用户名: 密码: 验证码:
分子筛上N_2O催化分解及其一步氧化苯制苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以已二酸装置尾气中N_2O的综合治理和资源化为对象,基于铁改性ZSM-5、β和MCM-22三种分子筛基催化剂,较为系统地展开了N_2O催化分解及其做为氧化剂的一步氧化苯制苯酚的研究。
     采用液相离子交换法制备了一系列用于N_2O催化分解的金属改性分子筛,在实验评价、表征和分析的基础上,详细考察了分子筛构型、Si/Al比、改性金属类别、工艺条件及杂质气体对分子筛上N_2O分解性能的影响。结果表明,(1)Fe-β分子筛具有比Fe-ZSM-5和Fe-MCM-22分子筛更好的N_2O催化分解性能;(2)在实验考察范围内,分子筛催化分解N_2O的活性随铁离子含量的增加而提高,随分子筛Si/Al比的增加而降低;(3)铁源对Fe-ZSM-5分子筛性能有较大影响。以Fe_2(C_2O_4)_3·5H_2O为铁源制备的Fe-ZSM-5分子筛具有比以Fe(NO_3)_3·9H_2O为铁源制备的分子筛更好的N_2O分解催化性能;(4)单因素实验结果表明,微量O_2的存在对分子筛上N_2O分解影响不大,但微量水蒸气的存在将导致分子筛的快速失活,而微量NO的存在可明显提高分子筛的活性。
     结合ESR、FT-IR、H_2-TPD、UV-vis和NH_3-TPD等表征结果显示,负载到分子筛Br(?)nsted酸性位上的Fe~(3+)离子是N_2O催化分解的活性组分,而不同构型分子筛表面Br(?)nsted酸中心分布上的差异将导致铁离子负载分布上的不同。其中,负载到β分子筛上的铁离子处于较易参与反应的直形孔道中且具有较强的氧化还原能力,因此具有较好的N_2O分解活性。对于ZSM-5分子筛,当以Fe(NO_3)3·9H_2O为铁源时,铁离子首先负载到分子筛的孔道交叉处(β)和Z字形孔道处(γ)的Br(?)nsted酸中心处,随铁含量的增加,再负载到分子筛直形孔道(α)中。当以Fe_2(C_2O_4)_3·5H_2O为铁源时,铁离子主要负载到分子筛的直形孔道中(α)。尽管负载到以上三种位置处的Fe~(3+)离子均具有N_2O催化分解活性,但以α处的Fe~(3+)活性最好。
     In situ DRIFT表征结果显示,NO分子可与N_2O分解过程中产生的表面吸附O物种反应生成NO_2,从而加速了分子筛表面O的消耗速率,提高了分子筛分解N_2O的活性。
     基于液相离子交换法和直接水热合成法制备了一系列用于N_2O一步氧化苯制苯酚的分子筛,系统考察了分子筛构型、Si/Al比、改性金属类别和预处理方式对N_2O一步氧化苯制苯酚的分子筛性能的影响。并对分子筛的失活原因和再生方法进行了研究。
     结果显示,影响N_2O一步氧化苯制苯酚分子筛催化性能的主要因素包括:分子筛构型、Si/Al比和Fe~(3+)含量等。Fe-ZSM-5分子筛性能明显优于Fe-MCM-22和Fe-β分子筛。对于Fe-ZSM-5分子筛,在相同Fe~(3+)含量下,Si/Al比增加,N_2O转化率降低,苯酚选择性增加;而Si/Al比相同时,随Fe~(3+)含量增加,N_2O转化率增加,苯酚选择性降低。采用高温焙烧或水蒸气预处理可使负载到分子筛表面上的铁离子发生迁移并形成有利于苯酚生成的活性中心。在反应中,由于吸附在分子筛上的苯酚易进一步反应,生成积炭物质,造成分子筛快速失活。失活分子筛通过烧炭的方法可进行再生。其中以N_2O为氧化剂再生后,分子筛活性可完全恢复。相对较为适宜的再生条件为:温度723 K、标准空速2752 h~(-1)和原料配比N_2O:He(mol ratio)=1:9。
     In situ DRIFTS表征结果显示,在N_2O一步氧化苯制苯酚反应中,苯和N_2O首先分别吸附于分子筛表面的不同活性位上并反应生成苯酚,因此,该反应可能遵循双活性的L-H反应机理。TG-DTA、O_2-TPD、N_2-吸/脱附和N_2O-TPD等表征结果显示,造成分子筛失活的原因主要是积炭占据了分子筛表面的活性位。积炭物种可分为低温炭和高温炭两种类型。其中,低温炭主要在反应初期生成,并占据了分子筛表面的活性位,是造成分子筛快速失活的最主要因素。
N_2O has been considered as an environmental pollutant as its destroying the ozone layer and inducing the greenhouse effect.In recent years,the concentration of N_2O in the atmosphere is rising,and the adipic acid production is responsible for 10%of the world-wide emissions.Thus, the removal of the N_2O from adipic acid waste gases has received much attention.In this paper,the catalytic decomposition of N_2O and one-step oxidation benzene to phenol with N_2O have been systemically studied over iron modilied ZSM-5,βand MCM-22 zeolites.
