用户名: 密码: 验证码:
污水污泥中重金属在热解过程中行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以污水污泥为原料,研究了污泥和不同热解温度下热解残渣中铜、锌、铅、镉的总量和形态,考察了热解温度对这些热解残渣中上述重金属形态和滤出性的影响。首先利用原子吸收分光光度法(AAS)分析了污泥和热解残渣中上述四种金属的总量。污泥中金属锌(2104.8mg/kg)超过了《农用污泥中污染物控制标准》污泥农用土壤标准;金属镉(5.2mg/kg)和铜(312.3mg/kg)的含量超过了该标准污泥农用的酸性土壤标准;铅(119.6mg/kg)低于该标准中污泥农用的酸性土壤标准。热解残渣中这四种金属含量的多少次序和污泥样品中的多少次序是一样的,但是当热解温度升高到700℃时,热解底物中的镉还原成镉单质从而挥发到热解气体当中去了,导致残渣中镉含量减少。
     其次,使用现在通行的BCR (Community Bureau of Reference)法对污泥和热解残渣中这四种金属形态进行提取,然后利用AAS分析各个形态的含量。污泥中金属铜、镉、铅具有很大的潜在环境风险,因为每种金属的前三种形态分别占总量80%以上,其生物可利用性和环境毒性不可忽视。污泥中的锌的可交换态和可还原态的含量较高但部分可交换态的锌将会被土壤中的无机物晶格封闭而很稳定对环境无毒性,所以其生物有效性可能被高估。这四种金属的四种形态和热解温度的相关系数绝对值都没有超过0.8,有一半以上的相关系数都小于0.5,有些相关系数甚至小于0.3。所以,当热解温度不超过700℃时,能量还不足以打开上述四种金属形态的结合力,所以热解温度对残渣中的金属形态分布影响不大。
     最后,污泥和热解残渣中的金属的滤出性通过优化的有毒物质滤出性检测方法(TCLP)进行测定。热解残渣中金属镉、铜、铅、锌的TCLP浓度分别在400℃,350℃,500℃,550℃的时候达到最大值0.74mg/L,15.69mg/L,10.25mg/L,85.63mg/L。分别达到这个极值以后,热解残渣中它们的TCLP浓度就会随着热解温度上升而迅速下降,这是因为其一,在污泥中金属大部分是以有机螯合物的形式存在的,当热解温度升高致使有机螯合物的链断裂,金属离子释放出来,所以随着热解温度的增加,金属的滤出性也随着增强。但是达到一定温度以后金属又被晶格化而固定在灰分品格中,所以金属的滤出性极大的降低了。其二,热解过程中pH值随着热解温度升高而升高,其对H+的缓冲性也极大提高,这个也是导致金属TCLP浓度变化的另一个原因。其三,除650℃外,热解残渣的比表面积随着热解温度的升高热解残渣的比表面积逐渐缓慢上升(热解温度是700℃的时候,其比表面积达到33m3/g)。热解残渣中比表面积升高,其对重金属离子吸附能力增强也是热解残渣中的金属TCLP浓度变化的一个重要原因。
The present study focuses on the total content and speciation of Cu, Zn, Pb, Cd in the sewage sludge and the in the pyrolysis residues obtained at different temperatures. The influence that the pyrolysis temperature exerts on the speciation distribution and the leachability of these metals in the residues was evaluated. At first, Atomic Adsorption Spectrometry was (AAS) was employed to analyze the total concentration of the heavy metals in the sludge and the residues. The concentration of Zn (2104.8mg/kg) in the sludge was beyond the permitted value which is stipulated in Control standards for pollutants in sludges from agricultural use. The concentration of Cd (5.2mg/kg) and Cu (312.3mg/kg) were beyond the permitted value when the sludge was applied to the soil with pH<6.5. The concentration of Zn in the sludge was lower than the permitted values. When it came to the residues, the same conclusion could be attained except Cd in the residue produced during the pyrolysis at the temperature of 700℃.
     Secondly, BCR (Community Bureau of Reference) was used to extract the speciation of these metals and AAS was used to determine the concentration of these speciation. Cu, Cd, Pd in the sludge have great potential environment risk because the sum of the first three speciation accounts for 80%. Their bio-availability and toxicity can not be neglected. The sum of the first two speciation of Zn in the sludge is high. However some of exchangeable speciation can be fixed in the inorganic crystal lattice and pose no toxicity to the environment, so its bioavailability may be overestimated. All the absolute value of correlation coefficients between pyrolysis temperatures and the fractions of Cd, Cu, Pb, Zn in the residues are far less than 0.8 which is the minimum of high correlation. More than half of these correlation coefficients were below 0.5 and some were even below 0.3. The pyrolysis temperatures didn't effectively contribute to the distribution of metal speciation in the residues when the temperature was below 700℃, because the energy was not high enough to break the bonds.
