用户名: 密码: 验证码:
有机小分子共价修饰氧化石墨烯及其宽带光限幅性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光限幅是一种非线性光学现象,它是指当一束强光穿过光限幅材料时,材料能将其光强度降低到人眼和传感器能接受的水平。与C60、酞菁一样,由碳原子六元环组成的具有二维结构的石墨烯,也表现出潜在的光限幅性能。但是其最大的缺点就是在常见有机溶剂中的溶解度很差,从而限制了其在实际限幅器件中的应用,本论文设计和制备了一系列可溶性的小分子修饰的石墨烯衍生物,对材料的基本结构及光限幅性能进行了初步研究。
     第一章系统的综述了石墨烯及衍生物的制备及其在光限幅领域的潜在应用。
     第二章中通过酰胺化反应合成了锌酞菁侧向取代的氧化石墨烯(GO)杂化材料,根据XPS和FTIR谱图确认了锌酞菁和GO之间形成了酰胺键。在相同的线性消光系数下,锌酞菁共价修饰GO杂化材料在532 nm和1064 nm的非线性消光系数和宽带光限幅性能要优于GO和锌酞菁本身。
     为了进一步促进光限幅性能的提高,在第三章中,合成了高度可溶的GO轴向修饰镓酞菁。轴向取代有效的阻止了酞菁的聚集,从而促进了光限幅性能的提高,GO和镓酞菁之间形成的Ga-O键通过XPS谱图能够确认。在相同浓度下,杂化材料在532 nm和1064 nm的非线性消光系数和光限幅性能要优于GO,镓酞菁和C60。
     第四章,描述了N-(4-苯胺基)咔唑共价修饰GO杂化材料的合成和光限幅性能。杂化材料在532 nm和1064 nm下均具有比GO更大的非线性消光系数和更强的光限幅性能,归属于杂化材料内GO和N-(4-苯胺基)咔唑之间的推拉电子体系的形成。
     为了研究GO本征的非线性光学特别是光限幅性能,在第五章中,我们通过酰胺化反应制备了POSS共价修饰GO杂化材料,杂化材料在氯仿中具有很好的溶解性,荧光强度相比GO得到增强。
Optical limiting is a nonlinear optical (NLO) phenomenon that when a bunch of light passes through the optical limiting materials, the materials can reduce its intensity to the human eyes and sensor can be acceptable level. Graphene is a new two-dimensional material comprising layers of carbon atoms arranged in six-membered rings, which has been a subject of extensive academic and commercial interest for potential use as the active materials in the fields of optical limiting properties. However, because of its poor solubility in common solvents, there are only few materials chemically derived from graphene can be used for optical limiting. In this thesis, we designed and synthesized a series of new graphene derivates covalently functionalized with organic molecules, most of which possess outstanding optical limiting properties.
     In the first chapter, we highlight the important aspects of graphenes, including preparation methods, chemical modification and potential applications for optical limiting in detail.
     In the second chapter, a Graphene Oxide (GO) covalently functionalized with zinc phthalocyanine (PcZn), GO-PcZn, was synthesized by amidation reaction. The formation of the amido bond between PcZn and GO was confirmed by x-ray photoelectron and Fourier transform infrared spectroscopy. At the same level of linear extinction coefficient, GO-PcZn exhibited much larger nonlinear optical extinction coefficients and broadband optical limiting performance than GO at both 532 and 1064 nm.
     In the third chapter, A soluble GO axially substituted gallium phthalocyanine (PcGa) hybrid material (GO-PcGa) was for the first time synthesized by the reaction of tBu4PcGaCl with GO in anhydrous DMSO at 110℃in the presence of K2CO3. The formation of a Ga-O bond between PcGa and GO was confirmed by x-ray photoelectron spectroscopy. At the same level of concentration of 0.1 g/L, GO-PcGa exhibit much larger NLO extinction coefficients and strong OL performance than GO, tBu4PcGaCl and C6o at both 532 and 1064 nm.
     In the forth chapter, GO was modified covalently with N-(4-anilinobenzoyl) carbazole using acylamidation reaction. The hybrid material exhibited lager nonlinear extinction coefficient and much better optical limiting property in comparison with GO both at 532 nm and 1064 nm. This could be due to the donor-acceptor system and the extendedπ-πconjugate of GO attributed to the introduction of N-(4-anilinobenzoyl) carbazole.
