用户名: 密码: 验证码:
新型金属—羧基配位扩展结构化合物的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis of Metal-Carboxyl Extended Coordination Frameworks
  • 作者:曹骏郡
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2009
  • 导师:陈接胜
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2009-04-01
摘要
晶体工程学是分子工程学的一个重要组成部分,它涉及分子或化学基团在晶体中的行为、晶体的设计、结构与性能的控制以及晶体结构的预测等,它研究的主要目的在于寻找分子识别和分子组装的规律,从而通过控制构筑单元间相互作用的类型、强度及几何性质来获得具有所希望结构和性能的晶体材料,是实现从分子到材料的一条重要途径。我们从金属-有机配合物晶体材料的新颖结构和自组装规律的角度出发,通过选择合适的金属中心、羧基配体及第二配体,并有目的的调节反应条件,构筑具有新颖拓扑结构和潜在应用价值的新晶体材料,并为这类材料的定向合成提供有价值的实践支持。
     本论文致力于通过桥连配体、端基配体与金属离子的协同作用和结构调控,组装一维、二维和三维的新型金属-羧基配位扩展结构晶体材料。
     1.在水热体系下,我们合成了两个具有金属-草酸扩展框架结构化合物。我们成功地将有机羧酸配体草酸引入到亚硒酸铟的无机骨架中,得到一个无机-有机杂化的开放结构,这对于进一步扩展无机开放骨架方面的研究,具有一定的指导意义;我们在有机模板剂存在的条件下合成了具有三维扩展骨架结构的草酸铟,并研究了金属铟(III)中心离子的配位方式在不同骨架结构中的变化。
     2.我们合成了一系列金属-偶氮羧酸配位化合物,对影响化合物结构的因素进行了比较和探讨,并讨论了化合物中的弱相互作用和缠结网络结构。此外,我们对化合物的磁性质进行了初步研究。我们在水热条件下,合成了8个具有金属-羧基配位扩展结构的化合物。
Crystal engineering is an important part of molecular engineering and is involved with the behavior of molecules or chemical groups within the crystal lattice, the control of crystal design and properties, and the prediction of crystal structure. Recently, the new research fields in the crystal engineering contain inorganic-organic hybrid material, microporous material, molecular magnet and coordination polymers, et al. The research in these areas not only enrich the study of physical laws underlying the assembling processes and experiment of the synthesis chemistry, but also extend the application prospect in the area of electronic, optics, magnetism, catalysis and biology simulation. According to the principle of crystal engineering, it is possible to design and synthesis crystalline material by selecting certain geometric metal ions and special organic ligands. Meanwhile, by selecting functional metal ions and organic ligands with functional groups, crystalline materials with optics, electric, magnetism, resolution of racemates and catalysis can be synthesized. The carboxylate ligand has been widely used in the research of synthesizing new materials for its vast diversity and unusual features in the structure and various coordination modes.
     The aim of our work is to design and synthesize a series of metal-carboxyl coordination extended frameworks by selecting suitable ligands and metal ions. This thesis is completed by four chapters.
     In the first chapter, the concept and development of crystal engineering is briefly reviewed, with major emphases on the metal-carboxyl coordination extended frameworks, including the histories, new developments and potential applications. Also the goals and achievements of this thesis are summarized.
     Among the hybrid compounds there are metal oxalates which exhibit vast diversity and unusual features in structure. A variety of metal oxalates with 1D, 2D and 3D structures have been reported during the past years. The incorporation of the oxalate group in metal-oxo open-frameworks is also of interest because additional structure features may appear after the oxalate incorporation. In Chapter 2, two new indium(III) compounds with extended structures are introduced: [In2(SeO3)2(C2O4)(H2O)2]·2H2O (1) and [NH3(CH2)2NH3][In(C2O4)2]2·5H2O (2). In compound 1, indium-selenite chains are bridged by oxalate units to form two-dimensional (2D) In2(SeO3)2C2O4 layers, separated by non-coordinating water molecules. In compound 2, the indium atoms are connected through the oxalate units to generate a 3D open framework containing cross-linked 12-membered and 8-membered channels.
     Azobenzene derivative is a good candidate ligand for its excellent property in many areas such as nonlinear optics, photochromism, photoinduced birefringence, optical switching and image storage. However, reports on azobenzene, especially metal-azobenzene carboxylates are rarely been prepared.
     In Chapter 3, a series of 5 trans-ADBbenzene-4,4-dicarboxylic acid (ADB) assembly compounds are introduced: [Zn(ADB)] (3), [Zn(ADB)(phen)] (4), [Co(ADB)(phen)] (5), [In2(ADB)3(phen)2] (6), [Cd(ADB)(phen)]·H2O (7). The strategy is to design low-dimensional structures by appling the“ligand regulation”method and using the bridging ligands and terminal ligands. Compound 3-7 are 1D polymers with differentπ-πstacking interactions, H-bond interactions and different characterized supramolecular frameworks. Compound 3-5 and 7 exhibits zig-zag chains, whereas compound 6 consists of ladder-like chains with left and right-hand helixes combined by ADB ligands. The synthesis and structures are described and the role of factors in packing of molecules are probed.
     In Chapter 4, a compound exhibiting fantastic five equivalent interwoven three-dimensional nets is introduced: [Co2(ADB)2(H2O)(phen)2] 8. Two ADB carboxylates and one bridging water molecule bridge the adjacent Co(II) atoms, forming a paddle-wheel Co2(CO2)4(phen)2O motif as secondary building units (SBU). The SBU is further bridged by ADB ligands forming an abnormal 5-fold interpenetration of diamondoid networks. Left- and right-handed helixes, sharing the ADB ligands, have been found in the open frameworks. Characteristic weak overall antiferromagnetic interactions between the metal centers have been observed.
引文
[1]徐筱杰,唐有祺,晶体工程及其在化学中的应用[J].无机化学学报, 2000, 16 (002): 157-166.
    [2] Batten, S. R., Robson, R., Interpenetrating Nets: Ordered, Periodic Entanglement[J]. Angewandte Chemie International Edition, 1998, 37 (11): 1460-1494.
    [3] Batten, S. R., Hoskins, B. F., Robson, R., etc., An alternative to interpenetration whereby nets with large windows may achieve satisfactory space filling[J]. Chemical Communications, 2000, (13): 1095-1096.
    [4] Moulton, B., Zaworotko, M. J., From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chemical Reviews, 2001, 101 (6): 1629-1658.
    [5] Desiraju, G. R., Designer crystals: intermolecular interactions, network structures and supramolecular synthons[J]. Chemical Communications, 1997, 1997 (16): 1475-1482.
    [6] Goodgame, D. M. L., Grachvogel, D. A., Williams, D. J., A New Type of Metal-Organic Large-Pore Zeotype[J]. Angewandte Chemie International Edition, 1999, 38 (1-2): 153-156.
    [7] Long Pan, N. C., Xiaoying Huang, Jing Li,, A Reversible Structural Interconversion Involving [M(H2pdc)2(H2O)2]2·H2O (M=Mn, Fe, Co, Ni, Zn, H3pdc=3,5-pyrazoledicarboxylic acid) and the Role of A Reactive Intermediate [Co(H2pdc)2][J]. Chemistry - A European Journal, 2001, 7 (20): 4431-4437.
