用户名: 密码: 验证码:
壳聚糖CpG-ODN纳米粒的制备及其免疫增强活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对基因的认识和研究,功能基因不断涌现。大量研究事实表明含CpG基序的DNA或人工合成的CpG-ODN是一种强有力的免疫刺激剂,可激活多种免疫细胞,诱导分泌以IL-12为主的Th1型细胞因子,诱导Th1型免疫应答,在抗肿瘤、抗感染、抑止过敏反应、作为免疫佐剂等方面得到广泛应用和研究。CpG核酸要发挥激活功能,必须作用于细胞内的Toll样受体-9(TLR-9)。然而,核酸不仅在体内过程中容易被酶解,而且由于本身带负电荷,不易结合到带负电的细胞表面,因此CpG核酸是否能被细胞有效摄取很大程度上影响其免疫激活功能,基因传递成为其发挥作用的关键环节。壳聚糖(chitosan,CS)具有良好的生物相容性、生物可降解性以及无毒性,近几年被用作基因载体材料已成为研究热点。研究显示,CS纳米粒能有效传递基因,结合效应细胞,提高基因的转染及表达效率。然而迄今未见用CS作为材料制备纳米粒运载CpG-ODN用于正常小鼠体内研究其免疫增强活性的报道,本论文将构建CS-CpG-ODN基因纳米粒,初步探究其理化性质及其它相关特性,继而免疫接种于正常小鼠体内研究免疫活性,期望获得更强烈的免疫刺激效应,以证实CS基因纳米粒可促进CpG-ODN发挥免疫刺激作用。本论文完成的研究工作主要包括以下三个方面:
     1.用复凝法制备CS-CpG-ODN基因纳米粒,紫外分光光度法和水合茚三酮法分别测试CpG-ODN的包封率和载药量,并通过单因素分析考察制备过程中几种因素对纳米粒包封率的影响。实验结果表明,CS-CpG-ODN基因纳米粒平均包封率为90.67%,平均载药量为38.78%,均符合规定。在一定范围内,各因素对包封率影响较小。
     2.在透射电子显微镜下观察纳米粒形态,初步统计粒径分布范围,激光粒度分析仪测定纳米粒粒径、表面电位等。采用3%琼脂糖凝胶电泳法进行阻滞试验,验证纳米粒复合物是否形成及其带电电性,开展酶保护试验以考察纳米粒抗酶特性。以L-02细胞和HepG2细胞作为模型细胞,研究CS纳米粒的细胞转染特性。结果显示,纳米粒得以形成,在透射电镜下观察呈近似球形,大小较均一,粒径主要分布在75-100nm之间,粒度分析仪测试粒径均值为93.7nm,纳米粒带正电荷,表面电位均值为20.2mV。纳米粒载体能有效抵抗高于生理条件下浓度核酶的裂解作用,保护CpG核酸不被酶解,转染实验结果显示,该纳米粒能被摄入至L-02细胞和HepG2细胞内。
     3.小鼠随机分成4组,包括对照组、CS组、CpG-ODN组和CS-CpG-ODN组,采用后大腿肌肉注射方式免疫接种小鼠,两周后同法加强免疫一次。末次免疫两周后,处死小鼠,取脾脏供细胞免疫分析用,收集抗凝全血检测T细胞亚群,收集细胞上清和血清以测定免疫球蛋白及细胞因子。MTT法进行脾淋巴细胞增殖试验,流式细胞术分析外周血T淋巴细胞亚群CD4+、CD8+各自百分比以及CD4+/CD8+比值,ELISA法测定细胞上清IFN-γ、IL-4分泌水平,检测血清中IL-2、IL-12水平以及IgG水平。研究结果表明,小鼠经免疫接种后,CS组和CpG-ODN组显示出增强的T淋巴细胞增殖效应,表明T细胞免疫应答被激发;还表明外周血中CD4+T细胞百分比和CD4+/CD8+比值升高,细胞上清IFN-γ分泌增多,血清中IL-2、IL-12及IgG水平升高。于CS-CpG-ODN组,这些效应和变化表现更为明显,此外,IL-4分泌显著减少。
     本论文采用复凝法成功构建了CS-CpG-ODN基因纳米粒,具有较小的粒径,获得了满意的包封率和载药量,具备较强保护CpG核酸效能,该带正电的纳米粒能够被细胞摄取;首次将CS-CpG-ODN基因纳米粒载体运用于正常小鼠体内研究免疫活性。IL-2、IL-12和IFN-γ代表Th1型细胞因子,IL-4代表Th2型细胞因子,CpG核酸经CS纳米粒包载后,加强了它的免疫刺激作用尤其是诱导Th1型免疫应答的能力。通过调节CD4+CD8+T细胞比例,重建T细胞免疫,也可能提高免疫功能。因此,CS纳米粒能有效递送并促进CpG-ODN发挥作用,研究结果对CpG-ODN的基因治疗提供重要的参考价值。
Many functional genes emerge prominently one after another along with the never-ending recognition and study on genes. Bacterial DNA and synthetic oligdeoxynucleotides (ODN) with motifs consisting of a central unmethylated CpG dinucleotides are immunostimulatory and can activate many kinds of immunological cells, and trigger Th1-polarized immune response. Owing to their strong immunostimulatory activity, a number of CpG-ODN are at various stages of preclinical and clinical evaluation as anti-tumor, antiviral, anti-anaphylaxis agents and as adjuvant in immunotherapy. To elicit immunostimulatory activity CpG-ODN need to be internalized by cells and act on Toll-like receptor-9. However, nucleic acid inclines to degradation in face of nuclease in vivo, besides, electronegative nucleic acid appears to be hard to bind to cell surface loading negative charge, so delivery of CpG-ODN is the critical step for CpG-ODN activity. Chitosan(CS), a kind of biodegradable, biocompatible and innoxious cationic polymer, has been popularly investigated as gene carrier. It is known that chitosan gene nanoparticles can be good for delivering genes and bind to effector cells, and enhance transfection efficiency of genes. Little is known as to the delivery of CpG-ODN using chitosan nanoparticles so far, in the current study, we therefore prepared CS-CpG-ODN nanoparticles, initially investigated their physico-chemical properties and other characteristics, then mice were immunized to research the immunocompetence in vivo, we hypothesized that the‘protected and controlled’gene delivery of CpG-ODN would enhance the immunostimulating effect of CpG-ODN in mice. The main contents are as follows in this paper:
     1. CS-CpG-ODN nanoparcles were prepared by complex coacervation. The nanoparcles entrapment efficiency and loading capacity were detected by UV and ninhydrin assay respectively. Meanwhile, some factors of effecting entrapment efficiency were investigated in preparation process. The results obtained indicated that the nanoparticles showed 90.67% of mean entrapment efficiency and 38.78% of mean loading capacity respectively. To some extent, there was less effect of each factor to entrapment efficiency.