     The metal modified zeolites were prepared through liquid ion-exchanged using for catalytic decomposition of N_2O.The effects of zeolite type,Si/Al ratio,modified metal ions species,technological conditions and impurity gas on the catalytic performance of modified zeolites were experimentally investigated.The results showed that:(1) Fe-βzeolite of BEA type loading with iron was more efficient catalyst for direct N_2O decomposition than Fe-ZSM-5 zeolite of MFI type and Fe-MCM-22 zeolite of MWW type The zeolite activity enhanced with increasing the iron loading;(2)At the same Fe~(3+)loading,the catalytic activity was decreased with increasing the Si/Al ratio;(3)The catalytic activities of the Fe-ZSM-5 samples prepared with Fe_2(C_2O_4)_3·5H_2O as Fe precursor were higher than those of the Fe-modified ZSM-5 samples obtained with Fe(NO_3)_3·9H_2O as Fe precursor;(4)The results of single-factor experiments showed that micro-content oxygen did not influence the catalytic performance of zeolite catalysts.However, micro-content stream would result in the quick deactivation of zeolite catalysts.Micro-content NO would obviously increase the catalytic activity.
     The results of ESR,FT-IR,UV-vis and NH_3-TPD indicated that the iron ions located at the Bronsted acid sites were the active component in the direct decomposition of N_2O.However,the distribution of iron ions loading on the different type zeolites was different as the distribution of Bronsted acid sites.The iron ions loading on theβzeolite located at the straight channels may be more accessible to N_2O molecules and had the higher reducibility.Thus,Fe-βzeolite showed higher catalytic activity than Fe-ZSM-5 zeolite.For Fe-ZSM-5 zeolite,in the case of the Fe-ZSM-5 zeolites prepared with Fe(NO_3)_3·9H_2O as Fe precursor,the iron ions could locate at theβandγsites firstly,but they would also locate at theαsites when the iron loading increased.For the Fe-ZSM-5 samples obtained with Fe_2(C_2O_4)_3·5H_2O as Fe precursor,iron ions mainly occupied theαsites of the zeolitic straight channels.The iron ions located at theα,βandγ,sites of the ZSM-5 channels had the ability to directly decompose N_2O molecules.However,the catalytic activity of iron ions located onαsites of the ZSM-5 zeolite was higher than the iron ions located onβsites andγsites.
     From the results of in situ DRIFT,it was found that NO scavenged adsorbed oxygen(deposited by N_2O during the decomposition)leading to the formation of NO_2.This process accelerated the consumption of O atom.Thus,NO significantly enhances the catalytic activity of zeolite catalysts.
     A series of zeolites for one-step oxidation benzene to phenol with N_2O were prepared through liquid ion-exchanged and hydrothermal synthesis.The effects of zeolite type,Si/Al ratio,modified metal species and pretreatment methods on the catalytic performance of catalysts for one-step oxidation benzene to phenol were systemically investigated.And the deactivation and regeneration experiments of the catalyst were also investigated.