     At last, modified Toxicity Characteristic Leaching Procedure was applied to determine the leachability of these metals in the sludge and residues. TCLP concentrations of Cd, Cu, Pb, Zn maximized at 0.74mg/L,15.69mg/L,10.25mg/L, 85.63mg/L at 400℃,350℃,500℃,550℃respectively. When the temperatures exceeded those points, the TCLP concentrations declined sharply. There are three reasons:Firstly, the heavy metals exist in organic chelate, with the increase of the temperature, a lot of chelate bonds were easily to break, and the metal ions can be released in the test. However, when the temperature came to some points, these metals can be fixed in the ash crystal lattice and hardly to release in the test. Secondly, the pH rose in the residues with the increasing of the temperature. So the pH buffering capacity of the residues is the other reason for the change of TCLP concentration of the metals. Thirdly, the BET surface of the residues increased when the temperature increased except 650℃(it rose to 33m3/g when the temperature got to 700℃)。It means that the residue adsorption absorbability to these metals could be improved.
引文
[1]张光明,张信芳,张盼月.城市污泥资源化技术进展.第一版.北京:化学工业出版社,2006:3-4
    [2]奉华,张衍国,邱天等.城市污水污泥的热解特性.清华大学学报:自然科学版,2001,41(10):90-92
    [3]赵庆祥.污泥资源化技术.第一版.北京:化学工业出版社,2002:6-8
    [4]陈同斌,黄启飞,高定等.中国城市污泥的重金属含量及其变化趋势.环境科学学报,2003,23(5):561-569
    [5]Metcalf, Eddy, editors. Wastewater engineering-treatment, disposal and reuse.3rd ed. New York, USA:McGraw Hill,1991
    [6]Romer R. Thermische Klarschlammbehandlung- Verbrennung, Trocknung, Energie-gewinnung, Emission [Thermal treatment of sewage sludge-combustion, drying, energy recovery, emission]. In:Klarschlamm Entsorgung 1, Daten-Dioxine, Entwasserung, Verwertung, Entsorgungs-vorschlage. Dusseldorf:VDI GbmH,1991: 250-271
    [7]Hall JE, Dalimier F. Waste management-sewage sludge:survey of sludge production, treatment, quality and disposal in the EC. EC Reference No:B4-3040/014156/92, Report No:3646,1994:78-80
    [8]Loll U. Neue Trends bei Klarschlammenge und-Entsorgungswegen. In: Entsorgungspraxis-Spezial,8,1989:3-4
    [9]史骏.城市污水处理厂污泥处理工艺试验研究及优化研究.[硕士论文].北京:北京工业大学,2002,1-77
    [10]Poletschny H. Klarschlamm-Nutzen oder Gefahr Fur die Landwirtschaft. In: Entsorgungspraxis-Spezial. Klarschlamm,1988,10-13
    [11]McGhee TJ. Water supply and sewerage.3rd ed. New York:McGraw-Hill,1991:78-92
    [12]Chen X., Jeyaseelan S.. Graham N. Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management,2002,22(7):755-760
    [13]Veailind P.A. Treatment and Disposal of Wastewater Sludge. Ann Arbor, Michigan, USA, 1979
    [14]金儒霖.中国城市污水厂污泥处理的综述.武汉城市建设学院学报,1994,11(2):1-12
    [15]Bayer E.. Kutubuddin M. Thermocatalytic conversion of lipid-rich biomass to oleochemicals and fuel, in:A.V. Bridgwater, J.L. Kuester (Eds.), Research in Thermochemical Biomass Conversion, Elesevier, London, New York,1988:518
    [16]Piskorz J, Donald S. Scott, Ian B. Westerberg. Flash Pyrolysis of Sewage Sludge, Ind. Eng. Chem. Process. Design Dev,1986,25(1):265-270
    [17]Conesa J A, Marcilla A, Moral R, et al. Evolution of the gases in the primary pyrolysis of different sewage sludge. Thermochim. Acta.,1998, (313):63-73
    [18]Silveira I C T, Rosa D, Monteggia L O, et al. Low temperature conversion of sludge and shavings from leather industry. Water Science and Technology,2002, (46):277-283
    [19]Kaminsky W, Augustin T, Bellmann U, et al. Pyrolyse industrieller und Kommunaler Klarschlamme. In:Recycling von Klarschlamm 1. Berlin:EF fur Energie-und Umwelttechnik GmbH,1987:309-316
    [20]Kaminsky W, Ying Y. Chemicals from biomass pyrolysis in a fluidized bed. In: Brigdwater AV, editor, Advances in thermochemicals biomass conversion, vol,2
    [21]Caballero J.A., Front R., Marcilla A., et al. Characterisation of sewage sludges by primary and secondary pyrolysis. J. AnaL. and Applied Pyrolysis 1997,40-41:433-450