     2. Size distribution and surface morphology of the particles were identified by transmission electron microscopy (TEM) measurements. The mean diameter, polydispersity, as well as mean zeta potential of nanoparticles were determined by a particle size / zeta potential analyzer. Gel retardation assay of 3% agarose was used to test the nature of surface charge and formed complexes, enzyme protection assay was carried out to investigate the inhibition of degradation by degrading enzymes. L-02 cells and HepG2 cells were used as model cells to study the transfection activity of nanoparcles. As seen in the electron microscope figure, The morphology of nanoparticles exhibited spherical shape, and the size was uniform with a size distribution range of 75-100nm on the whole. The mean diameter was 93.7 nm, the mean zeta potential was +20.2mV. The complexes could effectively bind CpG-ODN and protect it from nuclease degradation, the result of cellular transfection showed that these gene nanoparticles could be taken in by L-02 cells and HepG2 cells.
     3. All mice were randomized into four groups: control group, CS group, CpG-ODN group and CS-CpG-ODN group,injected into posterior thigh muscles, then were given another shot after 2 weeks using the same formulation. Mice were killed two weeks later after secondary immunization, spleens were collected for cellular immunity analysis, blood serum was harvested and assayed for IL-2, IL-12 and IgG, cellular supernatant was extracted and assayed for IL-4 and IFN-γ, heparinized blood was gained for T lymphocyte subsets analysis. After that, Splenic lymphocytes proliferation was detected by MTT method, levels of IL-4, IFN-γ, IL-2, IL-12 and IgG were measured by ELISA. T lymphocyte subsets CD4+CD8+ from peripheral blood were analyzed by flow cytometry. After in vivo immunization, CS group and CpG-ODN group showed enhanced proliferative effects of T lymphocytes, increased percentages of CD4+ T cells and CD4+/CD8+ ratios, high levels of IFN-γin cellular supernatant and IL-2, IL-12, IgG in serum. These cases in CS-CpG-ODN group appeared more remarkable, in addition, evidently reduced level of IL-4 was observed in cellular supernatant.
     The delivery system of CS-CpG-ODN nanoparcles was successfully made in this paper, and favourable entrapment efficiency, loading capacity and effect of enzyme protection were obtained. Furthermore, the nanoparcles result in effective cell uptake. Increased amounts of IL-2, IL-12 and IFN-γTh1 cytokines compared to decreased amount of IL-4 Th1 cytokine are believed to support the strongly biased towards Th1 response.The immunoenhancing potency could be related to availably re-establishing immunologic balance of T cells by adjusting the percentages of CD4+CD8+ T cells. The results in our work demonstrate for the first time the delivery system of CS-CpG-ODN nanoparcles may be associated with the strengthened immunostimulating effect of CpG-ODN, and then have an important base on CpG-ODN used for gene therapy.
引文
1. Das S, Yu L, Gaitatzes C, et al. Biology’s new Rosetta stone[J]. Nature, 1997, 385(6611): 29-30.
    2.埃特尔H C J主编,李琦涵,刘龙丁,车艳春主译. DNA疫苗[M]. 2005,第1版:34-116.
    3. Diwan M, Tafaghodi M, Samuel J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres[J]. J Control Release, 2002, 85(1-3): 247-262.
    4. Weiner G J, Liu H M, Wooldridge J E, et al. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization[J]. Proc Natl Acad Sci USA, 1997, 94(10): 833-837.
    5. Davis H L, Weeratna R, Waldschmidt T J, et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with hepatitis B surface antigen[J]. Immunol, 1998, 160(2): 870-876.
    6. Kim S K, Ragupathi G, Cappello S, et al. Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates[J]. Vaccine, 2000, 19: 530-537.
    7.李岩,张卓然,杨淑凤等. CpG ODN对呼吸道合胞病毒诱导的哮喘小鼠动物模型的免疫治疗作用[J].中国微生态学杂志,2005,17(2):94-96.