     The results showed that the main factors,influencing the catalytic performance of zeolite,included zeolite type,Si/Al ratio and Fe~(3+)loading, and so on.Fe-ZSM-5 zeolite was more efficient catalyst for one-step oxidation benzene to phenol than Fe-βzeolite and Fe-MCM-22 zeolite. For Fe-ZSM-5 zeolite,the N_2O conversion decreased and phenol selectivity increased with increasing the Si/Al at the condition of the same Fe~(3+)loading.However,the N_2O conversion increased and phenol selectivity decreased with increasing the Fe~(3+)loading at the condition of the same Si/Al.High-temperature calcination and hydrothermal treatment resulted in the increase of activity-sites for phenol formation because of Fe-ion surface migration.In reaction,the catalysts' activity gradually decreased due to catalyst deactivation by coke.The deactivation catalysts would be regenerated with coke combustion.In the case of regeneration in N_2O,catalytic activity could be fully restored.The regeneration conditions were temperature 723 K,Space velocity 2752 h~(-1)and N_2O:He (mol ratio)=1:9.
     In N_2O one-step oxidation benzene to phenol reaction,the results of in situ DRIFTS showed that benzene and N_2O could be adsorbed on the different activity sites of zeolite surface.Thus,this reaction might be according to the L-H reaction mechanism.However,the phenol molecules,adsorbed on the activity sites,would ulteriorly react to form the coke.These could result in deactivation.The deactivation effect of coke was caused by poisoning of activity sites.Two kinds of coking species(high-temperature carbon and low-temperature carbon)were found through the characterization by TG-DTA,O_2-TPO and C/H analysis.The low-temperature carbon formed at the first stage of reaction and occupied the activity sites.This was the reason that resulted in deactivation.
引文
[1]吴波,庄亚辉.N_2O直接分解催化剂的研究进展[J].环境科学进展,1997,5(1):1-16
    [2]张朝晖,吕锡武,齐玉平.N_2O大气污染演变及源汇分布[J].电力环境保护,2005,21(1):24-26
    [3]石明岩,吕锡武,稻森悠平.N_2O的环境效应及其防治技术的发展趋势[J].城市环境和城市生态,2002,15(5):45-47
    [4]高素华,潘亚茹.温室效应对气候和农业的影响[J].环境科学,1991,12(2):73-76
    [5]辛洪川,刘长厚,张守臣,等.负载型La_(2-x)Sr_xCuO_4催化分解N_2O的研究[J].化学通报,2004,11(2):848-853
    [6]Czepiel P,Crill P,Hamiss R.Nitrous oxide emission from municipal wastewater treatment[J].Environ.Sci.Technol.,1995,29:2352-2356
    [7]Khlil M A K,Rasmussen R A,Shearer M J.Atmospheric nitrous oxide:patterns of global change during recent decades and centuries[J].Chemosphere,2002,47:807-821
    [8]Prasad S S,Zipf E C.Atmospheric production of nitrous oxide from excited ozone and its significance[J].Chemosphere - Global Change Science,2000,2:235-245
    [9]Kapteijn F,Rodriguez-Mirasol J.Heterogeneous catalytic decomposition of nitrous oxide[J].Appl.Catal.B:Environmental,1996,9:25-64
    [10]孙娜,杨丰科,刘均洪.降低N_2O排放的己二酸尾气处理技术[J].工业催化.2003,11(6):11-15
    [11]Winter E R S.The decomposition of nitrous oxide on the rare-earth sesquioxides and related oxides[J].J.Catal.,1969,15:144-152
    [12]Winter E R S.The decomposition of nitrous oxide on metallic oxides Part Ⅱ[J].J.Catal.,1970,19:32-40