    [22]Loll U. Klarschlamm. In:ATV Handbuch,4th edn. Berlin:Ernst and Sohn,1996:19-22
    [23]Kwak Y.H., Lee H.S., Kim W.H., et al. Co-combustion Characteristics of Raw Sewage Sludge and RDF in a Fluidized Bed Reactor, Cen Kefa, The 3rd i-CIPEC, Beijing: International Academic Publishers World Publishing Corporation,2004,33-38
    [24]Campbell H.W., Dirkzwager A.H., Sewage Sludge Treatment & Use, London:Elsevier Applied Science,1989,281-290
    [25]Bridle T.R., Hertle C.K., Oil from sludge:A cost effective sludge management system. Journal of the Australian Water and Wastewater Association,1988,15(3):32-35
    [26]E. Bayer, et.al. Proceedings of the International Recycling Congress. Berlin:E F Verlag: 1982,314-318
    [27]Boocock D.C.B., et.al. Proceedings of International Conference on Research in Thermochemical Biomass Conversion. London:Blackie Academic & Professional,1997, 657-671
    [28]Environment Solutions International Ltd., Recovering bio-energy from waste sludge. Filtration Separation,2002,39(4):26-28
    [29]Shen Lilly, Zhang Dong Ke. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidized-bed. Fuel,2003,82(4):465-472
    [30]Hwang I.H., Ouchi Y, Matsuto T.. Characteristics of leachate from pyrolysis residue of sewage sludge. Chemosphere,2007,68(10):1913-1919
    [31]Inguanzo M., Dominguez A., Menendez J.A., et al. On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J. Appl. Pyrolysis, 2002,63(1):209-222
    [32]Zufiaurre R., Olivar A., Chamorro P.,et al. Speciation of metals in sewage sludge for agricultural uses. Analyst,1998,123:255-259
    [33]Scancar J., Milacic R., Strazar M., et al. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Sci. Total Environ,2000,250(1-3):9-19
    [34]Zhou D. M., Chen H. M., Hao X. Z., Wang Y. J.. Fractionation of heavy metals in soils as affected by soil types and metal load quantity. Pedosphere,2002,12(4):309-319
    [35]Su D. C., Wong J. W. C.. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environ. Int,2003,29(7): 895-900
    [36]Fuentes A., Llorens M., Saez J., et al. Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere,2004,64(8):1039-1047
    [37]郭小汾,杨雪莲,陈勇等.可燃固体废弃物的热解动力学.化工学报,2000,51(5):615-619
    [38]罗前光.城市垃圾热解实验与数学模型的研究,[硕士论文].沈阳:东北大学,2002,2
    [39]李水清,李爱民,严建华等.生物质废弃物在回转窑内热解研究-1:热解条件对热解产物分布的影响.太阳能学报,2002,21(4):333-340
    [40]Stammabach M.R., Kraaz R., et al. Pyrolysis of sewage sludge in a fluidized bed. Energ. Fuel,1989,3(2):255-259
    [41]Rio, S., Faur-Brasquet, C., Le Coq, et al. Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation Application to air and water treatments. Chemosphere,2005,58(4):423-437
    [42]Inguanzo M., Domlnguez A., Menendez J.A., et al. On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J. Anal. Appl. Pyrol,2002,63(1):209-222
    [43]Bridgwater A.V., Radlein D.. An overview of fast pyrolysis of biomass. Organic Geochemistry,1999,30(12):1479-1493
    [44]Evans R.J., Milne T.A., Molecular characterization of the pyrolysis of biomass. Energy Fuels,1987,1(2):123-137
    [45]Cunliffe A.M., Williams P.T.. Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis,1998,44(2):131-152
    [46]Williams P.T., Besler S.. Polycyclic aromatic hydrocarbons in waste derived pyrolytic oils. Journal of Analytical and Applied Pyrolysis,1994,30(1):17-33
    [47]Mendez A, Gasco G., Freitas M.M.A., et al. Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges. Chemical Engineering Journal,2005, 108(1):169-177
    [48]Teresa J. Bandosz, Karin Block. Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents. Applied Catalysis B:Environmental,2006,67(1):77-85
    [49]DomInguez A, Menendez A, J A, J.J. Pis. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature. J. Anal. Appl. Pyro,2006,77(2): 127-132