    8.杨淑凤,张卓然,李岩等. CpG-ODN对卵清蛋白致敏的哮喘小鼠模型的免疫调节作用研究[J].大连医科大学学报,2005,27(2):88-90.
    9. Wolff J A, Malone R W, Williams P, et al. Direct gene transfer into mouse muscle in vivo [J]. Science, 1990, 247: 1465-1468.
    10. Du B H. Gene Therapy: Principle and Practice [M]. Tianjin: Tianjin Science and Technology Press, 1999, 90-91.
    11. Gregoriadis G, Saffie R, de Souza J B. Liposome-mediated DNA vaccination[J].FEBS Letter, 997, 402(2-3): 107-110.
    12.张红菱,李媛媛,李晓波等.壳聚糖纳米载体提高抗乙肝免疫核糖核酸免疫活性的研究[J].中国医院药学杂志,2005,25(8):693-695.
    13.张程亮,孙纳.壳聚糖用于抗肿瘤治疗的研究进展[J].中国药房,2005,16(7):549-551.
    14. Monck M A, Mori A, Lee D, et al. Stabilized plasmid-lipid particles: pharmacokinetics and plasmid delivery to distal tumors following intravenous injection [J]. J Drug Target, 2000, 7: 439-452.
    15. Maurer N, Mori A, Palmer L, et al. Lipid-based systems for the intracellular delivery of genetic drugs [J]. Mol Membr Biol, 1999, 16:129-140.
    16. Li S, Huang L. In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes [J]. Gene Ther, 1997, 4: 891-900.
    17. Brown M D, Schatzlein A G, Uchegbu I F. Gene delivery with synthetic (non-viral) carriers [J]. Int J Pharm, 2001, 229: 1-21.
    18. Luo D, Saltzman W M. Synthetic DNA delivery systems [J]. Nat Biotechnol, 2000, 18: 33-37.
    19. Choi Y H, Liu F, Park J S, et al. Lactose-poly-(ethylene glycol)-grafted poly-L-lysine as hepatoma cell targeted gene carrier[J]. Bioconjug Chem, 1998, 9(6): 708-718.
    20. Boussif O, Lezoualc’h F, Zanta M A, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine[J]. Proc Natl Acad Sci USA, 1995, 92 (16): 7297-7301.
    21. Haensler J, Szoka Jr F C. Polyamidoamine cascade poly-mers mediate efficient transfection of cells in culture[J]. Bioconjug Chem, 1993, 4 (5): 372-379.
    22. Lim Y B, Han S O, Kong H U, et al. Biodegradablepolyester, poly[alpha- (4-aminobutyl)-L-glycolic acid], as nontoxic gene carrier[J]. Pharm Res, 2000, 17 (7): 811-816.
    23. Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan inmice[J]. Biomaterials, 1999, 20 (2) : 175-182.
    24. Rao S B, Sharma C P. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential[J]. J Biomed Mater Res, 1997, 34 (1): 21-28.
    25. Aspden T J, Mason J D, Jones N S, et al. Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in humanturbinates and volunteers[J]. J Pharm Sci, 1997, 86 (4): 509-513.
    26. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives[J]. Biomaterials, 1997, 18 (7): 567-575.
    27. Dodane V, Vilivalam V D. Pharmaceutical applications of chitosan[J]. Pharm Sci Technol Today, 1998, 1 (6): 246-253.
    28. Roy K, Mao HQ, Huang SK, et al. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy[J]. Nat Med, 1999, 5(4): 387-391.
    29. Mao HQ, Roy K, Troung L, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency[J]. J Control Rel, 2001, 70(3): 399-421.
    30. Richardson S C, Kolbe H V, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA[J]. Int J Pharm, 1999, 178(2): 231-243.
    31. Crystal R G. The gene as the drug[J]. Nat Med, 1995, 1 (1): 15-17.
    32. Pouton C W, Seymour L W. Key issues in non-viral gene delivery[J]. Adv Drug Deliv Rev, 1998, 34 (1): 3-19.
    33. Stein C A, Subasinghe C, Shinozuka K, et al. Physicochemical properties of phosphorothioate oligodeoxynucleotides[J]. Nucleic Acids Res, 1988, 16: 3209- 3021.
    34. Stein C A. Phosphorothioate oligodeoxyribonucleotides: questions of specificity [J]. Trends Biotechnol, 1996, 14:147-149.
    35. Lipford G B, Sparwasser T, Zimmermann S, et al. CpG-DNA-mediated transientlymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses[J]. J Immunol, 2000, 165: 1228-1253.
    36. Bodmeier R, Chen H G, Paeratakul O. A novel approach to the oral delivery of micro-or nanoparticles [J]. Pharm Res, 1989, 6(5): 413-417.
    37. Tian X X, Groves M J. Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccae in chitosan nanoparticles[J]. J Pharm Pharm acol, 1999, 51 (2): 151-157.
    38. Shikata F, Tokumitsu H, Lchikawa H, et al. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer[J]. Eur J Pharm Biopharm, 2002, 53 (1): 57-63.
    39. Tokumitsu H, Hiratsuka J, Sakurai Y, et al. Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan comp lex nano-particles: in vivo growth suppression of experimental melanoma solid tumor[J]. Cancer Lett, 2000, 150 (2): 177-182.