    [13]Winter E R S.The decomposition of N_2O on oxide catalysts:Ⅲ.The effect of O_2[J].J.Catal.,1974,34:431-439
    [14]Tan S A,Grand B,Lambert M.The silver-catalysed decomposition of N_2O and the catalytic oxidation of ethylene by N_2O over Ag(111)and Ag/αt-Al_2O_3[J].J.Catal.,1987,104:156-163
    [15]Sivaraj C,Reddy B M,Rao P K.Selective enhancement of surface Cu~+ species in CuO/ZnO/Al_2O_3 catalyst by nitrous oxide decomposition[J].J.Mole.Catal.,1988,47:17-20
    [16]Yamashita T,Vannice A.N_2O decomposition over manganese oxides[J].J.Catal.,1996,161:254-262
    [17]Zemva P,Lesar A,Kobal I,et al.Interpretation of kinetic isotope effects in the decomposition of N_2O over CoO[J].Chem.Phys.,2001,264:413-418
    [18]Ohnishi C,Asano K,lwanoto S,et al.Preparation of Co_3O_4 catalysts for direct decomposition of nitrous oxide under industrial conditions[J].Stud.Surf.and Catal.,2006,162:737-744
    [19]Christopher J,Swamy C S.Studies on the catalytic decomposition of N_2O on LnSrFeO_4(Ln=La,Pr,Nd,Sm and Gd)[J].J.Mole.Catal.,1991,68:199-213
    [20]Belapurkar D,Gupta N M,Phatak G M,et al.Role of oxygen vacancies in the decomposition of N_2O over YBa_2CuO_(7-b)and Gd_2CuO_4 oxide systems[J].J.Mole.Catal., 1994,87:287-295
    [21]Morterra C,Giamello E,Cerrato G,et al.Role of surface hydration state on the nature reactivity of Copper ions in Cu-ZrO_2 catalysts:N_2O decomposition[J].J.Catal.,1998,179:111-128
    [22]Gao L A and Au C T.Studies on the decomposition of N_2O over Nd_2CuO_4,Nd_(1.6)Ba_(0.4)CuO_4 and Nd_(1.8)Ce_(0.2)CuO_4[J].J.Mole.Catal.A:Chemical.2001,168:173-186
    [23]Perez-Alonso F J,Melian-Cabrera I,Granados M L,et al.Synergy of Fe_xCe_(1-x)O_2 for N_2O decomposition[J].J.Catal.,2006,239:340-346
    [24]Aparicio L M,Ulla M A,Millman W S,et al.Characterization and catalytic studies of Y-zeolites coexchanged with iron and a second polyvalent cation[J].J.Catal.,1988,110:330-347
    [25]Leglise J,Petunchi O,Hall W K.N_2O decomposition over iron-exchanged mordenite[J].J.Catal.,1984,86:392-399
    [26]Rakic V,Rac V,Dondur V,et al.Competitive adsorption of N_2O and Co on CuZSM-5,FeZSM-5,CoZSM-5 and bimetallic forms of ZSM-5 zeolite[J].Catal.Today,2005,110:272-280
    [27]Fanning P E,Vanniec M A.A DRIFTS study of Cu-ZSM-5 prior to and during its use for N_2O decomposition[J].J.Catal.,2002,207:166-182
    [28]Konduru M V,Chuang S S C.Dynamics of NO and N_2O decomposition over Cu-ZSM-5under transient reducing and oxidizing conditions[J].J.Catal.,2000,196:271-286
    [29]da Cruz R S,Mascarenhas A J S,Andrade H M C.Co-ZSM-5 catalysts for N_2O decomposition[J].Appl.Catal.B,1998,18:223-231
    [30]Turek T.A Transient kinetic study of the oscillating N_2O decomposition over Cu-ZSM-5[J].J.Catal.,1998,174:98-108
    [31]Li Yuejin,Armor J N.Catalytic decomposition of nitrous oxide on metal exchanged zeolites[J].Appl.Catal.B,1992,1:L21-L29
    [32]Mauvezin M,Delahay G,Kiβlic F,et al.Catalytic reduction of N_2O by NH_3 in presence of oxygen using Fe-exchanged zeolites[J].Catal.Lett.,1999,62:41-44