    [50]Lilly Shen, Kong-ke Zhang. Low-temperature pyrolysis of sewage sludge and putrescible garbage for fuel oil production. Fuel,2005,84(7):809-815
    [51]Bridle T.R., Hammerton I., Hertle C.K.. Control of heavy metals and organochlorinesusing the oil from sewage process. Water Science Technology,1990, 22(12):249-258
    [52]何品晶,顾国维.低温热化学转化污泥制油技术.环境科学,1996,17(5):82-86
    [53]Doshi V.A., Vuthaluru H.B., Bastow T.. Investigation into the control of odour and viscosity of biomass oil derived from pyrolysis of sewage sludge. Fuel Processing Technology,2005,86(8):885-897
    [54]Andres Fullana, Jesse A. Contreras, Richard C. Striebich, et al. Multidimensional GC/MS analysis of pyrolytic oils. Journal of Analytical and Applied Pyrolysis,2005,74 (1-2): 315-326
    [55]Lanlan Yu, Qin Zhong. Preparation of adsorbents made from sewage sludge for adsorption of organic materials from wastewater. Journal of Hazardous Materials,2006, 137(1):359-366
    [56]Mykola Seredych, Teresa J. Bandosz. Sewage sludge as a single precursor for development of composite adsorbents/catalysts. Chemical Engineering Journal,2007, 128(1):59-67
    [57]Khalili N.R., Vyas J.D., Weangkaew W., et al. Synthesis and characterization of activated carbon and bioactive adsorbent produced from paper mill sludge. Separation Purification Technology,2002,26(2-3):259-304
    [58]Charothon Jindarom, Vissanu Meeyoo, Boonyarach Kitiyanan, et al. Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chemical Engineering Journal,2007,133(1-3): 239-246
    [59]Gasco G, Cueto M.J., Mendez A.. The effect of acid treatment on the pyrolysis behavior of sewage sludges. Journal of Analytical and Applied Pyrolysis,2007,80 (2):496-501
    [60]Kim Y., Parker W.. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresource Technology,2007,99 (5):1409-1416
    [61]Puchong Thipkhunthod, Vissanu Meeyoo, Pramoch Rangsunvigit, et al. Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition. Journal of Analytical and Applied Pyrolysis,2007,79 (1-2):78-85
    [62]Domingue A. z, Menendez J.A., Pis J.J.. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature. Journal of Analytical and Applied Pyrolysis,2006,77(2):127-132
    [63]廖洪强,姚强.城市生活垃圾热解失重特性.环境卫生工程,2002,10(2):51-53
    [64]李斌,谷月玲.城市生活垃圾典型组分的热解动力学模型研究.环境科学学报,1999,19(5):562-566
    [65]Wu C.H., Chang C.Y., Hor J. L, et al. On the thermal treatment of plastic mixtures of MSW:pyrolysis kinetics, Waste Manage,1993,13 (3):221-235
    [66]李季,张铮,杨学民等.城市生活垃圾热解特性的TG-DSC分析.化工学报,2005,3(7):759-764
    [67]解强,吴国光,武建军等.城市衍生燃(RDF)热解特性研究.苏州科技学院学报,2003,16(1):16-21
    [68]Walsh A. The application of atomic absorption spectra to chemical analysis. Spectrochim. Acta,1955,7(2):108-117
    [69]Alkemade C.T.J, Milatz J.M.W.. A double-beam method of spectral selection with flames. Appl. Sci. Res. Sec. B,1955,4(4):289-299
    [70]Kirkbright G F, Sargent M. Atomic absorption and fluorescence spectroscopy. London: Academic Press,1974,17-63
    [71]L'vov B V. Atomic absorption spectrochemical analysis. New York:American Elsevier Publishing Company Inc.,1970,5-35
    [72]林光美,张包铮.原子光谱学导论.北京:科学出版社,1990:29-114;167-222
    [73]梁诠廷主编.物理光学.北京:机械工业出版社,1980:247-256
    [74]Reynolds R J, Aldous K, Thompson K G.. Atomic absorption spectrometry, A Practical Guide. London:Griffin,1970:158-193
    [75]邓勃.原子吸收分光光度法.北京:清华大学出版社,1981:7-56;229-243
    [76]Mcbride M B. Cadmium uptake by crops estimated from soil total Cd and pH. Soil Science,2002,167(14):62-67
    [77]王光龙,蒋廉洁.污水集中处理厂污水中金属(重金属)的分布.重庆环境科学,2002,24(5):48-51
    [78]Vasseur L, Shipley W. A. Potential for municipal sewage sludge application on agricultural lands in southern Quebec. Water Quality Research Journal of Canada,1993, 34(5):469-508