    40.国家药典委员会.中华人民共和国药典(二部)[Z].北京:化学工业出版社,2005,附录181.
    41. Gref R,Minamitake Y,Peracchia MT,et al. Biodegradable long-circulating polymeric nanospheres [J]. Science, 1994, 263(5153): 1600-1603.
    42.宗莉,陈伶俐,张淑芸等.壳聚糖纳米粒作为基因载体的研究:制备,特征和对DNA的保护[J].中国药科大学学报,2005,36(6):526-530.
    43. MacLaughlin I C, Mumper R J, Wang J, et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery[J]. J Control Release, 1998, 56: 259-272.
    44. Curotto E, Aros F. Quantitative determination of chitosan and the percentage of free amino groups[J]. Anal Biochem, 1993, 211 (2) : 240-241.
    45. Smith J G, Walzem R L, German J B. Liposomes as agents of DNA transfer[J]. Biochim Biophys Acta, 1993, 1154(3-4): 327-340.
    46. Anderson W E. Human gene therapy[J]. Science, 1992, 256: 808-813.
    47. Hug P, Sleight R G. Liposomes for the transformation of eukaryotic cells[J]. Biochim Biophys Acta, 1991, 1097(1): 1-17.
    48. Ledley F D. Non-viral gene therapy[J]. Current Opinion in Biotechnology, 1994, 5: 626-636.
    49. Mulligan R C. The basic science of gene therapy[J]. Science, 1993, 260: 926-932.
    50. Legendre J Y, Szoka F C Jr. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes[J]. Pharm Res, 1992, 9(10): 1235-1242.
    51. Mumper R J,Wailg J J.,Claspell J M,et al. Proceedings of the International SymPosium on Controlled Release Bioactive Materials,1995,22: 178-179.
    52. Roy K, Mao H Q, Leong K W. Proceedings of the International SymPosium on Controlled Release Bioactive Materials,1997,24: 673.
    53.陆彬主编.药物新剂型与新技术[M]. 2005,第2版:813-814.
    54.何文,匡长春,张洪等.壳聚糖的分子参数对载药壳聚糖纳米粒体外性质的影响研究[J].中国药学杂志,2005,40(6):438-440.
    55.刘世伟,孙逊,聂宇等.载基因壳聚糖纳米粒的制备及其相关性质的初步研究[J].华西药学杂志,2004,19(6):409-411.
    56.方华丰,周宜开.壳聚糖微球的研究进展[J].国外医药-合成药制剂分册,1999,20(5):315-317.
    57.李雁,袁宏银.壳聚糖纳米粒作为基因治疗载体的研究进展[J].医学新知杂志,2005,15(1):45-48.
    58.黄伟,崔光华,贺俊峰等.壳聚糖纳米粒用作基因递送载体的初步研究[J].药学学报. 2002,37(12):981-985.
    59. Lavertu M, Methot S, Tran-Khanh N, et al. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation[J]. Biomaterials, 2006, 27(27): 4815-4824.
    60. Koping-Hoggard M, Tubulekas I, Guan H, et al. Chitosan as a nonviral gene deliverysystem. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo[J]. Gene Ther, 2001, 8(14): 1108–1121.
    61. Aiba S. Studies on chitosan: 4-Lysozymic hydrolysis of partially N-acetylated chitosans[J]. Int J Biol Macromol, 1992, 14(4): 225-228.
    62. Huang M, Fong C W, Khor E, et al. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation[J]. J Control Release, 2005, 106(3): 391-406.
    63. Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency[J]. Biomaterials, 2001, 22(15): 2075-2080.
    64.李大伟,张海玲,马洁等.壳聚糖载基因纳米粒子的研究[J].生物医学工程学杂志,2005,22 (6):1171-1176.
    65. Maclaughlin F C, Mumper R J, Wang J, et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery[J]. J Control Rel, 1998, 56 (123): 259-272.
    66. Dastan T, Turan K. In vitro characterization and delivery of chitosan-DNA microparticles into mammalian cells[J]. J Pharm Pharm Sci, 2004, 7(2): 205-214.
    67. Bird A P. CpG islands as gene markers in the vertebrate nucleus[J]. Trends Genet, 1987, 3: 342-344.
    68. Kumar A, Yang Y L, Flati V, et al. Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB[J]. EMBO J, 1997, 16: 406-416.
    69. Dempsey P W, Allison M E, Akkaraju S, et al. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity[J]. Science, 1996, 271:348-350
    70. Bauer S, Kirschning C J, Hacker H, et al. Humen TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition[J]. Proc Natl Acad SciUSA, 2001, 98: 9237-9242.
    71.李忠明主编.当代新疫苗[M]. 2001,第1版:96-97.
    72. Hemmi H, Takeuchi O, Kawai, et al. A Toll-like receptor recognizes bacterial DNA[J]. Nature, 2000, 408: 740-745.
    73. Krieg A M,Yi A K,Matson S,et al. CpG motifs in bacterial DNA trigger direct B-cell activation[J]. Nature,1995,347(6522):546-549.
    74. Sparwasser T,Vabulas R M,Villmow B,et al. Bacterial CpG-DNA activates dendritic cells in vivo:T helper cell-independent cytotoxic T cell responses to soluble proteins[J]. Eur J Immunol,2000,30(12):3591–3597.