    [33]Ciambelli P,Benedetto A D,Garufi E,et al.Spontaneous isothermal oscillations in N_2O decomposition over a Cu-ZSM-5 catalyst[J].J.Catal.,1998,175:161-169
    [34]Panov G I,Sobolev V I,Kharitonov A S.The role of iron in N_2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed[J].J.Mole.Catal.,1990,61:85-97
    [35]Panov G I,Sheveleva G A,Kharitonov A S,et al.Oxidation of benzene to phenol by nitrous oxide over Fe-ZSM-5 zeolites[J].Appl.Cata,A:General,1992,82:31-36
    [36]Guzman-Vargas A,Delahay G,Coq B.Catalytic decomposition of N_2O and catalytic reduction of N_2O and N_2O + NO by NH_3 in the presence of O_2 over Fe-zeolite[J].Appl.Catal.B,2003,42:369-379
    [37]Pieterse J A Z,Booneveld S,van den Brink R W.Evaluation of Fe-zeolite catalysts prepared by different methods for decomposition of N_2O[J].J.Catal.,2004,51:215-228
    [38]Pirgruber G D,Grunwaldt J D,Roy P K,et al.The nature of active site in the Fe-ZSM-5/N_2O system studied by(resonant)inelastic X-ray scattering[J].Catal.Today,2007,126:127-134
    [39]Hansen N,Heyden A,Bell A,et al.Microkinetic modeling of nitrous oxide decomposition on oxygen bridged iron sites in Fe-ZSM-5[J].J.Catal.,2007,248:213-225
    [40]Pirngruber G D,Roy P K,Prins R.The role of autoreduction and of oxygen mobililty in N_2O decomposition over Fe-ZSM-5[J].J.Catal.,2007,246:147-157
    [41]Groen J C,Bruckner A,Berrier E,et al.Iron site modification upon alkaline treatment of Fe-ZSM-5 zeolites- Opportunities for improved N_2O decomposition activity[J].J.Catal.,2006,243:212-216
    [42]Waelaw A,Nowinska K,Schwieger W,et al.N_2O decomposition over iron modified zeolites ZSM-5[J].Catal.Today,2004,90:21-25
    [43]徐如人,庞秀琴.分子筛与多孔材料化学[M].北京:科学出版社,2004,73
    [44]Feng Xiaobing and Hall W K.FeZSM-5:A Durable SCR catalyst for NOx removal from combusion streams[J].J.Catal.,1997,166:368-376
    [45]Marturano P,Kogelbauer A,Prins R.Preparation of overexchanged Fe-ZSM-5 zeolites using the Ferrous oxalate method:why does it fail?[J].J.Catal.,2000,190,460-468
    [46]Nechita M T,Berlier G,Ricchiardi G,et al.New precursor for the post-synthesis preparation of Fe-ZSM-5 zeolites with low iron content[J].Catal.Lett.,2005,103:33-41
    [47]Melian-Cabrera I,Kapteijn F,Moulijn J A.Innovations in the synthesis of Fe-(exchanged)-zeolites[J].Catal.Today,2005,110:255-263
    [48]Lobree L J,Hwang I-C,Reimer J A,et al.Investigation of the state of Fe in H-ZSM-5[J].J.Catal.,1999,186:242-253
    [49]Park J -H.,Choung J -H.,Nam I -S,et al.N_2O decomposition over wet- and solid-exchanged Fe-ZSM-5 catalysts[J].Appl.Catal.B,2007,doi:10.1016 / j.apcatb.2007.09.020
    [50]Chen H -Y.and Sachtler W M H.Activity and durability of Fe/ZSM-5 catalysts for lean burn NO_x reduction in the presence of water vapor[J].Catal.Today,1998,42:73-83
    [51]Marturano P,DrozdovaL,Kogelbauer A,et al.Fe/ZSM-5 prepared by sublimation of FeCl_3:The structure of the Fe species as determined by IR,~(27)Al MAS NMR,and EXAFS spectroscopy[J].J.Catal.,2000,192:236-247
    [52]Melian-Cebrera I,Espinosa S,Groen J C,et al.Utilizing full-exchange capacity of zeolites by alkaline leaching:preparation of Fe-ZSM-5 and applicaition in N_2O decomposition[J].J.Catal.,2006,238:250-259