    [8] eacute, rey, G., rard, etc., POROUS MATERIALS: Prospects for Giant Pores[J]. Science, 1999, 283 (5405): 1125-1126.
    [9] Desiraju, G. R., Crystal engineering: the design of organic solids[M]. New York: Elsevier: 1989.
    [10] Champness, N. R., Schr?der, M., Extended networks formed by coordination polymers in the solid state[J]. Current Opinion in Solid State and Materials Science, 1998, 3 (4): 419-424.
    [11] Tong, M. L., Lee, H. K., Chen, X. M., etc., A novel three-dimensional triangular organic–inorganic hybrid network self-assembled by mononuclear [Mn (4,4’-bipyridine)2(H2O)4]2+ cations and rich solvate 4,4’-bipyridine molecules throughhydrogen-bonding andπ–πinteractions[J]. Journal of the Chemical Society, Dalton Transactions, 1999, (21): 3657-3659.
    [12] Schmidt, G. M. J., Photodimerization in the solid state[J]. Pure and Applied Chemistry, 1971, 27 (4): 647-678.
    [13] Ruben, M., Rojo, J., Romero-Salguero, F. J., etc., Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays[J]. Angewandte Chemie International Edition, 2004, 43 (28): 3644-3662.
    [14] Etter, M. C., Encoding and decoding hydrogen-bond patterns of organic compounds[J]. Accounts of Chemical Research, 1990, 23 (4): 120-126.
    [15] Zaworotko, M. J., Crystal engineering of diamondoid networks[J]. Chemical Society reviews, 1994, 23 (4): 283-288.
    [16] Copp, S. B., Holman, K. T., Sangster, J. O. S., etc., Supramolecular chemistry of [{M(CO)3(μ3-OH)}4](M = Mn or Re): a modular approach to crystal engineering of superdiamondoid networks[J]. Journal of the Chemical Society. Dalton transactions, 1995, (13): 2233-2243.
    [17] Alekseyeva, E. S., Batsanov, A. S., Boyd, L. A., etc., Intra-and inter-molecular carboranyl C–H···N hydrogen bonds in pyridyl-containing ortho-carboranes[J]. Dalton Transactions, 2003, (3): 475-482.
    [18] Khlobystov, A. N., Blake, A. J., Champness, N. R., etc., Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands[J]. Coordination Chemistry Reviews, 2001, 222 (1): 155-192.
    [19] Devic, T., Evain, M., Moelo, Y., etc., Single Crystalline Commensurate Metallic Assemblages ofπ-slabs and CdI2-Type Layers: Synthesis and Properties ofβ-(EDT-TTF-I2)2[Pb5/61/6I2]3 andβ-(EDT-TTF-I2)2[Pb2/3+xAg1/3-2xxI2]3, x = 0.05[J]. Journal of the American Chemical Society, 2003, 125 (11): 3295-3301.
    [20] Pullen, A. E., Olk, R.-M., The coordination chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit) and isologs[J]. Coordination Chemistry Reviews, 1999, 188 (1): 211-262.
    [21] Che, C.-M., Mao, Z., Miskowski, V. M., etc., Cuprophilicity: Spectroscopic and Structural Evidence for Cu-Cu Bonding Interactions in Luminescent Dinuclear Copper(i) Complexes with Bridging Diphosphane Ligands13[J]. Angewandte Chemie International Edition, 2000, 39 (22): 4084-4088.
    [22] Kim, Y., Lee, E., Jung, D.-Y., Mn2(H2O)[O2C(CH2)nCO2]2(n = 3-12): Replication of an Inorganic Monolayer in Three-Dimensional (Dicarboxylato)manganese(II)[J]. Chemistry of Materials, 2001, 13 (8): 2684-2690.
    [23] Yang, S. Y., Long, L. S., Jiang, Y. B., etc., An Exceptionally Stable Metal-Organic Framework Constructed from the Zn8(SiO4) Core[J]. Chemistry of Materials, 2002, 14 (8): 3229-3231.
    [24] Yaghi, O. M., Li, H., Groy, T. L., Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid[J]. Journal of the American Chemical Society, 1996, 118 (38): 9096-9101.
    [25] Kumagai, H., Kepert, C. J., Kurmoo, M., Construction of Hydrogen-Bonded and Coordination-Bonded Networks of Cobalt(II) with Pyromellitate: Synthesis, Structures, and Magnetic Properties[J]. Inorganic Chemistry, 2002, 41 (13): 3410-3422.
    [26] He, Z., He, C., Gao, E.-Q., etc., Lanthanide-Transition Heterometallic Extended Structures with Novel Orthogonal Metalloligand as Building Block[J]. Inorganic Chemistry, 2003, 42 (7): 2206-2208.
    [27] Comprehensive Coordination Chemistry[M]. Vol. 5, Ed.: Wilkinson, G.Toronto, Canada: Pergamon, 1987.
    [28] Mehrotra, R., Bohra, R., Metal carboxylates[M]. London: Academic Press: 1983.
    [29] Liao, Y., Shum, W. W., Miller, J. S., Synthesis and Magnetic Properties of 3-D [RuII/III2(O2CMe)4]3[MIII(CN)6] (M = Cr, Fe, Co)[J]. Journal of the American Chemical Society, 2002, 124 (32): 9336-9337.
    [30] Rao, V. M., Sathyanarayana, D. N., Manohar, H., X-Ray crystal structures of some adducts of dimeric copper(II) acetate. Nature of the copper-copper interaction[J]. Journal of the Chemical Society, Dalton Transactions, 1983, (10): 2167 - 2173.
    [31] Davey, G., Stephens, F., Structures of diethylenetriaminecopper (II) cations. Part IV. Crystal structure ofμ-formato-diethylenetriaminecopper (II) formate[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1971, 1971: 103-106.
    [32] Goldberg, I., Herbstein, F. H., Thiourea coordination complexes of Pb(II) salts. IV. Irregular coordination in bis(thiourea)lead(II) formate monohydrate Pb(HCOO)2·[Sc(NH2)2]2·H2O[J]. Acta Crystallographica Section B, 1973, 29 (2): 246-250.
    [33] Li, H., Eddaoudi, M., Yaghi, O. M., An Open-Framework Germanate with Polycubane-Like Topology[J]. Angewandte Chemie International Edition, 1999, 38 (5): 653-655.
    [34] Liu, Y.-H., Lu, Y.-L., Wu, H.-C., etc., [CdII(bpdc)·H2O]n: A Robust, Thermally Stable Porous Framework through a Combination of a 2-D Grid and a Cadmium Dicarboxylate Cluster Chain (H2bpdc = 2,2'-Bipyridyl-4,4'-dicarboxylic Acid)[J]. Inorganic Chemistry, 2002, 41 (9): 2592-2597.
    [35] Legendziewicz, J., Borzechowska, M., Oczko, G., etc., Spectroscopy and magnetism of polymeric Ln(CCl3COO)3·2H2O and their heteronuclear Ln2Cu(CCl3COO)8·6H2O analogues (Ln= Sm, Gd)[J]. New Journal of Chemistry, 2000, 24 (1): 53-59.