    75. Stacey K J , Sester D P , Sweet M J , et al. Macrophage activation by immunostimulatory DNA[J]. Curr Topics Microbiol Immunol,2000,247:41-58.
    76. Yamamoto S,Yamamoto T,Shimada S,et al. DNA from bacteria,but not from vertebrates,induces interferons,activates natural killer cells and inhibits tumor growth[J]. Microbiol Immunol,1992,36(9):983-997.
    77. Wagner M,Poeck H,Jahrsdoerfer B,et al. IL-12p70 dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG ODN[J]. J Immunol,2004,172(2):954-963.
    78. Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens[J]. J Exp Med, 2001, 194: 863-870.
    79. Yi A K, Klinman D M, Martin T L, et al. Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway[J]. J Immunol, 1996, 157: 5394-5402.
    80. Redford T W, Yi A K, Ward C T, et al. Cyclosporin A enhances IL-12 production by CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides[J]. J Immunol, 1998, 161:3930-3935.
    81. Cowdery J S, Chace J H, Yi A K, et al. Bacterial DNA induces NK cells to produceIFN- in vivo and increases the toxicity of lipopolysaccharides[J]. J Immunol, 1996, 156: 4570-4575.
    82. Sun S, Zhang X, Tough D F, et al. Type I interferon-mediated stimulation of T cells by CpG DNA[J]. J Exp Med, 1998, 188: 2335-2342.
    83. Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger[J]. Adv Immunol,1999, 73: 329-368.
    84.王建中主编.临床流式细胞分析[M].上海科学技术出版社,2005,8(1):514-515.
    85.殷翔. CpG寡核苷酸的免疫刺激作用及其在疫苗中的应用[J].国外医学药学分册,2004,31(4):222-225.
    86.竺国芳,赵鲁杭.几丁寡糖和壳寡糖的研究进展[J].中国海洋药物,2000,19(1):43-46.
    87. Seo W G, Pae H O, Kim N Y, et a1. Synergistic cooperation between Water-soluble chitosan oligomers and interferon-gama for induction of nitric Oxid Synthesis and tumoricidal activity in murine peritoned macrophages [J]. Cancer Letter, 2000, 159(2): 189-195.
    88. Maeda Y,Kimura Y. Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphacytes in sarcoma 180-bearing mice[J]. J Nutr, 2004, 134(4): 945-950.
    89. Stepherd V L, Lee Y C, Schlesinger P H, et al. L-Fucoseterminated glycoconjugates are recognized by pinocytosis receptors on macrophages[J]. Proc Natl Acad Sci USA, 1981, 78: 1019-1022.
    90. Warr G A. A macrophage receptor for (mannose/glucosamine)- glycoproteins of potential importance in phagocytic activity[J]. Biochem Biophys Res Commun, 1980, 93: 737-745.
    91.龚非力主编.医学免疫学[M]. 2003,第1版:119-120.
    92. Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/ chitosan complexes[J]. Biochim Biophys Acta , 2001 , 1514(1): 51.
    93. Nelson N. Structure and pharmacology of the proton-ATPases[J]. Trends Pharmacol Sci , 1991 , 12(2): 71.
    94. Maxfield F R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts[J]. J Cell Biol, 1982, 95(2. Pt 1): 676.
    95. Erbacher P, Zou S, Bettinger T, et al. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability[J]. Pharm Res, 1998, 15(9): 1332-1339.
    96. Kumar M N, Muzzarelli R A, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives[J]. Chem Rev, 2004, 104(12): 6017-6084.
    97. Lim B O, Yamada K, Nonaka M, et al. Dietary fibers modulate indices of intestinalimmune function in rats[J]. J Nutr,1997, 127(5): 663-667.
    98.王健,祁新兰. BSA系统检测慢性乙肝患者T淋巴细胞亚群[J].皖南医学院学报,1997,16(1):5-6.
    99.龚燕锋.免疫佐剂与壳聚糖[J].中国生化药物杂志,2004,25(6):374-376.
    100.曹俊,周南进.壳聚糖抗肿瘤作用的研究进展[J].中国生化药物杂志,2005,26(2):126-127.
    1. SinhaV R, SinglaA K, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drug[J]. Int J Pharm, 2004, 274: 1.
    2. Roller S, Covill N. The antimicrobial properties of chitosan in mayonnaise and mayonnaise-based shrimp salads[J]. J Food Prot, 2000,63 (2): 202-209.
    3. Sugamori T, Iwase H, Maeda M , et al. Local hemostatic effects of microcrystalline partially deacetylated chitin hydrochloride[J]. J Biomed Mater Res, 2000, 49 (2): 225-232.
    4. Roy K, Mao H Q, Huang S K, et al. Oral Gene Delivery with Chitosan-DNA Nanoparticles Generates Immunologic Protection in A Murine Model of Peanut Allergy [J]. Nat Med, 1999, 5 (4): 387-391.
    5. MacLaughlin F C, Mumper RJ, Wang J J, et al. Chitosan and Depolymerized Chitosan Oligomers as Condensing Carriers for in Vivo Plasmid Delivery [J]. J Controlled Release, 1998, 56(123): 259-272.
    6. Richardson S C W, Kolbe H J V, Duncan R. Potential of Low MolecularMass Chitosan as A DNA Delivery System: Biocompatibility, Body Distribution and Ability to Complex and Protect DNA [J]. Int J Pharm, 1999, 178 (2): 231-243.