     In order to study the mechanism of nonlinear optical, especially optical limiting in GO, GO-based hybrid material was synthesized by covalently bonding GO and polyhedral oligomeric silsesquioxane together. The amido bond was shown clearly in FTIR spectra of samples. The hybrid material exhibited improved solubility in CHCl3 and enhanced fluorescence intensity in comparison with GO.
引文
Jinhui Zhu, Yu Chen*, Jun Wang, Yong-Xi Li, Bin Zhang, Jinjuan Zhang, Ying He, Werner J. Blau. Synthesis and strong optical limiting response of graphene oxide covalently functionalized with gallium phthalocyanine. Nanotechnology, under review (2010)
    [1]Kumar G R, Rajgara F A. Z-scan studies and optical limiting in a mode-locking dye. Appl. Phys. Lett.1995,67(26):3871-3873
    [2]He G S, Bhawalkar J D, Prasad P N. Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound. Opt. Lett.1995,20(14):1524-1526
    [3]Chen Y, Hanack M, Araki Y, Ito O. Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting. Chem. Soc. Rev.2005,34:517-529
    [4]Guiliano C R, Hess L D. Nonlinear Absorption of light:optical saturation of electronic transitions in organic molecules with high intensity laser radiation. IEEE J. Quant. Electron.1967, QE-3:338-367
    [5]Chen Y, EI-Khouly M E, Doyle J J. Phthalocyanines and related compounds:nonlinear optical response and photoinduced electron transfer process, in Handbook of Organic Electronics and Photonics, American Scientific Publishers, Stevenson Ranch, California, USA,2008,2:151-181
    [6]Wang J, Hernandez Y, Lotya M, Coleman J N, and Blau W J. Broadband Nonlinear Optical Response of Graphene Dispersions. Adv. Mater.2009,21:2430-2435
    [7]Lee W. Tutt, Alan Kost. Optical limiting performance of C60 and C70 solutions. Nature 356: 225-226
    [8]Cha M, Sariciftci N S, Heeger A J, Hummelen J C, Wudl F. Enhanced nonlinear absorption and optical limiting in semiconducting polymer/methanofullerene charge transfer films. Appl. Phys. Lett.1995,67:3850-3852
    [9]Hanack M, Lang M. Conducting Stacked Metallophthalocyanines and Related Compounds. Adv. Mater.1994,6(11):819-833
    [10]De La Torre G, Vazquez P, Agullo-Lopez F, Torres T. Phthalocyanines and related compounds:organic targets for nonlinear optical applications. J. Mater. Chem.1998,8: 1671-1683
    [11]De La Torre G, Vazquez P, Agullo-Lopez F, Torres T. Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chem. Rev. 2004,104(9):3723-3750
    [12]Chen Y, Fujitsuka M, O'Flaherty S M, Hanack M, Ito O, Blau W J. Strong Optical Limiting of Soluble Axially Substituted Gallium and Indium Phthalocyanines. Adv. Mater.2003,15(11):899-902
    [13]Chen Y, O'Flaherty S, Fujitsuka M, Hanack M, Subramanian L R, Ito O, Blau W J. Synthesis, Characterization, and Optical-Limiting Properties of Axially Substituted Gallium(III) Naphthalocyanines. Chem. Mater.2002,14(12):5163-5168
    [14]Chen Y, Subramanian L R, Fujitsuka M, Ito O, O'Flaherty S M, Blau W J, Schneider T, Dini D, Hanack M. Synthesis and Optical Limiting Properties of Axially Bridged Phthalocyanines:[(tBu4PcGa)2O] and [(tBu4PcIn)2O]. Chem. Eur. J.2002,8(18): 4248-4254
    [15]Yang G Y, Hanack M, Lee Y W, Chen Y, Yuen M L K, Vagin S, Dini D. Synthesis and Nonlinear Optical Properties of Fluorine-Containing Naphthalocyanines. Chem. Eur. J. 2003,9(12):2758-2762
    [16]Chen Y, O'Flaherty S M, Hanack M, Blau W J. New axially aryloxy substituted gallium phthalocyanines for nonlinear optics. J. Mater. Chem.2003,13(10):2405-2408
    [17]Bertagnolli H, Blau W J, Chen Y, Dini D, Feth MP, O'Flaherty S M, Hanack M, Krishnan V. Synthesis, characterization and optical limiting properties of a gallium phthalocyanine dimmer. J. Mater. Chem.2005,15(6):683-689
    [18]Chen Y, Hanack M, Blau W J, Dini D, Doyle J, Liu Y, Lin Y, Bai J. Soluble axially substituted phthalocyanines:Synthesis and nonlinear optical response J. Mater. Sci.2006, 41(8):2169-2185
