Rev. C, 1996, 54:1158~1164.
    [164] Cai YH other Ren ZZ, Zhu ZY. Relativistic mean-field study of exotic carbon nuclei. Nucle. Phys. A, 1996, 605:75~86.
    [165] Ma ZY other Ren ZZ, Chen BQ. One-proton halo in ~(26)p and two-proton halo in ~(27)S. Phys. Rev. C, 1996, 53:R572~R575.
    [166] Firestone RB. Table of Isotopes CD-ROM. WILK-INTERSCIENCE, 8 edition, 1996.
    [167] 廖继志.近代原子核模型,成都:四川大学出版社,1990.151~162.
    [168] 徐躬耦,杨亚天.原子核理论,北京:高等教育出版社,1989.136~137.
    [169] 颜一鸣,编.原子核物理学,北京:原子能出版社,1990.196~197.
    [170] Feynman RP. Simulating physics with computers. Int. Jour. Theor. Phys., 1982, 21:467~488.
    
    
    [171] Benioff P. The computer as a physical system: A microscopic quantum mechan ical hamiltonian model of computers as represented by turing machines. Jour. Stat. Phys., 1980, 22:563~591.
    [172] Feynman RP. Quantum mechanical computrs. Optics News, 1985, 11:11~20.
    [173] Deutsch D. Quantum theory, the church turing principle and the universal quantum computer. Proc. Roy. Soc. London A, 1985, 400:97~117.
    [174] Deutsch D. Quantum computational networks. Proc. Roy. Soc. London A, 1989, 425:73~90.
    [175] Berthiaume A and Brassard G. The quantum challenge to structural complexity theory. Proc. of the 7th Annual Structure in Complexity Theory Conference, IEEE Computer Societ Press, 1992 181~182.
    [176] Berthiaume A and Brassard G. Oracle quantum computation. Proc. of the workshop on physics of Computation: Phys Comp 92, IEEE Computer Societ Press, 1992 195~199.
    [177] Shor P. Algorithms for quantum computation: discrete logarithm and factoring. Proc. of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Societ Press, 1994 124~134.
    [178] Grover LK. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79:325~328.
    [179] Chuang IL, Gershefeld N and Kubinec M. Experimental implementation of fast quantum searching. Phys. Rev. Lett., 1998, 80:3408~3411.
    [180] Long GL, Zhang WL, LI YS, et al. Arbitrary phase rotation of the marked state cannot be used for grover's quantum searching algorithm. Comm. Theor. Phys., 1999, 32:335~338.
    [181] Long GL, Li YS, Zhang WL, et al. Phase matching in quantum searching. Phys. Lett. A, 1999, 262:27~34.
    
    
    [182] Long GL, Li YS, Zhang WL, et al. Dominant gate imperfection in Grover's quantum search algorithm. Phys. Rev. A, 2000, 61(4):042305.
    [183] Grover LK. Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett., 1998, 80:4329~4332.
    [184] Zalka C. A Grover-based quantum search of optimal order for an unknown number of marked elements. Lanl-eprint/quant-ph/9902049.
    [185] Long GL, Yan HY, Li YS, et al. Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A, 2001, 286:121~126.
    [186] Schliemann J, Loss D, MacDonald AH. Double-occupancy errors, adiabaticity, and entanglement of spin-qubits in quantum dots. Phys. Rev. B, 2001, 63:085311.
    [187] Schliemann J, Cirac JI, Kus M, et al. Quantum correlations in two-Fermion systems. Phys. Rev. A, 2001, 64:022303.
    [188] Li YS, Zeng B, Liu XS, et al. Entanglement in a two-identical-particle system. Phys. Rev. A, 2001, 64(5):054302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700