    7. Chew J L, Wolfowicz C B, Mao H Q, et al. Chitosan Nanoparticles Containing Plasmid DNA Encoding House Dust Mite Allergen, Derp 1 for Oral Vaccination in Mice [J]. Vaccine, 2003, 21 (21-22): 2720-2729.
    8.张红菱,李媛媛,李晓波等.壳聚糖纳米载体提高抗乙肝免疫核糖核酸免疫活性的研究[J].中国医院药学杂志,2005,25(8):693-695.
    9.于永,郑青,董全江等.壳聚糖-醋酸溶液对皮肤浅表真菌抗菌作用的实验研究[J].中国海洋药物杂志,2005,24 (3):58-60.
    10.高怀生,黄是是,张世达等.碘壳聚糖生物敷料的制备[J] .中国药学杂,1996,31 (5):280-282.
    11.何淑雅,王芳宇,李邦良等.壳聚糖碘液的制备及抗菌性的研究[J].衡阳医学院学报,2001,29 (4):359-360.
    12.王科兵,肖激文,王芳宇等.壳聚糖碘液体外抗真菌活性研究[J].解放军药学学报,2002,18 (6):372-373.
    13.董瑛.甲壳素纤维抗菌织物的染整工艺[J].印染,2003,29 (2):72.
    14.邵健,杨宇民,姚成.低聚氨基葡萄糖的吸湿、保湿和抑菌性质[J].中国海洋药物,2000,4:25-27.
    15.谢勇,周南进,李弼民等.不同浓度和pH值的壳聚糖对幽门螺杆菌抑菌作用的影响[J].中华微生物学和免疫学杂志,2002,22 (1):13.
    16.谢勇,周南进,李弼民等.壳聚糖对幽门螺杆菌体外抑菌作用的影响[J].中华微生物学和免疫学杂志,2004,24 (11):870-873.
    17. Bondarenko V M, Chervinets V M, Vorob’ev A A. Role of persisting opportunistic bacteria in the pathogenesis of the gastric and duodenum ulcer[J]. Zh Mikrobiol Epidemiol Immunobiol, 2003, 1: 127.
    18.任林,陈超群,李邦良等.甲壳低聚糖对小鼠肠道正常菌群的影响[J].南华大学学报·医学版,2001,29 (1):4-5.
    19. Jumaa Muhannad , Furkert Franz H , Muller Bernd W. A new lipid emulsion formulation with high antimicrobial efficacy using chitosan[J]. European Journal of Pharmaceutics and Biopharmaceutics, 53 (1): 115-123.
    20. Fankhauser , Mueller , Bernd W. Antimicrobial chitosan emulsion formulation[J]. Eur Pat Appl, 2002, 9: 12.
    21.邓婧,符大勇,宋文斌等.壳聚糖对几种口腔常见致病菌的体外抑制作用[J].上海口腔医学,2005,14 (1):74-77.
    22. Zhu Lin, Xu Peicheng, Zhang Jianzhong. Experimental studies on bacteriostasis of heat-cured polyacrylic resin denture base when added chitosan[J]. Fudan Xuebao , Yixueban, 2004, 31(4): 411-413.
    23. Ikinei G, Senel S, Akincibay H , et a1. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis[J]. Int J Pharm, 2002, 20(1): 121-127.
    24. Cboi B K, Kim KY, Yo Y J, et a1. In vitro antimierebial activity of a chitoligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mulans[J]. Int J Antimicreb Agents, 2001, 18(6): 553-557.
    25. Chen C S , Liau W Y, Tsai G J. Antibacterial effect of N-sulfonated and N-sulfobenzoyl chitosan and its application to oyster preservation [J]. J Food Prot, 1998, 61: 1124-1128.
    26. Fang S W, Li C F , Shin D C. Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat [J]. J Food Prot, 1994, 56: 136-140.
    27. Jung B, Kim C, Choi K, et al. Preparation of amphiphilic chitosan and their antimicrobial activities [J]. J Appl Polym Sci, 1999, 72: 1713-1719.
    28. Papineau A M , Hoover D G, Knorr D, et al. Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure [J]. Food Biotechnol, 1991, 5 (1): 45-47.
    29. Sudarshan N R , Hoover D G, Knorr D. Antibacterial action of chitosan [J]. Food Biotechnol, 1992, 6 (3): 257-272.
    30. Cuero R G, Osuji G, Washington A. N-Carboxymethylchitosan inhibition of aflatoxin production: role of zinc [J]. Biotechnol Lett, 1991, 13 (6): 441-444.
    31.郑连英,朱江峰,孙昆山.壳聚糖的抗菌性能研究[J].材料科学与工程,2000, 18 (2):22-24.
    32.刘保友,张广民,张伟等.壳聚糖抑制细菌作用研究[J].山东农业科学,2006,8(2):68-69.
    33.丁诚实,沈业寿,彭世奇.羧甲基壳聚糖抗衰老作用的研究[J].实用老年医学,2006,20(3):171-173.
    34.李文立,陈壁锋,杨杏芬等.壳聚糖延缓衰老作用的实验研究[J].现代临床医学生物工程学杂志,2003,9(3):164-165.
    35. Malette W G, William G, Quigley Jr , et al . Method of achieving hemostasis[P] , USP 4394373, 1983-07-19.
    36.杨健,田丰,陈世谦等.壳聚糖的止血机理和应用[J].国外医学生物医学工程分册,2001,24(2):77-79.