    [53]El-Malki El-M,van Santen R A,Sachtler W M H.Active sites in Fe/MFI catalysts for NO_x reduction and oscillating N_2O decomposition[J].J.Catal.,2000,196:212-223
    [54]Nobukawa T,Yoshida M,Okumura K,et al.Effect of reductants in N_2O reduction over Fe-MFI catalysts[J].J.Catal.,2005,229:374-388
    [55]Delahay G,Mauvezin M,Coq B,et al.Selective Catalytic reduction of nitrous oxide by ammonia on iron zeolite Beta catalysts in an oxygen rich atmosphere:effect of iron contents[J].J.Catal.,202:156-162
    [56]Guzman-Vargas A,Delahay G,Coq B.Catalytic decomposition of N_2O and catalytic reduction ofN_2O anfN_2O + NO by NH3 in the presence of O2 over Fe-zeolite[J].Appl.Catal.B,2003,42:369-379
    [57]φygarden A H,Pérez-Ramírez J.Activity of commercial zeolites with iron impurities in direct N_2O decomposition[J].Appl.Catal.B,2006,65:163-167
    [58]焦凤茹,庞振涛.世界苯酚市场分析[J].精细与专用化学晶,2001,12(15):29-32
    [59]Iwamato M,Hirata J,Matsukami K,et al.Catalytic oxidation by oxide radical ions.1One-step hydroxylation of benzene to phenol over Group 5 and 6 oxides supported on silica gel[J].J.Phys.Chem.,1983,87:903-913
    [60]Okanura,Nishiyama J.Formation of Cu-supported mesoporous silicates and aluminosilicates and liquid-phase oxidation of benzene catalyzed by the Cu-mesoporous silicates and aluminosilicates[J].J.Mole Catal.,1998,135:133-142
    [61]Kharitonov A S,Panov G I,Sheveleva G A.Activation of zeolite catalysts for the preparation of phenol from benzene[J].Zeolites,1997,18:90-97
    [62]Parmon V N,Panov G I,Uriarte A,Noskov A S.Nitrous oxide in oxidation chemistry and catalysis:application and production[J].Catal.Today,2005,100:115-131
    [63]Panov G I,Uriarte A K,Rodkin M A,et.al.Generation of active oxygen species on solid surfaces.Opportunity for novel oxidation technologies over zeolites[J].Catal.Today,1998,41:365-385
    [64]Leanza R,Rossetti I,Mazzola I,Forni L.Study of Fe-silicalite catalyst for the N_2O oxidation of benzene to phenol[J].Appl.Cata,A:General,2001,205:93-99
    [65]Pirutko L V,Uriarte A K,Chernyavsky V S,et al.Preparation and catalytic study of metal modified TS-1 in the oxidation of benzene to phenol by N_2O[J].Micro and Meso Materials.,2001,48:345-353
    [66]Dubkov K A,Ovanesyan N S,Shteinman A A,et al.Evolution of Iron States and Formation of α-Sites upon Activation of Fe-ZSM-5 Zeolites[J].J.Catal.,2002,207:341-352
    [67]Centi G.Genovese C.Giordano G,et al.Performance of Fe-BEA catalysts for the selective hydroxylation of benzene with N_2O[J].Catal.Today,2004,92:17-26
    [68]Motz J L,Heinichen H,Holderich W F.Direct hydroxylation of aromatics to their corresponding phenols catalysed by H-[Al]ZSM-5 zeolite[J].J.Mol.Catal.A Chem,1998,136:175-184
    [69]Hoelderich W F.one-pot' reactions:a contribution to environmental protection[J].Appl.Catal A:General,2000,194-195:487-496
    [70]Burch R,Howitt.Direct partial oxidation of benzene to phenol on zeolites catalysts[J],Appl.Catal A:General,1992,86:139-152