    [19]Chen Y, EI-Khouly M E, Sasaki M, Araki Y, Ito O. Synthesis of the Axially SubstitutedTitanium Pc-C60 Dyad with a Convenient Method. Org. Lett.2005,7(8): 1613-1616
    [20]Chen Y, Barthel M, Seiler M, Subramanian L R, Bertagnolli H, Hanack M. An Axially Bridged Indium Phthalocyanine Dimer with an In-In Bond. Angew Chem. Int. Eng. Ed. 2002,41(17):3239-3242
    [21]Chen Y, Dini D, Hanack M, Fujitsuka M, Ito O. Excited state properties of monomeric and dimeric axially bridged indium phthalocyanines upon UV-Vis laser irradiation. Chem. Commun.2004,340-341
    [22]O'Flaherty S M, Hold S V, Cook M J, Torres T, Chen Y, Hanack M, Blau W J. Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. Adv. Mater.2003,15(1):19-32
    [23]Chen Y, Subramanian LR, Barthel M, Hanack M. Synthesis and Characterization of Soluble Axially Substituted Tetra-(tert-butyl) gallium(III)phthalocyanines. Eur. J. Inorg. Chem.2002,5:1032-1034
    [24]McEwan K, Lewis K, Yang G Y, Chang L L, Lee Y W, Lau W P, Lai K S. Synthesis, Characterization, and Nonlinear Optical Study of Metalloporphyrins. Adv. Funct. Mater. 2003,13(11):863-867
    [25]Zhu P, Yu C, Liu J, Song Y, Li C. A. Electrodeposition of 3-D microstructures without moulds. Proc. SPIE.1996,2879:275-279
    [26]Tang B Z, Xu H Y. Preparation, Alignment, and Optical Properties of Soluble Poly(phenylacetylene)-Wrapped Carbon Nanotubes. Macromolecules 1999,32(8): 2569-2576
    [27]Pittman M, Plaza P, Martin M M, Meyer Y H. Subpicosecond reverse saturable absorption in organic and organometallic solutions. Opt. Commun.1998,158(1-6): 201-212
    [28]Feng M, Zhan H, Chen Y. Nonlinear optical and optical limiting properties of graphene families. Appl Phys Lett 2010,96:033107/1-033107/3
    [29]Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y. A Graphene Hybrid Material Covalently Functionalized with Porphyrin:Synthesis and Optical Limiting Property. Adv. Mater.2009,21:1275-1279
    [30]Liu Z B, Xu Y F, Zhang X Y, Zhang X L, Chen Y S, Tian J G Porphyrin and Fullerene Covalently Functionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties. J. Phys. Chem. B 2009,113(29):9681-9686
    [31]Zhang X, Huang Y, Wang Y, Ma Y, Liu Z, Chen Y Synthesis and characterization of a grapheme-C6o hybrid material. Carbon 2009,47(1):334-337
    [32]Geim A K, Novoselov K S. The rise of graphene. Nat. Mater.2007,6(3):183-191 Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008,321:385-388
    [33]Balandin A A. Superior thermal conductivity of single-layer graphene. Nano Lett.2008, 8:902-907
    [34]Bolotin K I. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008,146:351-355
    [35]Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Graphene-based ultracapacitors. Nano Lett. 2008,8:3498-3502
    [36](a) Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005,438:201-204; (b) Srinivas G, Zhu Y W, Piner R, Skipper N, Ellerby M, Ruoff R. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 2010,48(3):630-635
    [37]Stankovich S. Graphene-based composite materials. Nature 2006,442:282-286
    [38]Ramanathan T. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotech.2008,3:327-331
    [39]Blake P. Graphene-based liquid crystal device. Nano Lett.2008,8:1704-1708
    [40]Bunch J S. Electromechanical resonators from graphene sheets. Science 2007,315: 490-493
    [41]Lang B. A Lead study of the deposition of carbon on platinum crystal surfaces. Surface Sci.1975,53:317-329
    [42]Shioyama H. Cleavage of graphite to graphene. J. Mate. Sci. Lett.2001,20:499-500
    [43]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A. Electric field effect in atomically thin carbon films. Science 2004,306: 666-669
    [44]Brodie B C. Sur le poids atomique du graphite. Ann. Chim. Phys.59,466 (1860).
