用户名: 密码: 验证码:
在飞蝗两型转变中takeout蛋白功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞蝗是一种分布广泛的农业害虫,遍布欧、亚、非、澳四大洲。在我国也广泛分布。飞蝗具有两型现象,分为散居型和群居型,且两型在不同环境条件下可以相互转变,散居型向群居型转变并且集聚迁飞是蝗灾爆发的主要原因。
     takeout家族是昆虫在长期进化过程中形成的一个特有的、大的蛋白家族,takeout包括大约250个氨基酸,是一类分泌蛋白,主要分布于涉及化学感受和营养的组织,例如果蝇的触角、下唇须、脂肪体及前胃等。其主要功能是参与节律调控,调节昆虫摄食与运动,参与味觉和嗅觉系统的化学感受,参与性别分化,有助于雄性果蝇求偶等。许多学者认为takeout蛋白具有配体结合特征,它会与不同的疏水配体结合从而执行不同的生理功能,但是没有直接证据。
     最近有资料表明在群居型飞蝗散居化和散居型飞蝗群居化过程中共有453条共同差异表达的基因,包括多个takeout基因,其中一个takeout基因——LimgTO1被认为通过接收其它个体的化学信号,从而产生应答参与型变过程,但对于其他takeout基因与飞蝗型变的关系尚不清楚。
     本研究选取其中一个takeout基因——LimgTO2,以四龄第三天的蝗蝻作为研究对象。首先对其进行信号肽预测,发现其具有信号肽序列;进行进化分析,发现LimgTO2属于takeout家族;进行序列比对分析,发现在N端具有两个保守的Cys残基,推测其可能具有配体结合特征。第二,通过实时荧光定量PCR技术和Western blot方法检测LimgTO2在两型飞蝗的表达,发现散居型飞蝗后腿、翅膀、触角的表达量明显高于群居型,尤其是后腿的差异量最大,而LimgTO2在两型飞蝗的其他组织中均没有表达。第三,同样用实时荧光定量PCR技术和Western blot方法检测检测两型转化过程中的LimgTO2的表达变化,结果显示LimgTO2在散居型飞蝗群居化过程中表达量下降;在群居型飞蝗散居化过程中表达量上升,表明后腿中LimgTO2可能参与两型转变。最后,用实时荧光定量PCR方法、Western blot方法和免疫组织化学方法共同检测,发现LimgTO2位于散居飞蝗的后腿腿节的表皮,推测LimgTO2蛋白可能作为载体蛋白参与后腿表皮感受器感受外界信号,从而进一步影响型变。
     国内外许多学者对蝗灾及飞蝗两型转变的机制进行了大量研究,但很少深入到分子生物学层面,本实验从分子生物学角度对飞蝗两型转变的机制进行研究。目前治理蝗灾的方法主要集中于大规模使用化学药物,但这些药物会导致环境污染,生态破坏等问题,而本实验为人类从生物学角度控制蝗灾奠定了基础。
The migratory locust, Locusta migratoria, is a widespread pest that is distributed in Europe, Asia, Africa, and Australia. They also have a broad distribution in China. In L. migratoria, there are two phases, solitarious and gregarious phases, which can transform into the other. Locust outbreaks are mainly caused by the transform of the solitarious into the gregarious phase and the formation of swarm bands.
     Takeout family is a big insect-specific protein family formed during long evolution. They are secretary proteins containing about 250 amino acids. Takeout proteins are abundantly distributed in several tissues related to chemical sense and nutrition, for example, antennae, tarsi, fat body and cardia. So far, they are revealed to be involved in circadian rhythm, feeding and locomotor activity, chemical sensation, sex-determination, and male courtship behavior. Many scholars thought that takeout proteins could bind different hydrophobic ligands which could perform different functions, but there were no direct evidence.
     Recent research revealed that, during solitarization and gregarization of L. migratoria, the expression of 453 genes differed significantly, including many takeout genes. Among these takeout genes, LimgTO1 is proposed to accept singals from other individuals causing phase change, but the relationship between other takeout genes and phase change remains unclear.
     We analyzed the third-day fourth instar nymphs using LimgTO2, which is one of the above takeout gene families. The signal peptide prediction revealed that LimgTO2 possesses signal peptide sequence. Phylogenetic analyses supported that LimgTO2 belongs to the takeout family. The two Cys residues in the N terminus indicated that LimgTO2 could bind ligands. The tissue-specific expression and differential expression profiling of the LimgTO2 gene during phase transition of L. migratoria were analyzed by real-time quantity PCR and Western blot. The gene had a significantly higher expression level in solitarious locusts than gregarious locusts, with the most different expression in the tissue of hind legs. The expression of LimgTO2 was down-regulated during the gregarizaiton process and up-regualted during the reverse process. The above results indicate that the LimgTO2 gene is involved in the regulation of locust phase transition. The results of real-time quantity PCR, Western blot and immunohistochemistry methods reveal that the LimgTO2 protein is distributed in epidermis of locust hind legs. The conclusion is that the sensory hair in hind legs of solitarious locusts can sense external stimuli and transmit the signals via some hormones or signal proteins, and that the LimgTO2 gene acts as a carrying protein involved in the phase transition of L. migratoria.