    37. Klokkevold P R, Subar P, Fukayama H. Effect of chitosan on lingual hemostasis in rabbits with platelet dysfunction induced by epoprostenol[J]. J Oral Maxillofac Surg , 1992, 50: 41-45.
    38.王秀文,刘占龙,金桂菊等.胶原-壳聚糖冻干海绵的制备及其抑制作用[J].中国生化药物杂志,2002,23(4):187-189.
    39. Su C H, Sun C S, Juan S W, et al. Development of fungal mycelia as skin substitutes: effects on wound healing and fibroblast [J]. Biomaterials,1999, 20 (1): 61-68.
    40.何静.壳聚糖与伤口愈合[J].徐州医学院学报,2001,21(3):255-258.
    41.张伟.几丁质及其衍生物促进创面愈合的作用[J] .中国矫形外科杂志,2000,7(3):277-280.
    42. Okamoto Y, Shibazaki K, Minami S, et al . Evaluation of chitin and chitosan on open wound healing in dogs[J] . J Vet Med Sci, 1995, 57(5): 851-854.
    43. Bartone F F, Adickes E D. Chitosan: effects on wound healingin urogenital tissue: preliminary report [J]. J Urol, 1988,140(5pt2): 1134-1137.
    44.许加超,陈新,武智勇.甲壳质对动物皮肤创伤促愈作用的研究[J] .中国海洋药物,1998,66(2):22-25.
    45.蒋挺大.壳聚糖[M] .化学工业出版社,2001:57.
    46.刘安军,高献礼,李琨.壳聚糖抗疲劳作用的初步研究中国海洋药物杂志[J]. 2005,24(1):56-59.
    47.陈筱春,文质君,熊静宇等.壳聚糖对运动大鼠血浆自由基的影响[J].中国康复医学杂志,2003,(18): 156.
    48. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation and treatment of high blood cholesterol in adults (adult treatment panelⅢ) [J]. JAMA, 2001, 285: 2486-2497.
    49.鄢盛恺.关于临床血脂测定的建议[J].中华检验医学杂志,2003,26 (3):182-184.
    50. Jung K L , Soo U K. Jung H K, et al. Modification of chitosan to improve its hypocholesterolemic capacity[J]. Biosci Biotechnol Biochem, 1999, 63 (5): 833-839.
    51. Acton S L, Kozarsky K F, Rigotti A. The HDL receptor SR-B I: a new therapeutic target for atherosclerosis[J]. Mol Med Today , 1999, 5 (12): 518-524.
    52. Ylitalo R, Lehtinen S, Wuolijoki E, et al. Cholesterol lowering properties and safety of chitosan [J]. Arzneimittel forschung, 2002, 52 (1): 1-7.
    53.郑铁生.临床生物化学检验[M].北京:中国医药科技出版社,2004:196-197.
    54.季君晖,李红梅.壳聚糖吸附胆固醇的研究[J].天然产物研究与开发,1999,11 (6):54-56.
    55.郑铁生,王亚娜,宗爱萍.壳聚糖对实验大鼠降血脂作用的初步研究[J].现代检验医学杂志,2005,20(6):26-27.
    56.刘莹,柳红.壳寡糖对人结肠癌LoVo细胞株生长的影响[J].徐州医学院学报,2002,22 (2):148-151.
    57. Hasegawa M, Yagi K, Iwakawa S, et al. Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells[J]. Jpn J Cancer Res, 2001, 92 (4): 459-466.
    58. Pae H O , Seo W G, Kim N Y,et al . Induction of granulocytic differentiation in acute promyelocytic leukemia cells (HL-60) by water-soluble chitosan oligomer[J]. Leuk Res, 2001, 25(4): 339-346.
    59.王大新,吴宗贵,周斌等.壳多糖抑制兔主动脉平滑肌细胞增殖机制的探讨[J] .第二军医大学学报,2001,22 (2):159-160.
    60. Jeong H J , Koo H N , Oh E Y, et al . Nitric oxide production by high molecularweight water-soluble chitosan via nuclear factor-kappa B activation[J]. Int J Immunopharmacol, 2000, 22(11): 923-933.
    61. Mori T , Irie Y, Nishimura S I , et al . Endothelial cell responses to chitin and its derivatives[J]. J Biomed Mater Res, 1998, 43(4): 469-472.
    62. Roy S ,Bayly C I ,Gareau Y, et al . Maintenance of caspase-3 proenzyme dormancy by an intrinsic“safety catch”regulatory tripeptide [J]. Proc Natl Acad Sci USA, 2001, 98(11): 6132-6137.
    63.竺国芳,赵鲁杭.几丁寡糖和壳寡糖的研究进展[J] .中国海洋药物,2000,19 (1):43-46.
    64. Seo W G, Pae H O , Kim N Y, et al . Synergistic cooperation between water-soluble chitosan oligomers and interferon-gama for induction of nitric Oxid Synthesis and tumoricidal activity in murine peritoned macrophages[J]. Cancer Letter , 2000, 159(2): 189-195.
    65. Lee DY, Choi I S , Han J H , et al . Chitosan and D-glucosamine induceexpression of Th1 cytokine genes in porcine spleen cells[J] . J Vet Med Sci, 2002, 64(7): 645-648.