    [45]Staudenmaier L. Verfahren zur Darstellung der Graphitsaure. Ber. Deut. Chem. Ges. 1898,31:1481-1482
    [46]Hummers W S, Offeman R E. Preparation of graphitic oxide. J. Am. Chem. Soc.1958, 80:1339-1339
    [47]Cai W. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 2008,321:1815-1817
    [48]Buchsteiner A, Lerf A, Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 2006,110:22328-22338
    [49]Stankovich S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem.2006,16:155-158
    [50]Jung I. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett.2007,7:3569-3575
    [51]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech.2008,3:101-105
    [52]Stankovich S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45:1558-1565
    [53]Lomeda J R, Doyle C D, Kosynkin D V, Hwang W F, Tour J M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc.2008,130:16201-16206
    [54]Tung V C, Allen M J, Yang Y, Kaner R B. High-throughput solution processing of large-scale graphene. Nature Nanotech.2008,4:25-29
    [55]Wang G. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008,112:8192-8195
    [56]Si Y, Samulski E T. Synthesis of water soluble graphene. Nano Lett.2008,8:1679-1682
    [57]Muszynski R, Seger B, Kamat P V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008,112:5263-5266
    [58]Schniepp H C. Functionalized single graphene sheets derived form splitting graphite oxide. J. Phys. Chem. B 2006,110:8535-8539
    [59]McAllister M J. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater.2007,19:4396-4404
    [60]Williams Q Serger B, Kamat P V. TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008,2:1487-1491
    [61]Boukhvalov D W, Katsnelson M I. Modeling of graphite oxide. J. Am. Chem. Soc.2008, 130:10697-10701
    [62]Viculis L M, Mack J J, and Kaner R B. A chemical route to carbon nanoscrolls, Science 2003,299:1361-1361
    [63]Bangert U, Bleloch A L, Wang P, Nair R R, Geim A K, and Gass M H. Free-standing grapheme at atomic resolution. Nature Nanotechnol.2008,3:676-681
    [64]Huc V, Bendiab N, Rosman N, Ebbesen T, Delacour C, Bouchiat V. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology 2008,19(45):455601
    [65]Shukla A, Kumar R, Mazher J, Balan A. Graphene made easy:high quality large-area samples. Solid State Commun.2009,149(17-18):718-721
    [66]Hernandez Y, Nicolosi V, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. Mcgovern. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol.2008,3:563-568
    [67]Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc.2009,131:3611-3620
    [68]Somani P R, Somani S P, Umeno M. Planer nano-graphenes from camphor by CVD. Chemical Physics Letters 2006,430(1-3):56-59
    [69]Obraztsov A N, Obraztsova E A, Tyurnina A V, Zolotukhin A A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007,45(10): 2017-2021
    [70]Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett.2008,93(11):113103
    [71]Obraztsov A N. Chemical vapour deposition:Making graphene on a large scale. Nature Nanotechnol.2009,4:212-213
    [72]Wang X, You H, Liu F, Li M, Wan L, Li S, Li Q. Largescale synthesis of few-layered graphene using CVD. Chem. Vapor. Deposition 2009,15(1-3):53-56
    [73]Nagashima A, Nuka K, Itoh H, Ichinokawa T, Oshima C, Otani S. Electronic states of monolayer graphite formed on TiC(111) surface. Surface Sci.1993,291(1-2):93-98
    [74]Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457: 706-710
    [75]Chae S J, Gunes F, Kim K K, Kim E S, Han G H, Kim S M, Shin H J. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv. Mater.2009,21(22):2328-2333
    [76]Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009,324(5):1312-1314
    [77]Wu Z, Ren W, Gao L, Liu B, Jiang C, Cheng H. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 2009,47(2):493-499