    [71]Vereshchagin S N,Kirik N P,.Shishkina N N,et al.Chemistry of surface oxygen formed from N_2O on ZSM-5 at moderate temperatures[J].Catal.Today,2000,61:129-136
    [72]Pirutko L V,Chernyavsky V S,Uriarte A K,et al.Oxidation of benzene to phenol by nitrous oxide[J],Appl.Catal A:General,2002,227:143-157
    [73]Hafele M,Reitzmann A,Roppelt D,et al.Hydroxylation of benzene with nitrous oxide on H-Ga-ZSM-5 zeolite[J].Appl.Catal.,1997,150:153-164
    [74]Pirutko L V,Chernyavsky V S,Uriarte A K,et a;.Oxidation of benzene to phenol by nitrous oxide[J],Appl.Catal A:General,2002,227:143-157
    [75]Kustov L M,Tarasov A L,Bogdan V I,et al.[J].Selective oxidation of aromatic compounds on zeolites using N_2O as a mild oxidant:A new approach to design active sites[J].Catal.Today,2000,61:123-128
    [76]Chaki T,Arai M,Ebina T,et al.Catalytic reduction of N_2O by various hydrocarbons over Fe-ZSM-5:nature and reactivity of carbonaceous deposits[J].J.Mole.Catal.A: Chem,2006,227:187-196.
    [77]Shimokawabe M,Hirano K,Takezawa N.Temperature programmed desorption study of adsorbed species formed by the decomposition of N_2O on ion-exchanged zeolite catalysts[J].Catal.Today,1998,45:117-122
    [78]翟丕沐,王立秋,刘长厚,张元礼.H-ZSM-5分子筛催化剂在催化苯氧化合成苯酚反应中的积炭和失活行为[J].催化学报,2005,26(1):10-14
    [79]Emig G;Hafele M,Reitzmann A.Hydroxylation of benzene with nitrous oxide on H-Ga-ZSM5 zeolite[J].Appl.Catal.A,1997,150:153-164
    [80]Reitzmann A,Klemm M,Emig G.Kinetics of the hydroxylation of benzene with N_2O on modified ZSM-5 zeolites[J].Chem.Engineering.J.2002,90:149-164
    [81]Hiemer U,Klemm E,Schettler F,et al.Microreaction engineering studies of the hydroxylation of benzene with nitrous oxide[J].Chem.Engineering.J.,2004,101:17-22
    [82]Ivanov D P,Sobolev V I,Panov GI.Deactivation by coking and regeneration of zeolite catalysts for benzene-to-phenol oxidation[J].Appl.Catal.A:General,2003,241:113-121
    [83]Selli E,Forni L.Comparison between the surface acidity of solid catalysts determined by TPD and FTIR analysis of pre-adsorbed pyridine[J].Micropor.Mesopor.Mater.,1999,31:129-140
    [84]徐如人,庞文琴等.分子筛与多孔材料化学[M].北京:科学出版社,2004.174
    [85]Meloni D,Monaci R,Solinas V,et al.Activity and Deactivation of Fe-MFI Catalysts for Benzene Hydroxylation to Phenol by N_2O[J].J.Catal.,2003,214:169-178
    [86]Wichterlova B,Sobalik Z,Dědecek J.Sitting and distribution of the Co ions in Beta zeolite:a UV-Vis-NIR and FTIR study[J].J.Catal.,2002,211:198-207
    [87]Wichterlova B,Sobalik Z,Dědecek J.Redox catalysis over metallo-zeolites:Contribution to environmental catalysis[J].Appl.Catal.B,2003,41:97-114
    [88]Bofdiga S,Buzzoni R,Geobaldo F,et al.Structure and reactivity of framework and extraframework iron in Fe-Silicalite as investigated by spectroscopic and physicochemical methods[J].J.Catal.,1996,158:486-501
    [89]Nechita M-T,Berlier G,Ricchiardi G,et al.New precursor for the post-syn thesis preparation of Fe-ZSM-5 zeolites with low iron content[J].Catal.Lett.,2005,103:33-41
    [90]Kucherov A V,Montreuil C N,Kucherova T N,et al.In situ high-temperature ESR characterization of FeZSM-5 and FeSAPO-34 catalysts in flowing mixtures of NO,C_3H_6,and O_2[J].Catal.Lett.,1998,56:173-181