    66. Yu Z, Zhao L , Ke H. Potential role of nuclear factor-kappa B in the induction of nitric oxide and tumor necrosis factor-alpha by oligochitosan in macrophages[J]. Int Immunopharmacol, 2004, 4(2):193-200.
    67. Maeda Y, Kimura Y. Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice [J] . J Nutr, 2004, 134 (4): 945-950.
    68.应自忠,张慧,韩志红.壳聚糖对荷瘤小鼠红细胞免疫功能的影响[J] .中国公共卫生,2000,16 (9):831-833.
    69.刘艳如,余萍.水溶性壳聚糖对小鼠免疫功能与移植性肿瘤的影响[J].福建师范大学学报(自然科学版),1999,15(4):66-70.
    70.王芳宇,何淑雅,李邦良等.水溶性壳聚糖抗肿瘤作用的实验研究[J] .中国生化药物杂志,2001,22 (1):21-22.
    71. Shibata Y, Foster L A, Bradfield J F, et al. Oral administration of chitin down-regulates serum IgE levels and lung eosinophilia in the allergic mouse[J]. J Immunol, 2000, 164(3): 1314-1321.
    72. Shibata Y ,Honda I ,Justice J P ,et al . Thl adjuvant N-acetyl-D-glucosamine polymer up-regulates Th1 immunity but down-regulates Th2 immunity against a Mycobacterial protein( MPB-59)in interleukin-10-knockout and wild-type mice[J]. Infection and Immunity, 2001, 69(10 ): 6123-6130.
    73. Shibata Y, Foster L A, Metzger W J, et al . Alveolar macrophage priming by intravenous administration of chitin particles ,polymers of N-acetyl-D-glucosamine, in mice[J]. Infection and Immunity, 1997, 65(5): 1734-1741.
    74. Urn B O, Yamada K, Nonaka M ,et al . Dietary fibers modulate indices of intestinalimmune function in rats[J]. J Nutr, 1997, 127(5): 663-667.
    75. Bacon A ,Makin J ,Sizer P J, et al .Carbohydrate biopolymers enhance antibody responses to mucosaly delivered vaccine antigens[J]. Infection and Immunity, 2000, 68 (10): 5764-5770.
    76. Seferian P G, Martinez M L. Immune stimulating activity of two new chitosan containing adjuvant formulations[J] .Vaccine, 2000, 19 (6): 661- 668.
    77. Lubben I M, Verhoef J C, Borchard G, et al. Chitosan and its derivatives in mucosal drug and vaccine delivery[J]. Eur J Pharm Sci, 2001, 4(3): 201-207.
    78. Westerink M A, Smithson S L, Srivastava N , et al. Projuvant( Pluronic F127/ chitosan) enhances the immune response to intranasally administered tetanus toxoid[J]. Vaccine, 2001, 20(5-6): 711-723.
    79. Mils K H ,Cosgrove C , McNeela E A, et al. Protective levels of diphtheria- neutralizing antibody induced in healthy volunteers by unilateral priming-boosting intranasal immunization associated with restricted ipsilateral mucosal secretory immunoglobulin A[J]. Infection and Immunity, 2003, 71(2): 726-732.
    80.胡思隽.壳聚糖纳米粒在基因治疗中的应用[J].国际病理科学与临床杂志,2006,26(2):150-155.
    81. MacLaughlin F C, Mumper R J, Wang J. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery[J]. J Control Release, 1998, 56 (1-3): 259-272
    82. Erbacher P, Zou S, Bettinger T. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability[J]. Pharm Res, 1998, 15(9): 1332-1339.
    83. Mumper R J , Wang J , Claspell J M, et al. Novel polymeric condensing carriers for gene delivery[J]. Proc Intern Symp Control Rel Bioact Mater, 1995, 22(1):178-179.
    84. Alexakis T, Boadi D K, Quong D, et al. Microencapsulation of DNA within alginate microspheres and crosslinked chitosan membranes for in vivo application[J]. Appl Biochem Biotechnol, 1995, 50 (1): 93-106.
    85.李雁,袁宏银.壳聚糖纳米粒作为基因治疗载体的研究进展[J].医学新知杂志,2005,15(1):45-48.
    86. Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/ chitosan complexes[J]. Biochim Biophys Acta , 2001 , 1514(1): 51.
    87. Nelson N. Structure and pharmacology of the proton-ATPases[J]. Trends Pharmacol Sci , 1991 , 12(2): 71-75.
    88. Maxfield F R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts[J]. J Cell Biol, 1982, 95(2. Pt 1): 676.
    89. Erbacher P, Zou S, Bettinger T, et al. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability[J]. Pharm Res, 1998, 15(9): 1332-1339.
    90. Kumar M N, Muzzarelli R A, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives[J]. Chem Rev, 2004, 104(12): 6017-6084.
    91. Li Y H, Fan M W, Bian Z, et al. Chitosan-DNA microparticles as mucosal delivery system: synthesis, characterization and release in vitro[J]. Chin Med J, 2005, 118 (11):936-941.
    92. Mohapatra S S. Mucosal gene exp ression vaccine: a novel vaccine strategy for respiratory syncytial virus[J]. Pediatr Infect Dis J, 2003, 22 (2): 100-104.
    93. Bivas-Benita M, Laloup M, Versteyhe S, et al. Generation of toxo-plasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies[J]. Int J Pharm, 2003, 266 (122): 17-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700