    [78]Rollings E, Gweon G H, Zhou S Y, Mun B S, McChesney G L, Hussain B S, Fedorov A V. Sythesis and characterization of atomically-thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 2006,67(9-10):2172-2177
    [79]Hass J, W A de Heer, and E H Conrad. The growth and morphology of epitaxial multilayer graphene. J. Phys. Cond. Matter.2008,20:323202
    [80]Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley I, McChesney J L. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater.2009,8:203-207
    [81]Vazquez de parga A L, F Calleja, B Borca, M C G Passeggi Jr, J J Hinarejos, F Guinea, and R Miranda. Periodically rippled graphene:growth and spatially resolved electronic structure. Phys. Rev. Lett.2008,100:056807
    [82]Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nature Mater.2008,7: 406-411
    [83]Wintterlin J, Bocquet M L. Graphene on metal surfaces. Surface Sci.2009,603(10-12): 1841-1852
    [84]Cano-Marquez A G, Rodriguez-Macias F J, CamposDelgado J, Espinosa-Gonzalez C G. Ex-MWNTs:graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett.2009,9(4):1527-1533
    [85]Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009,458:877-880
    [86]Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009,458:872-876
    [87]Kim C D, Min B K, Jung W S. Preparation of grapheme sheets by the reduction of carbon monoxide. Carbon 2009,47(6):1610-1612
    [88]Zhang Y B, Small J P, Pontius W V, Kim P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett.2005,86(7): 3104
    [89]Turchanin A, Beyer A, Nottbohm C T, Zhang X, Stosch R, Sologubenko A, Mayer J. One nanometer thin carbon nanosheets with tunable conductivity and stiffness. Adv. Mater. 2009,21(12):1233
    [90]Liu Z, Robinson J T, Sun X, Dai H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc.2008,130(33):10876-10877
    [91]Veca L M, Lu F, Meziani M J, Cao L, Zhang P, Qi G, Qu L, Shrestha M, Sun Y P. Polymer functionalization and solubilization of carbon nanosheets. Chem. Commun. 2009:2565-2567
    [92]Mohanty N, Berry V. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor:Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett.2008,8(12):4469-4476
    [93]Niyogi S, Bekyarova E, Itkis M E, McWilliams J L, Hamon M A, Haddon R C. Solution Properties of Graphite and Graphene. J. Am. Chem. Soc.2006,128(24):7720-7721
    [94]Stankovich S, Piner R, Nguyen S T, Ruo R S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006,44(15):3342-3347
    [95]Wang S, Chia P J, Chua L L, Zhao L H, Png R Q, Sivaramakrishnan S, Zhou M. Band-like Transport in Surface-Functionalized Highly Solution-Processable Graphene Nanosheets. Adv. Mater.2008,20(18):3440-3446
    [96]Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Covalent functionalization of polydisperse chemically-converted grapheme sheets with amine-terminated ionic liquid. Chem. Commun.2009:3880-3882
    [97]Yang H, Li F, Shan C, Han D, Zhang Q, Niu N, Ivaska A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 2009,19(26):4632-4638
    [98]Zhou Y, Bao Q L, Tang L A L, Zhong Y L, Loh K P. Hydrothermal Dehydration for the "Green" Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chem. Mater.2009,21(13):2950-2956
    [99]Hendry E, Hale P J, Moger J, Savchenko A K. Coherent Nonlinear Optical Response of Graphene. PRL 2010,105:097401
    [100]Chen Y, Lin Y, Liu Y, Doyle J, He N, Zhuang X. Carbon nanotube-based functional materials for optical limiting. J. Nanosci. Nanotechn.2007,7:1268-1283
    [101]Spangler C W. Recent development in the design of organic materials for optical power limiting. J. Mater. Chem 1999,9:2013-2020
    [102]Chen Y, Lin Y, He N. Carbon nanotubes enable laser protection applications. SPIE Newsroom 2007,2.1200706.0750
    [103]Wu J, Pisula W, Muellen K. Graphene Molecules as Potential Material for Electronics. Chem. Rev.2007,107:718-747
    [104]Chen F, Tao NJ. Electron transport in single molecules:from benzene to graphene. Acc. Chem. Res.2009,42:429-438