    [36] Kutlu, I., Meyer, G., Oczko, G., etc., Synthesis and crystal structure of the heteronuclear chain trichloroacetate CuNd2(Cl3CCOO)8·6H2O[J]. European journal of solid state and inorganic chemistry, 1997, 34 (2): 231-238.
    [37] Legendziewicz, J., Oczko, G., Meyer, G., Spectroscopy studies of lanthanide trichloroacetate single crystals[J]. Polyhedron, 1991, 10 (16): 1921-1928.
    [38] Brammer, L., Burgard, M., Eddleston, M., etc., Designing neutral coordination networks with the aid of hydrogen bond mimicry using silver (i) carboxylates[J]. CrystEngComm, 2002, 4 (44): 239-248.
    [39] Brammer, L., Burgard, M., Rodger, C., etc., Silver (I) carboxylates: versatile inorganic analogs of carboxylic acids for supramolecular network formation[J]. Chemical Communications, 2001, (23): 2468-2469.
    [40] Mareque Rivas, J. C., Brammer, L., Hydrogen bonding in substituted-ammonium salts of the tetracarbonylcobaltate(-I) anion: some insights into potential roles for transition metals in organometallic crystal engineering[J]. Coordination Chemistry Reviews, 1999, 183 (1): 43-80.
    [41] Dong, G., Bing-guang, Z., Ying, D. C., etc., Novel three-dimensional framework based on Ba9 cores involving unprecedentedμ5-η3:η3-acetate anions[J]. Journal of the Chemical Society, Dalton Transactions, 2002, (20): 3783-3784.
    [42] Guo, G. C., Mak, T. C. W., nprecedentedμ-1,2,3κS:4,5κN coordination mode of the thiocyanate anion in two new double salts of silver(I), AgSCN·2AgNO3 and AgSCN·AgClO4 [J]. Chemical Communications, 1999, (9): 813-814.
    [43] Papaefstathiou, G. S., MacGillivray, L. R., An Inverted Metal-Organic Framework with Compartmentalized Cavities Constructed by Using an Organic Bridging Unit Derived from the Solid State13[J]. Angewandte Chemie International Edition, 2002, 41 (12): 2070-2073.
    [44] Rao, C. N. R., Natarajan, S., Vaidhyanathan, R., Metal carboxylates with open architectures[J]. Angewandte Chemie-International Edition, 2004, 43 (12): 1466-1496.
    [45] Farrell, R. P., Hambley, T. W., Lay, P. A., A New Class of Layered Microporous Materials: Crystal Structure of Disodium Pentakis(trimethylphenylammonium) Bis[tris(oxalato2-)chromateIII] Chloride Pentahydrate[J]. Inorganic Chemistry, 1995, 34 (4): 757-758.
    [46] Soto, L., Garcia, J., Escriva, E., etc., Synthesis, characterization and magnetic properties of .mu.-oxalato- andμ-oxamido-bridged copper(II) dimers. Crystal and molecular structures of [Cu2(mepirizole)2(C2O4)(H2O)2](PF6)2·mepirizole·3H2O and [Cu2(mepirizole)2(C2O4)(NO3)2(H2O)]2[Cu2(mepirizole)2(C2O4)(NO3)2][J]. Inorganic Chemistry, 1989, 28 (17): 3378-3386.
    [47] Pellaux, R., Schmalle, H. W., Decurtins, S., etc., Magnetic structure of two- and three-dimensional supramolecular compounds[J]. Physica B: Condensed Matter, 1997, 234-236: 783-784.
    [48] Pellaux, R., Schmalle, H. W., Huber, R., etc., Molecular-Based Magnetism in Bimetallic Two-Dimensional Oxalate-Bridged Networks. An X-ray and Neutron Diffraction Study[J]. Inorganic Chemistry, 1997, 36 (11): 2301-2308.
    [49] Delgado Friedrichs, O., O'Keeffe, M., Yaghi, O. M., Three-periodic nets and tilings: semiregular nets[J]. Acta Crystallographica Section A, 2003, 59 (6): 515-525.
    [50] Gardner, G. B., Venkataraman, D., Moore, J. S., etc., Spontaneous assembly of a hinged coordination network[J]. Nature, 1995, 374 (6525): 792-795.
    [51] MacNicol, D. D., Inclusion Compounds[M]. Vol. 2, Ed.: Atwood, J. L., E., D. J.,MacNicol, D. D.London: Academic Press, 1984.
    [52] Bishop, R., Dance, I. G., Inclusion Compounds[M]. Vol. 4, Ed.: Atwood, J. L., E., D. J.,MacNicol, D. D.London: Academic Press, 1991.
    [53] Clemente-León, M., Coronado, E., Galán-Mascarós, J., etc., Intercalation of decamethylferrocenium cations in bimetallic oxalate-bridged two-dimensional magnets[J]. Chemical Communications, 1997, (18): 1727-1728.
    [54] Carling, S. G., Mathoniere, C., Day, P., etc., Crystal structure and magnetic properties of the layer ferrimagnet N(n-C5H11)4MnIIFeIII(C2O4)3[J]. Journal of the Chemical Society, Dalton Transactions, 1996, (9): 1839-1843.
    [55] Coronado, E., Galan-Mascaros, J. R., Gomez-Garcia, C. J., etc., Increasing the Coercivity in Layered Molecular-based Magnets A[MIIMIII(ox)3] (MII = Mn, Fe, Co, Ni, Cu; MIII = Cr, Fe; ox = oxalate; A = organic or organometallic cation)[J]. Advanced Materials, 1999, 11 (7): 558-561.
    [56] Decurtins, S., Schmalle, H., Oswald, H., etc., A polymeric two-dimensional mixed-metal network. Crystal structure and magnetic properties of{[P(Ph)4][MnCr(ox)3]}n[J]. Inorganica chimica acta, 1994, 216 (1-2): 65-73.
    [57] Nuttall, C. J., Day, P., Magnetization of the Layer Compounds AFeIIFeIII(C2O4)3 (A = Organic Cation), in Low and High Magnetic Fields: Manifestation of Néel N and Q Type Ferrimagnetism in a Molecular Lattice[J]. Chemistry of Materials, 1998, 10 (10): 3050-3057.
    [58] Modec, B., Brencic, J. V., Dolenc, D., etc., The first oxalate-bridged one-dimensional polymer containing MoV2 dimers with single metal–metal bonds. Syntheses and structures of (MeNC5H5)2n[Mo2O4(C2O4)Cl2]n and (3-MePyH)2n[Mo2O4(C2O4)Cl2]n[J]. Journal of the Chemical Society, Dalton Transactions, 2002, (24): 4582-4586.
    [59] Kitagawa, S., Okubo, T., Kawata, S., etc., An oxalate-linked copper(II) coordination polymer, [Cu2(oxalate)2(pyrazine)3]n, constructed with two different copper units: x-ray crystallographic and electronic structures[J]. Inorganic Chemistry, 1995, 34 (19): 4790-4796.
    [60] Hernandez-Molina, M., Lloret, F., Ruiz-Perez, C., etc., Weak Ferromagnetism in Chiral 3-Dimensional Oxalato-Bridged Cobalt(II) Compounds. Crystal Structure of [Co(bpy)3][Co2(ox)3]ClO4[J]. Inorganic Chemistry, 1998, 37 (16): 4131-4135.