    [79]Tessier A., Campbell P.G.C., Bisson M.. Sequential extraction procedures for the speciation of particular trace metals. Anal. Chem,1979,51(7):884-851
    [80]Luo Y.M., Christie P.. Bioavailability of copper and zinc in soils treated with alkaline stabilized sewage sludge. J. Environ. Qual,1998,27:335-342
    [81]Zheljazkov V.D., Warman P.R.. Application of high Cu compost to Swiss chard and basil. Sci. Total Environ,2003,302(1-3):13-26
    [82]Amir S., Hafidi M., Merlina G.., Revel J.C., Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere,2005,59(6):801-810
    [83]Ciba J., Zolotajkin M., Kluczka J., Loska K., Cebula J., Comparison of methods for leaching heavy metals from composts. Waste Manage,2003,23(10):897-905
    [84]Ure A.M., Quevauviller P.H., Muntau H., et al. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of European Communities. Int. J. Environ. Anal.Chem,1993,51(1-40):135-151
    [85]Zhou D. M., Chen H. M., Hao X. Z.,et al. Fractionation of heavy metals in soils as affected by soil types and metal load quantity. Pedosphere,2002,12(4):309-319
    [86]Thomas R.P., Ure A.M., Davidson C.M.,et al. Three-stage sequential extraction procedure for the determination of metals in river sediments. Anal. Chim. Acta,1994, 286(3):423-429
    [87]Perez-Cid B., Lavilla I., Bendicho C.. Comparison between conventional and ultrasound accelerated Tessier sequential extraction schemes for metal fractionation in sewage sludge. J. Anal. Chem,1999,363(7):667-672
    [88]Alvarez E.A., Mochon M.C., Sanchez J.C.J., et al. Heavy metal extractable forms in sludge from waste-water treatment plants. Chemosphere,2002,47(7):765-775
    [89]Kuylenstierna J.C.I., Cambridge H., Cinderby S., et al. Terrestrial ecosystem sensitivity to acidic deposition in developing countries. Water Air Soil Pollut.,1995,85(4): 2319-2324
    [90]张林波,曹洪法,沈英娃等.苏、浙、皖、闽、湘、鄂、赣7省酸沉降对农业危害.环境科学,1998,18(1):12-15
    [91]de Vries, M.P.C.. Investigations on twenty Australian sewage sludges-their evaluation by means of chemical analysis. Fertilizer Res,1983,4(1),75-87
    [92]FWR, UK Sewage Sludge Survey. England:WRc, Medmenham,1999,1996-1997
    [93]Mclaren R.G., Clouston S.D., Clucas L.. Concentrations and forms of metals in a range of New Zealand biosoilds. In:Wang H., Tomer M. (Eds.), Function and Management of Plants in Land Treatment Systems. Proceedings of the New Zealand Land treatment collective No.19, New Zealand Land Treatment Collective, Christchurch,1999,37-46
    [94]Kistler R.C., Widmer F., Brunner P.H.. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge. Environ. Sci. Technol,1987,21(7):704-708
    [95]Bibak A. Cobalt. Copper and manganese adsorption by aluminum and iron oxides and humic acid. Commun. Soil Sci. Plant Anal,1994,25 (5):3229-3239
    [96]Walter I, Cuevas G. Chemical fractionation of heavy metals in soil amended with repeated sewage sludge application. Science of Total Environmental,1995,226(11): 113-119
    [97]张俊民,蔡凤岐,何同康.中国的土壤.第一版.北京:商务印书馆,1996
    [98]Weisz M., Polyak K., Hlavay J.. Fractionation of elements in sediment samples collected in rivers and harbors at Lake Balaton and its catchment area. Microchem. J.,2000, 67(1-3):207-217
    [99]Tuzen M.. Determination of trace metals in the River Yesilirmak sediments in Tokat, Turkey using sequential extraction procedure. Microchem. J.2003,74(1):105-110
    [90]Kazi T.G., Jamali M.K., Kazi G.H., et al. Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test. Anal. Bioanal. Chem,2005,383(2):297-304
    [101]Chen C.L., Lo S.L., Kuan W.H., et al. Stabilization of Cu in acid-extracted industrial sludge using a microwave process. J. Hazard. Mater,2005,123(1-3):256-261
    [102]Lu G.Q., Low J.C.F., Liu C.Y., et al. Surface area development of sewage sludge during pyrolysis. Fuel,1995,74(3):344-348

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700