    [91]Long R Q,Yang R T.Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J].J.Catal.,2000,194:80-90
    [92]Centi G,Genovese C,Giordano G,et al.Performance of Fe-BEA catalysts for the selective hydroxylation of benzene with N_2O[J].Catal.Today,2004,91-92:17-26
    [93]Mul G,Pérez-Ramírez J,Kapteijn F,et al.NO adsorption on ex-framework[Fe,X]MFI catalysts:novel IR bands and evaluation of assignments[J].Catal.Lett.,2002,80:129-138
    [94]Hadjiivanov K,Knozinger H,Tsyntsarski B,Dimitrov L.Effect of water on the reduction of NOx with propane on Fe-ZSM-5.An FTIR mechanistic study[J].Catal Lett.,1999,62:35-40
    [95]Hadjiivanov K,Klissurskid D,Ramis G,et al.Fourier transform IR study of NO_x adsorption on a CuZSM-5 DeNO_x catalyst[J].Appl Catal B,1996,7:251-264
    [96]Chen H Y,Voskoboinikov T,Sachtler W M H.Reduction of NO_x over Fe/ZSM-5Catalysts:Adsorption Complexes and Their Reactivity toward Hydrocarbons[J].J Catal.,1998,180:171-183
    [97]Smeets P J,Groothaert M H,Van Teeffelen R M,et al.Direct NO and N_2O decomposition and NO-assisted N_2O decomposition over Cu-zeolites:Elucidating the influence of the Cu-Cu distance on oxygen migration[J].J Catal.,2007,245:358-368
    [98]Sang C,Lurid C R F.Possible role of nitrite/nitrate redox cycles in N_2O decomposition and light-offover Fe-ZSM-5[J].Catal Lett.,2001,73:73-77
    [99]邢娜,王新平,于青,郭新闻.分子筛对NO和NO_2的吸附性能[J].催化学报,2007,28(3):205-209
    [100]Ivanov A A,Chernyavsky V S,Gross M J,et al.Kinetics of benzene to phenol oxidation over Fe-ZSM-5 catalyst[J].Appl.Catal A:General,2003,249:327-343
    [101]Hensen E J M,Zhu Q,Janssen R A J,et al.Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites:1.On the role of iron and aluminum[J].J.Catal.,2005,233:136-146
    [102]Nowinska K,Wlaw A,Lzbinska A.Propane oxydehydrogenation over transition metal modified zeolite ZSM-5[J].Appl.Catal A:General,2003,243:325-336
    [103]Jia Jifei,Kfishnan S,Sachtler.et al.One-step oxidation of benzene to phenol with nitrous oxide over Fe/MFI catalysts[J].J.Catal.,2004,221:119-126
    [104]Juttu G,Lobo R.One step benzene oxidation to phenol using N_2O over acid zeolites[J].Stud.Surf.Sci.Catal.,2001,135:4392-4397
    [105]Ates A,Reitzmann A.The interaction of N_2O with ZSM-5-type zeolites:A transient,multipulse investigation[J].J.Catal.,2005,235:164-174
    [106]Todorova S,Su B -L..Propane as alkylating agent for benzene alkylation on bimetal Ga and Pt modified H-ZSM-5 catalysts:FTIT study of effect of pre-treatment conditions and the benzene adsorption[J].J.Mole.Catal.A:Chemical,2003,201:223-235
    [107]Sahasrabudhe A,Kamble V S,Tripathi S K,et al.FTIR study on molecular motions of benzene adsorbed in ZSM-5 zeolite:Role of charge-balancing cations and pore size[J].J.Phys.Chem.B,2001,105:4374-4379
    [108]Kiwi-Minsker L.,Bulushev D A,Renken A.Active sites in HZSM-5 with low Fe content for the formation of surface oxygen by decomposition N_2O:is every deposited oxygen active?[J].J.Catal.,2003,219:273-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700