    [105]Dreyer D R, Park S, Bielawski C W, Ruoff R S. The Chemistry of Graphene Oxide. Chem. Soc. Rev.2010,39:228-240
    [106]Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechn.2009,4:217-224
    [107]Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Graphene:The new-dimensional nanomaterials. Angew. Chem. Int. Ed.2009,48:7752-7777
    [108]Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F. Graphene mode-locked ultrafast laser. ACS Nano 2010,4:803-810
    [109]Kudrevich S V, Ali H, van Lier J E. Syntheses of monosulfonated phthalocyanines, benzonaphthoporphyrazines and porphyrins via the Meerwein reaction. J. Chem. Soc. Perkin Trans.1 1994,2767-2774
    [110]Sheik-Bahae M, Said A A, Wei T H. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. QE,1990,26(4):760-769
    [111]Scott Gilje, Song Han, Minsheng Wang, Kang L. Wang, and Richard B. Kaner. A Chemical Route to Graphene for Device Applications. Nano Lett.2007,7 (11): 3394-3398
    [112]Wang J, Blau W J. Inorganic and hybrid nanostructures for optical limiting. J. Opt. A: Pure Appl. Opt.2009,11:024001/1-024001/16
    [113]Nitschke C, O'Flaherty S M, Kroll M, Blau W J. Material investigations and optical properties of phthalocyanine nanoparticles. J. Phys. Chem. B 2004,108:1287-1295
    [114]De La Torre G, Vazquez P, Agullo-Lopez F, Torres T. Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chem. Rev. 2004,104(9):3723-3750
    [115]Loh K P, Bao Q, Ang P K, Yang J. The chemistry of grapheme. J. Mater.Chem.2010, 20(12):2277-2289
    [1116]Zhuang X D, Chen Y, Liu G, Li P P, Zhu C X, Kang E T, Noeh K G, Zhang B, Zhu J H, Li Y X. Conjugated-Polymer-Functionalized Graphene Oxide:Synthesis and Nonvolatile Rewritable Memory Effect. Adv. Mater.2010,22(15):1731-1735
    [117]Zhang B, Chen Y, Zhuang X D, Liu G, Yu B, Kang E T, Li Y X. J. Polym. Sci. A:Polym. Chem.2010,48:2642-2649
    [118]Liu Z B, Wang Y, Zhang X L, Xu Y F, Chen Y S, Tian J G. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett.2009, 94(2):02192/1-02192/3
    [119]Morin J F, Leclerc M, Ades D, Siove A. Polycarbazoles:25 Years of progress. Macromol. Rapid Commun.2005,26(10):761-778
    [120]Zhang B, Wang J, Chen Y, Fruchtl D, Yu B, Zhuang X D, He N, Blau W J. Multiwalled carbon nanotubes covalently functionalized with poly(N-vinylcarbazole) via RAFT polymerization:Synthesis and nonlinear optical properties. Journal of Polymer Science Part A:Polymer Chemistry 2010,48(14):3161-3168
    [121]Chunder A, Pal T, Khondaker SI, Zhai L. Reduced Graphene Oxide/Copper Phthalocyanine Composite and Its Optoelectrical Properties. J. Phys. Chem. C 2010, 114(35):15129-15135
    [122]Yen-Chun Chen, Guo-Sheng Huang, Chung-Chin Hsiao, and Show-An Chen. J. Am. Chem. Soc.2006,128:8549-8558
    [123]Silvia Villar-Rodil, Juan. I Paredes, Amelia Martinez-Alonso and Juan M D Tascon. Preparation of graphene dispersions and graphene-polymer composites in organic media. J. Mater. Chem.2009,19:3591-3593
    [124]Wang G X, Shen X P, Wang B, Yao J, Park J. Synthesis and Characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 2009,47:1359-1364
    [125]Polavarapu L, Xu Q H, Dhoni M S. Optical limiting properties of silver nanoprisms. Appl. Phys. Lett.2008,92(26):263110-1-3
    [126]Sun Y P, Riggs J E, Liu B. Optical limiting properties of [60] fullerene derivatives. Chem. Mater.1997,9(5):1268-1272
    [127]Pan H, Chen W Z, Feng Y P. Optical limiting of metal nanowires. Appl. Phys. Lett. 2006,88:223106-1-3
    [128]Zhuang X D, Chen Y, Zhang B, Li Y X, Yu B and Qiao W H. A highly soluble polyhedral oligomeric silsesquioxane end-capped perylenediimide dye. New J. Chem. 2010,34:1120-1124
    [129]Bin Zhang, Yu Chen, Jun Wang, Werner J. Blau, Xiaodong Zhuang, Nan He. Multi-walled carbon nanotubes covalently functionalized with polyhedral oligomeric silsesquioxanes for optical limiting. Carbon 2010,48:1738-1742

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700