    [61] Julve, M., Verdaguer, M., Gleizes, A., etc., Design ofμ-oxalato copper(II) binuclear complexes exhibiting expected magnetic properties[J]. Inorganic Chemistry, 1984, 23 (23): 3808-3818.
    [62] Oughtred, R. E., Raper, E. S., Shearer, H. M. M., The crystal structure of diammonium bis(oxalato)monoaquaoxovanadate(IV) monohydrate[J]. Acta Crystallographica Section B, 1976, 32 (1): 82-87.
    [63] Armentano, D., De Munno, G., Lloret, F., etc., Novel Chiral Three-Dimensional Iron(III) Compound Exhibiting Magnetic Ordering at Tc = 40 K[J]. Inorganic Chemistry, 2002, 41 (8): 2007-2013.
    [64] Vaidhyanathan, R., Natarajan, S., Rao, C. N. R., Three-Dimensional Yttrium Oxalates Possessing Large Channels[J]. Chemistry of Materials, 2001, 13 (1): 185-191.
    [65] Kitagawa, S., Kitaura, R., Noro, S.-i., Functional Porous Coordination Polymers[J]. Angewandte Chemie International Edition, 2004, 43 (18): 2334-2375.
    [66] Chae, H. K., Siberio-Perez, D. Y., Kim, J., etc., A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427 (6974): 523-527.
    [67] Yaghi, O. M., Li, H., Davis, C., etc., Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids[J]. Accounts of Chemical Research, 1998, 31 (8): 474-484.
    [68] Eddaoudi, M., Moler, D. B., Li, H., etc., Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J]. Accounts of Chemical Research, 2001, 34 (4): 319-330.
    [69] Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M., etc., Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Accounts of Chemical Research, 2005, 38 (3): 176-182.
    [70] O'Keeffe, M., Eddaoudi, M., Li, H., etc., Frameworks for Extended Solids: Geometrical Design Principles[J]. Journal of Solid State Chemistry, 2000, 152 (1): 3-20.
    [71] Reineke, T. M., Eddaoudi, M., Moler, D., etc., Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO][J]. Journal of the American Chemical Society, 2000, 122 (19): 4843-4844.
    [72] Rosi, N. L., Kim, J., Eddaoudi, M., etc., Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units[J]. Journal of the American Chemical Society, 2005, 127 (5): 1504-1518.
    [73] Duren, T., Sarkisov, L., Yaghi, O. M., etc., Design of New Materials for Methane Storage[J]. Langmuir, 2004, 20 (7): 2683-2689.
    [74] Li, H., Eddaoudi, M., O'Keeffe, M., etc., Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402 (6759): 276-279.
    [75] Wang, B., Cote, A. P., Furukawa, H., etc., Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature, 2008, 453 (7192): 207-211.
    [76] Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., etc., Reticular synthesis and the design of new materials[J]. Nature, 2003, 423 (6941): 705-714.
    [77] Banerjee, R., Phan, A., Wang, B., etc., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319 (5865): 939-943.
    [78] Chen, B., Eddaoudi, M., Hyde, S. T., etc., Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores[J]. Science, 2001, 291 (5506): 1021-1023.
    [79] Cote, A. P., Benin, A. I., Ockwig, N. W., etc., Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310 (5751): 1166-1170.
    [80] Eddaoudi, M., Kim, J., Rosi, N., etc., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469-472.
    [81] El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., etc., Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316 (5822): 268-272.
    [82] Li, H. L., Laine, A., O'Keeffe, M., etc., Supertetrahedral sulfide crystals with giant cavities and channels[J]. Science, 1999, 283 (5405): 1145-1147.
    [83] Rosi, N. L., Eckert, J., Eddaoudi, M., etc., Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300 (5622): 1127-1129.
    [84] Rowsell, J. L. C., Spencer, E. C., Eckert, J., etc., Gas adsorption sites in a large-pore metal-organic framework[J]. Science, 2005, 309 (5739): 1350-1354.
    [85] Wang, X.-L., Qin, C., Wang, E.-B., etc., Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts[J]. Angewandte Chemie International Edition, 2004, 43 (38): 5036-5040.
    [86] Wang, X.-L., Qin, C., Wang, E.-B., etc., Supramolecular Self-Assembly of Zigzag Coordination Polymer Chains: A Fascinating Three-Dimensional Polycatenated Network Featuring an Uneven "Density of Catenations" and a Three-Dimensional Porous Network[J]. Crystal Growth & Design, 2006, 6 (9): 2061-2065.
    [87] Wang, X.-L., Qin, C., Wang, E.-B., etc., Metal Nuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes[J]. Chemistry - A European Journal, 2006, 12 (10): 2680-2691.
    [88] Wang, X.-L., Qin, C., Wang, E.-B., Polythreading of Infinite 1D Chains into Different Structural Motifs: Two Poly(pseudo-rotaxane) Architectures Constructed by Concomitant Coordinative and Hydrogen Bonds[J]. Crystal Growth & Design, 2006, 6 (2): 439-443.
    [89] Wang, X. L., Qin, C., Wang, E. B., etc., An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks[J]. Chemical Communications, 2005, (38): 4789-4791.
    [90] Wang, X. L., Qin, C., Wang, E. B., etc., An unprecedented fivefold interpenetrated lvt network containing the exceptional racemic motifs originated from nine interwoven helices[J]. Chemical Communications, 2005, (43): 5450-5452.
    [91] Kesanli, B., Cui, Y., Smith, M. R., etc., Highly Interpenetrated Metal-Organic Frameworks for Hydrogen Storage[J]. Angewandte Chemie International Edition, 2005, 44 (1): 72-75.
    [92] Schüth, F., Schmidt, W., Microporous and Mesoporous Materials[J]. Advanced Materials, 2002, 14 (9): 629-638.
    [93] Oliver, S., Kuperman, A., Ozin, G. A., A New Model for Aluminophosphate Formation: Transformation of a Linear Chain Aluminophosphate to Chain, Layer, and Framework Structures[J]. Angewandte Chemie International Edition, 1998, 37 (1-2): 46-62.
    [94] Thomas, J. M., Design, Synthesis, and In Situ Characterization of New Solid Catalysts[J]. Angewandte Chemie International Edition, 1999, 38 (24): 3588-3628.
    [95] Cheetham, A. K., Férey, G., Loiseau, T., Open-Framework Inorganic Materials[J]. Angewandte Chemie International Edition, 1999, 38 (22): 3268-3292.
    [96] Mao, J.-G., Wang, Z., Clearfield, A., Synthesis, Characterization, and Crystal Structures of Two Divalent Metal Diphosphonates with a Layered and a 3D Network Structure[J]. Inorganic Chemistry, 2002, 41 (9): 2334-2340.
    [97] Férey, G., Building Units Design and Scale Chemistry[J]. Journal of Solid State Chemistry, 2000, 152 (1): 37-48.
    [98] Hagrman, P. J., Hagrman, D., Zubieta, J., Organic-Inorganic Hybrid Materials: From ldquoSimplerdquo Coordination Polymers to Organodiamine-Templated Molybdenum Oxides[J]. Angewandte Chemie International Edition, 1999, 38 (18): 2638-2684.
    [99] Ferey, G., Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks...Ecumenism in Chemistry[J]. Chemistry of Materials, 2001, 13 (10): 3084-3098.
    [100] Choi, C. T. S., Anokhina, E. V., Day, C. S., etc., Novel Gallium Phosphatooxalate with Pendant Oxalate Ligands: Preparation, Crystal Structure, NMR Spectroscopy, and Thermal Stability[J]. Chemistry of Materials, 2002, 14 (10): 4096-4103.
    [101] Chen, C.-Y., Chu, P. P., Lii, K.-H., Synthesis, crystal structure and 71Ga MAS NMR spectroscopy of a novel gallium phosphatooxalate: [Ga5(OH)2(C10H9N2)(C2O4)(PO4)4]·2H2O[J]. Chemical Communications, 1999, (16): 1473-1474.
    [102] Hung, L.-C., Kao, H.-M., Lii, K.-H., Synthesis, Crystal Structure, and Solid-State NMR Spectroscopy of K2[Ga4(C2O4)(PO4)4]·2H2O, a New Gallium Phosphatooxalate with an Intersecting Tunnel Structure[J]. Chemistry of Materials, 2000, 12 (8): 2411-2417.
    [103] Choudhury, A., Natarajan, S., Rao, C. N. R., A Hybrid Open-Framework Iron Phosphate-Oxalate with a Large Unidimensional Channel, Showing Reversible Hydration[J]. Chemistry of Materials, 1999, 11 (9): 2316-2318.
    [104] Lin, H.-M., Lii, K.-H., Jiang, Y.-C., etc., Organically Templated Inorganic/Organic Hybrid Materials: Synthesis and Structures of (C4H12N2)[FeII4(C2O4)3(HPO4)2] and (C5H14N2)[FeIII2(C2O4)(HPO4)3][J]. Chemistry of Materials, 1999, 11 (3): 519-521.
    [105] Do, J., Bontchev, R. P., Jacobson, A. J., Vanadyl Oxalatophosphate Compounds (C2H10N2)[VO(HPO4)]2(C2O4) and (CH6N3)2[[VO(HPO4)]2(C2O4) and Their Thermal Transformation to (VO)2P2O7 via VOHPO4[J]. Chemistry of Materials, 2001, 13 (8): 2601-2607.
    [106] Choudhury, A., Natarajan, S., Rao, C. N. R., Hybrid Open-Framework Iron Phosphate-Oxalates Demonstrating a Dual Role of the Oxalate Unit[J]. Chemistry - A European Journal, 2000, 6 (7): 1168-1175.
    [107] Chakrabarti, S., Natarajan, S., A Reactive Intermediate in the Synthesis of Iron Arsenates: Synthesis of the First One-Dimensional Iron Arsenate Oxalate and ItsTransformation into Two- and Three-Dimensional Iron Arsenates[J]. Angewandte Chemie International Edition, 2002, 41 (7): 1224-1226.
    [108] Yang, S. Y., Long, L. S., Huang, R. B., etc., [Zn8 (SiO4)(C8H4O4) 6]n: the firstborn of a metallosilicate-organic hybrid material family (C8H4O4 = isophthalate)[J]. Chemical communications (Cambridge, England), 2002, (5): 472-473.
    [109] Feng, M. L., Li, X. L., Mao, J. G., New organically templated gallium and indium selenites or selenates with one-, two-, and three-dimensional structures[J]. Crystal Growth & Design, 2007, 7 (4): 770-777.
    [110] Feng, M. L., Ye, H. Y., Mao, J. G., Syntheses, crystal structures and photoluminescence properties of three novel organically bonded indium selenates or selenites[J]. Journal of Solid State Chemistry, 2007, 180 (9): 2471-2477.
    [111] Liao, Y.-C., Liao, F.-L., Chang, W.-K., etc., A Zeolitic Organo-Metallophosphate Hybrid Material with Bimodal Porosity[J]. Journal of the American Chemical Society, 2004, 126 (5): 1320-1321.
    [112] Kitaura, R., Seki, K., Akiyama, G., etc., Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases[J]. Angewandte Chemie International Edition, 2003, 42 (4): 428-431.
    [113] Chun, H., Dybtsev, D. N., Kim, H., etc., Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs: Implications for Hydrogen Storage in Porous Materials[J]. Chemistry - A European Journal, 2005, 11 (12): 3521-3529.
    [114] Zhang, L., Wang, S.-B., Yang, G.-M., etc., A Ferromagnetically Coupled CrCu3 Tetramer and GdCu4 Pentamer with a [15]N4 Macrocylic Ligand Incorporating an Oxamido Bridge[J]. Inorganic Chemistry, 2003, 42 (5): 1462-1466.
    [115] Zhao, B., Cheng, P., Chen, X., etc., Design and Synthesis of 3d-4f Metal-Based Zeolite-type Materials with a 3D Nanotubular Structure Encapsulated "Water" Pipe[J]. Journal of the American Chemical Society, 2004, 126 (10): 3012-3013.
    [116] Zhao, B., Cheng, P., Dai, Y., etc., A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly[J]. Angewandte Chemie International Edition, 2003, (8): 934-936.
    [117] Zhao, B., Chen, X.-Y., Cheng, P., etc., Coordination Polymers Containing 1D Channels as Selective Luminescent Probes[J]. Journal of the American Chemical Society, 2004, 126 (47): 15394-15395.
    [118] Zhao, Y., Hong, M., Sun, D., etc., A novel coordination polymer containing puckered rhombus grids[J]. Journal of the Chemical Society, Dalton Transactions, 2002, (7): 1354-1357.
    [119] Zhao, Y.-J., Hong, M.-C., Sun, D.-F., etc., A puckered 2D copper coordination polymer with dimensions 14.91×12.63 ? [J]. Inorganic Chemistry Communications, 2002, 5 (8): 565-568.
    [120] Li, X., Cao, R., Sun, Y. Q., etc., Syntheses and Characterizations of Coordination Polymers Constructed from 4-Pyridylacetic Acid[J]. Crystal Growth & Design, 2004, 4 (2): 255-261.
    [121] Han, L., Hong, M., Wang, R., etc., A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices[J]. Chemical Communications, 2003, (20): 2580-2581.
    [122] Han, L., Wang, R., Yuan, D., etc., Hierarchical assembly of a novel luminescent silver coordination framework with 4-(4-pyridylthiomethyl)benzoic acid[J]. Journal of Molecular Structure, 2005, 737 (1): 55-59.
    [123] Evans, O. R., Wang, Z., Lin, W., An unprecedented 3D coordination network composed of two intersecting helices[J]. Chemical Communications, 1999, (18): 1903-1904.
    [124] Evans, O. R., Lin, W., Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks[J]. Accounts of Chemical Research, 2002, 35 (7): 511-522.
    [125] Evans, O. R., Xiong, R.-G., Wang, Z., etc., Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Networks[J]. Angewandte Chemie International Edition, 1999, 38 (4): 536-538.
    [126] Yue, Q., Yang, J., Li, G.-H., etc., Homochiral Porous Lanthanide Phosphonates with 1D Triple-Strand Helical Chains: Synthesis, Photoluminescence, and Adsorption Properties[J]. Inorganic Chemistry, 2006, 45 (11): 4431-4439.
    [1] Cheetham, A. K., Rao, C. N. R., Feller, R. K., Structural diversity and chemical trends in hybrid inorganic-organic framework materials[J]. Chemical Communications, 2006, (46): 4780-4795.
    [2] Rao, C. N. R., Natarajan, S., Vaidhyanathan, R., Metal carboxylates with open architectures[J]. Angewandte Chemie-International Edition, 2004, 43 (12): 1466-1496.
    [3] Ferey, G., Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks...Ecumenism in Chemistry[J]. Chemistry of Materials, 2001, 13 (10): 3084-3098.
    [4] Yaghi, O. M., Li, H., Davis, C., etc., Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids[J]. Accounts of Chemical Research, 1998, 31 (8): 474-484.
    [5] Gruselle, M., Train, C., Boubekeur, K., etc., Enantioselective self-assembly of chiral bimetallic oxalate-based networks[J]. Coordination Chemistry Reviews, 2006, 250 (19-20): 2491-2500.
    [6] Jeanneau, E., Audebrand, N., Louer, D., New open-framework ammonium and amine cadmium zirconium oxalates with helical structures[J]. Chemistry of Materials, 2002, 14 (3): 1187-1194.
    [7] Gavilan, E., Audebrand, N., Jeanneau, E., A new series of mixed oxalates MM'(C2O4)3(H2O)3·nH2O (M = Cd, Hg, Pb; M’= Zr, Hf) based on eight-fold coordinated metals: Synthesis, crystal structure from single-crystal and powder diffraction data and thermal behaviour[J]. Solid State Sciences, 2007, 9 (11): 985-999.
    [8] Dan, M., Rao, C. N. R., A Building-Up Process in Open-Framework Metal Carboxylates that Involves a Progressive Increase in Dimensionality[J]. Angewandte Chemie International Edition, 2006, 45 (2): 281-285.
    [9] Mohanu, A., Brouca-Cabarrecq, C., Trombe, J. C., New open-framework three-dimensional lanthanide oxalates containing as a template the diprotonated 1,2- or 1,3-diaminopropane[J]. Journal of Solid State Chemistry, 2006, 179 (1): 3-17.
    [10] Audebrand, N., Raite, S., Louer, D., The layer crystal structure of [In2(C2O4)3(H2O)3]·7H2O and microstructure of nanocrystalline In2O3 obtained from thermal decomposition[J]. Solid State Sciences, 2003, 5 (5): 783-794.
    [11] Chen, Z. X., Zhou, Y. M., Weng, L. H., etc., Hydrothermal synthesis of two layered indium oxalates with 12-membered apertures[J]. Journal of Solid State Chemistry, 2003, 173 (2): 435-441.
    [12] Evans, O. R., Lin, W. B., Synthesis of zinc oxalate coordination polymers via unprecedented oxidative coupling of methanol to oxalic acid[J]. Crystal Growth & Design, 2001, 1 (1): 9-11.
    [13] Yang, S. H., Li, G. B., Tian, S. J., etc., An open-framework three-dimensional indium oxalate: [In(OH)(C2O4)(H2O)]3·H2O[J]. Journal of Solid State Chemistry, 2005, 178 (12): 3703-3707.
    [14] Chakrabarti, S., Natarajan, S., A Reactive Intermediate in the Synthesis of Iron Arsenates: Synthesis of the First One-Dimensional Iron Arsenate Oxalate and Its Transformation into Two- and Three-Dimensional Iron Arsenates[J]. Angewandte Chemie International Edition, 2002, 41 (7): 1224-1226.
    [15] Mrak, M., Kolitsch, U., Lengauer, C., etc., Synthesis, Structural and Spectroscopic Properties of Two New Ethylenediamine-Templated Gallophosphate-Oxalate Layered Materials[J]. Inorganic Chemistry, 2003, 42 (2): 598-604.
    [16] Lin, C. H., Lii, K. H., Synthesis and Characterization of the First Organically Templated Metal Oxalatophosphonate: (C3H12N2)0.5[Ga3(C2O4)(CH3PO3)4]·0.5H2O[J]. Inorganic Chemistry, 2004, 43 (20): 6403-6407.
    [17] Feng, M. L., Li, X. L., Mao, J. G., New organically templated gallium and indium selenites or selenates with one-, two-, and three-dimensional structures[J]. Crystal Growth & Design, 2007, 7 (4): 770-777.
    [18] Feng, M. L., Ye, H. Y., Mao, J. G., Syntheses, crystal structures and photoluminescence properties of three novel organically bonded indium selenates or selenites[J]. Journal of Solid State Chemistry, 2007, 180 (9): 2471-2477.
    [19] Ok, K. M., Halasyamani, P. S., New selenites: Syntheses, structures, and characterization of centrosymmetric Al2(Se2O5)3 and Ga2(Se2O5)3 and non-centrosymmetric In2(Se2O5)3[J]. Chemistry of Materials, 2002, 14 (5): 2360-2364.
    [20] Chen, C., Liu, Y. L., Wang, S. H., etc., Hydrothermal syntheses, structural characterizations, and photoluminescence properties of three fluorinated indium phosphates with bipyridyl ligands: In3F2(2,2’-bipy)2(HPO4)2(H1.5PO4)2,In2F2(H2O)(2,2’-bipy)(HPO4)2, and In2F2(H2O)(2,2’-bipy-5-amine)(HPO4)2[J]. Chemistry of Materials, 2006, 18 (13): 2950-2958.
    [21] Lin, Z. Z., Jiang, F. L., Chen, L., etc., A Highly Symmetric Porous Framework with Multi-intersecting Open Channels[J]. Crystal Growth & Design, 2007, 7 (9): 1712-1715.
    [1] Rinuy, J., Piron, A., Brevet, P. F., etc., Intramolecular electron density redistribution upon hydrogen bond formation in the anion methyl orange at the water/12-dichloroethane interface probed by phase interference second harmonic generation[J]. Chemistry - A European Journal, 2000, 6 (18): 3434-3441.
    [2] Ryota Sakamoto, S. K., Manabu Sugimoto, Hiroshi Nishihara,, trans-cis Photoisomerization of Azobenzene-Conjugated Dithiolato-Bipyridine Platinum(II) Complexes: Extension of Photoresponse to Longer Wavelengths and Photocontrollable Tristability[J]. Chemistry - A European Journal, 2009, 15 (6): 1429-1439.
    [3] Pavinatto, F. J., Barletta, J. Y., Sanfelice, R. C., etc., Synthesis of azopolymers with controlled structure and photoinduced birefringence in their LB films[J]. Polymer, 2009, 50 (2): 491-498.
    [4] Yager, K. G., Barrett, C. J. Novel photo-switching using azobenzene functional materials[A], In Tsukuba, JAPAN: Elsevier Science Sa, 2006: 250-261.
    [5] Matharu, A. S., Jeeva, S., Ramanujam, P. S., Liquid crystals for holographic optical data storage[J]. Chemical Society Reviews, 2007, 36 (12): 1868-1880.
    [6] Yagai, S., Kitamura, A., Recent advances in photoresponsive supramolecular self-assemblies[J]. Chemical Society Reviews, 2008, 37 (8): 1520-1529.
    [7] Reineke, T. M., Eddaoudi, M., Moler, D., etc., Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO][J]. Journal of the American Chemical Society, 2000, 122 (19): 4843-4844.
    [8] Bauer, C. A., Timofeeva, T. V., Settersten, T. B., etc., Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metal-Organic Frameworks[J]. Journal of the American Chemical Society, 2007, 129 (22): 7136-7144.
    [9] Chen, Z. F., Xiong, R. G., Abrahams, B. F., etc., An unprecedented six-fold anion-type chiral diamondoid-like eight-coordinate Cd(II) coordination polymer with a second-order nonlinear optical effect[J]. Journal of the Chemical Society-Dalton Transactions, 2001, (17): 2453-2455.
    [10] Wang, C. C., Lin, W. Z., Huang, W. T., etc., New supramolecular isomers with 2D 4(4) square-grid and 3D 6(5).8 frameworks in a one-pot synthesis; reversible solvent uptakeand intriguing luminescence properties[J]. Chemical Communications, 2008, (11): 1299-1301.
    [11] Gimeno, N., Vilar, R., Anions as templates in coordination and supramolecular chemistry[J]. Coordination Chemistry Reviews, 2006, 250 (23-24): 3161-3189.
    [12] Yang, J., Li, G.-D., Cao, J.-J., etc., Structural Variation from 1D to 3D: Effects of Ligands and Solvents on the Construction of Lead(II)-Organic Coordination Polymers[J]. Chemistry - A European Journal, 2007, 13 (11): 3248-3261.
    [13] Zhao, B., Cheng, P., Dai, Y., etc., A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly[J]. Angewandte Chemie International Edition, 2003, (8): 934-936.
    [14] Sun, D., J. Collins, D., Ke, Y., etc., Construction of Open Metal-Organic Frameworks Based on Predesigned Carboxylate Isomers: From Achiral to Chiral Nets[J]. Chemistry - A European Journal, 2006, (14): 3768-3776.
    [15] Vilar, R., Anion-Templated Synthesis[J]. Angewandte Chemie International Edition, 2003, 42 (13): 1460-1477.
    [16] Guo, D., Pang, K.-l., Duan, C.-y., etc., Design and Crystal Structures of Triple Helicates with Crystallographic Idealized D3 Symmetry: The Role of Side Chain Effect on Crystal Packing[J]. Inorganic Chemistry, 2002, 41 (23): 5978-5985.
    [17] C.-Y. Su, Y.-P. C., C.-L Chen, F. Lissner, Bei-Sheng Kang, Wolfgang Kaim, Self-Assembly of Trigonal-Prismatic Metallocages Encapsulating BF4- or CuI32- as Anionic Guests: Structures and Mechanism of Formation[J]. Angewandte Chemie International Edition, 2002, 41 (18): 3371-3375.
    [18] Lucia Carlucci, G. C., Davide M. Proserpio, Angelo Sironi, Novel Networks of Unusually Coordinated Silver(I) Cations: The Wafer-Like Structure of [Ag(pyz)2][Ag2(pyz)5](PF6)3·2G and the Simple Cubic Frame of [Ag(pyz)3](SbF6)[J]. Angewandte Chemie International Edition, 1995, 34 (17): 1895-1898.
    [19] Gudbjartson, H., Biradha, K., Poirier, K. M., etc., Novel Nanoporous Coordination Polymer Sustained by Self-Assembly of T-Shaped Moieties[J]. Journal of the American Chemical Society, 1999, 121 (11): 2599-2600.
    [20] Zhao, B., Cheng, P., Chen, X., etc., Design and Synthesis of 3d-4f Metal-Based Zeolite-type Materials with a 3D Nanotubular Structure Encapsulated“Water”Pipe[J]. Journal of the American Chemical Society, 2004, 126 (10): 3012-3013.
    [21] Zhang, L., Zhang, J., Li, Z.-J., etc., Breaking the Mirror: pH-Controlled Chirality Generation from a meso Ligand to a Racemic Ligand[J]. Chemistry - A European Journal, 2009, 15 (4): 989-1000.
    [22] He, Y.-H., Feng, Y.-L., Lan, Y.-Z., etc., Syntheses, Structures, and Photoluminescence of Four d10 Metal-Organic Frameworks Constructed from 3,5-Bis-oxyacetate-benzoic Acid[J]. Crystal Growth & Design, 2008, 8 (10): 3586-3594.
    [23] Howe, L. A., Jaycox, G. D., Stimuli-responsive polymers. III. Poly(aryl ether ketone amide)s with reversible trans-?cis-4,4'-azobenzene and fixed 2,2'-binaphthyl kinking elements in the main chain[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36 (16): 2827-2837.
    [1] Volkringer, C., Loiseau, T., Marrot, J., etc., A MOF-type magnesium benzene-1,3,5-tribenzoate with two-fold interpenetrated ReO3 nets[J]. CrystEngComm, 2009, 11 (1): 58-60.
    [2] Abrahams, B. F., Batten, S. R., Grannas, M. J., etc., Ni(tpt)(NO3)2 - A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net[J]. Angewandte Chemie International Edition, 1999, 38 (10): 1475-1477.
    [3] Carlucci, L., Ciani, G., An unprecedented triply interpenetrated chiral network of‘square-planar’metal centres from the self-assembly of copper (II) nitrate and 1, 2-bis (4-pyridyl) ethyne[J]. Chemical Communications, 1998, (17): 1837-1838.
    [4] O'Keeffe, M., Hyde, B., Baur, W., Crystal Structures I. Patterns and Symmetry[M]. Mineralogical Society of America Washington, DC: 1996.
    [5] Delgado Friedrichs, O., O'Keeffe, M., Yaghi, O. M., Three-periodic nets and tilings: semiregular nets[J]. Acta Crystallographica Section A, 2003, 59 (6): 515-525.
    [6] Tong, M.-L., Chen, X.-M., Batten, S. R., A New Self-Penetrating Uniform Net, (8,4) (or 86), Containing Planar Four-Coordinate Nodes[J]. Journal of the American Chemical Society, 2003, 125 (52): 16170-16171.
    [7] Robson, R., A net-based approach to coordination polymers[J]. Journal of the Chemical Society, Dalton Transactions, 2000, 2000 (21): 3735-3744.
    [8] O'Keeffe, M., Eddaoudi, M., Li, H., etc., Frameworks for Extended Solids: Geometrical Design Principles[J]. Journal of Solid State Chemistry, 2000, 152 (1): 3-20.
    [9] Hill, R., Long, D., Champness, N., etc., New Approaches to the Analysis of High Connectivity Materials: Design Frameworks Based upon 44-and 63-Subnet Tectons[J]. Accounts of Chemical Research, 2005, 38 (4): 335-348.
    [10] Hu, S., Chen, J., Tong, M., etc., Cu2+-mediated dehydrogenative coupling and hydroxylation of an N-heterocyclic ligand: from generation of a new tetratopic ligand to the designed assembly of three-dimensional copper (I) coordination polymers[J]. Angewandte Chemie International Edition, 2005, 44 (34): 5471.
    [11] Chun, H., Kim, D., Dybtsev, D., etc., Metal-organic replica of fluorite built with an eight-connecting tetranuclear cadmium cluster and a tetrahedral four-connecting ligand[J]. Angewandte Chemie International Edition, 2004, 43 (8): 971.
    [12] Li, D., Wu, T., Zhou, X.-P., etc., Twelve-connected net with face-centered cubic topology: A coordination polymer based on[Cu12(μ4-SCH3)6]6+ clusters and CN- linkers[J]. Angewandte Chemie International Edition, 2005, 44 (27): 4175-4178.
    [13] Zhang, X.-M., Fang, R.-Q., Wu, H.-S., A Twelve-Connected Cu6S4 Cluster-Based Coordination Polymer[J]. Journal of the American Chemical Society, 2005, 127 (21): 7670-7671.
    [14] Fang, Q., Zhu, G., Xue, M., etc., A metal-organic framework with the zeolite MTN topology containing large cages of volume 2.5 nm3[J]. Angewandte Chemie International Edition, 2005, 44 (25): 3845.
    [15] Lu, W.-G., Su, C.-Y., Lu, T.-B., etc., Two Stable 3D Metal-Organic Frameworks Constructed by Nanoscale Cages via Sharing the Single-Layer Walls[J]. Journal of the American Chemical Society, 2006, 128 (1): 34-35.
    [16] Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M., etc., Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Accounts of Chemical Research, 2005, 38 (3): 176-182.
    [17] Li, D., Shi, W.-J., Hou, L., Coordination Polymers of Copper(I) Halides and Neutral Heterocyclic Thiones with New Coordination Modes[J]. Inorganic Chemistry, 2005, 44 (11): 3907-3913.
    [18] Liu, C.-M., Gao, S., Zhang, D.-Q., etc., A Unique 3D Alternating Ferro- and Antiferromagnetic Manganese Azide System with Threefold Interpenetrating (10,3) Nets[J]. Angewandte Chemie International Edition, 2004, 43 (8): 990-994.
    [19] Biradha, K., Fujita, M., A Springlike 3D-Coordination Network That Shrinks or Swells in a Crystal-to-Crystal Manner upon Guest Removal or Readsorption[J]. Angewandte Chemie International Edition, 2002, 41 (18): 3392-3395.
    [20] Almeida Paz, F. A., Klinowski, J., Two- and Three-Dimensional Cadmium-Organic Frameworks with Trimesic Acid and 4,4'-Trimethylenedipyridine[J]. Inorganic Chemistry, 2004, 43 (13): 3882-3893.
    [21] Ma, J.-P., Dong, Y.-B., Huang, R.-Q., etc., Spontaneously Resolved Chiral Three-Fold Interpenetrating Diamondoidlike Cu(II) Coordination Polymers with Temperature-Driven Crystal-to-Crystal Transformation[J]. Inorganic Chemistry, 2005, 44 (18): 6143-6145.
    [22] Li, X., Cao, R., Sun, D., etc., Syntheses and Characterizations of Zinc(II) Compounds Containing Three-Dimensional Interpenetrating Diamondoid Networks Constructed by Mixed Ligands[J]. Crystal Growth & Design, 2004, 4 (4): 775-780.
    [23] Carlucci, L., Ciani, G., Proserpio, D., etc., New polymeric networks from the self-assembly of silver (i) salts and the flexible ligand 1, 3-bis (4-pyridyl) propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp[J]. CrystEngComm, 2002, 4 (22): 121-129.
    [24] Evans, O. R., Lin, W., Crystal Engineering of Nonlinear Optical Materials Based on Interpenetrated Diamondoid Coordination Networks[J]. Chemistry of Materials, 2001, 13 (8): 2705-2712.
    [25] Carlucci, L., Ciani, G., Proserpio, D. M., etc., Three Novel Interpenetrating Diamondoid Networks from Self-Assembly of 1,12-Dodecanedinitrile with Silver(I) Salts[J]. Chemistry - A European Journal, 2002, 8 (7): 1519-1526.
    [26] Reddy, D. S., Dewa, T., Endo, K., etc., Charge-Transfer Diamondoid Lattices: An Unprecedentedly Huge and Highly Catenating Diamondoid Network Arising from a Tetraphenol as a Tetrahedral Node and Benzoquinone as a Linear Spacer[J]. Angewandte Chemie, 2000, 39 (23): 4266-4268.
    [27] Howe, L. A., Jaycox, G. D., Stimuli-responsive polymers. III. Poly(aryl ether ketone amide)s with reversible trans-?cis-4,4'-azobenzene and fixed 2,2'-binaphthyl kinking elements in the main chain[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36 (16): 2827-2837.
    [28] Saied, O., Maris, T., Wang, X., etc., Submaximal Interpenetration and Bicontinuous Three-Dimensional Channels in Porous Molecular Networks[J]. Journal of the American Chemical Society, 2005, 127 (28): 10008-10009.
    [29] Thallapally, P. K., Tian, J., Radha Kishan, M., etc., Flexible (Breathing) Interpenetrated Metal-Organic Frameworks for CO2 Separation Applications[J]. Journal of the American Chemical Society, 2008, 130 (50): 16842-16843.
    [30] Mondal, R., Basu, T., Sadhukhan, D., etc., Influence of Anion on the Coordination Mode of a Flexible Neutral Ligand in Zn(II) Complexes: From Discrete Zero-Dimensional to Infinite 1D Helical Chains, 2D Nanoporous Bilayer Networks, and 3D Interpenetrated Metal-Organic Frameworks[J]. Crystal Growth & Design, 2009, 9 (2): 1095-1105.
    [31] Min, K. S., Suh, M. P., Silver(I)-polynitrile network solids for anion exchange: Anion-induced transformation of supramolecular structure in the crystalline state[J]. Journal of the American Chemical Society, 2000, 122 (29): 6834-6840.
    [32] Ermer, O., Five-fold diamond structure of adamantane-1,3,5,7-tetracarboxylic acid[J]. Journal of the American Chemical Society, 1988, 110 (12): 3747-3754.
    [33] Cheng He, B.-G. Z., Chun-ying Duan, Ji-hui Li, Qing-Jin Meng,, Syntheses and Structures of Silver and Copper Coordination Polymers with 4,4'-Azopyridine - Effect of Counter Anions andπ-πInteractions on the Network Systems[J]. European Journal of Inorganic Chemistry, 2000, 2000 (12): 2549-2554.
    [34] Carlucci, L., Ciani, G., Proserpio, D. M., etc., Coordination networks from the self-assembly of silver salts and the linear chain dinitriles NC(CH2)nCN (n = 2 to 7): a systematic investigation of the role of counterions and of the increasing length of the spacers[J]. CrystEngComm, 2002: 413-425.
    [35] Kumar, D. K., Jose, D. A., Das, A., etc., From Diamondoid Network to (4,4) Net: Effect of Ligand Topology on the Supramolecular Structural Diversity[J]. Inorganic Chemistry, 2005, 44 (20): 6933-6935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700