     Although there have been many strudies about the mechanism of the phase transition of the L. migratoria, the present research represents the effort at the molecular level. Moreover, current methods of locust control are mainly focusd on chemical drugs which may cause environmental and ecological pollution. The present study provides solid genetic evidence for the phase transition of L. migratoria, which may help improve the design of biological pest-control measures.
引文
1.康乐.认识蝗虫与蝗灾.人与生物圈,北京,中国人与生物圈国家委员会, 2005, 03: 1-3.
    2.康乐,陈永林.关于蝗虫灭灾减灾对策的探讨.中国减灾, 1992, 2(1): 50-52.
    3.朱恩林.中国东亚飞蝗发生与治理.北京,中国农业出版社, 1998, 1-2.
    4.赵春晓,崔为正.飞蝗的型变及其调控机理[J]中国植保导刊, 2006, (09).
    5.陈永林.蝗虫为什么能爆发成灾.人与生物圈,北京,中国人与生物圈国家委员会, 2005, 03: 20-23.
    6. Simpson, S.J., Mccaffery, A.R., Hagele, B.F. A behavioural analysis of phase change in the desert locust. Biological Reviews, 1999, 74: 461-480.
    7. Uvarov, B.P. Grasshoppers and locusts. A handbook of general acridologyⅡ. 1977, 1-500.
    8. Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R., Simpson S.J. From Disorder to Order in Marching Locusts. Science, 2006, 312: 1402-1406.
    9. Bouaichi, A., Roessingh, P., Simpson, S.J. The influence of environmental microstructure on the behavioural phase state and distribution of the desert locust Schistocerca gregaria. Physiol. Entomol., 1996, 21: 247-256.
    10. Roessingh, P., Simpson, S.J., James, S. Analysis of phase related changes in behaviour of desert locust nymphs. Proc. R. Soc. London, 1993, 252B: 43-49.
    11. Roessingh, P., Simpson, S.J. The time-course of behaviour phase in nymphs of desert locust, Schistocerca gregaria. Physiol. Entomol., 1994, 19: 191-197.
    12. Wyatt, G.R. Juvenile hormone in insect reproduction - a paradox. European J. Entomol., 1997, 94: 323– 333.
    13. Tawfik A.I., Tanaka S., De L.A., et al. Identification of the gregarization associated dark pig mentotropin in locusts through an albino mutant. PNAS., 1999, 96( 12) : 7 083-7 087.
    14.石旺鹏.蝗虫化学信息物质研究进展.昆虫知识, 2005, 42( 3) : 244-249.
    15.石旺鹏,严毓骅,张龙,等.东亚飞蝗粪便挥发物对蝗蝻的聚集作用初报.中国农业大学报, 2000, 5( 5) : 54-58.
    16. Wybrandt, G.B. and Andersen, S.O., Purification and sequence determination of a yellow protein from sexually mature males of the desert locust, Schistocerca gregaria. Insect Biochem. Mole.r Biol., 2001, 31: 1183-1189.
    17. De Loof, A. D., Claeys, I., Simonet, G., Verleyen, P., Vandersmissen, T., Sas F., and Huybrechts J. Molecular markers of phase transition in locusts. Insect Science, 2006, 13:3-12.
    18. Kang L., Chen X.Y., Zhou Y., et al. The analysis of large-scale gene expression correlated to phase changes of the migratory locust. PNAS,, 2004, 101: 17611-17615.
    19. Ma Z.Y., Yu J., Kang L. Locust DB: a relational database for the transcriptome and biology of the migratory locust (Locusta migratoria). BMC Genomics, 2006, 7: 40-42.
    20. Sarov-Blat, L., So, W.V., Liu, L., Rosbash, M. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell, 2000, 101:647-656.
    21. So, W.V., Sarov-Blat, L., Kotarski, C.K., McDonald, M.J., Allada, R., Rosbash, M. takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol. Cell Biol., 2000, 20:6935-6944.
    22. Dauwalder B., Tsujimoto S., Moss J. and Mattox W. The Drosophila takeout gene is regulated by the somatic sex-determination pathway and affects male courtship behavior. Genes & Dev., 2002, 16:2879-2892.
    23. Jianguang Du, Hiruma K., Riddiford L.M.. A novel gene in the takeout gene family is regulated by hormones and nutrients in Manduca larval epidermis. Insect Biochem. Mol. Biol., 2003, 33:803-814.
    24. Fujikawa K., Seno K. and Ozaki M.. A novel Takeout-like protein expressed in the taste and olfactory organs of the blow?y, Phormia regina. FEBS J., 2006, 273:4311-4321.
    25. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.,1990, 215:403-410.
    26. Touhara, K., Lerro, K., Bonning, B.C., Hammock, B.D., and Prestwich, G.D. Ligand binding by recombinant insect juvenile hormone binding protein. Biochem., 1993, 32:2068-2075.
    27. Du, G., Ng, C.S., and Prestwich, G.D. Odorant binding by a pheromone binding protein: active site mapping by photoaffinity labeling. Biochem., 1994, 16:4812-4819.
    28. Wojtasek, H., and Prestwich, G.D. Key disulfide bonds in an insect hormone binding protein: cDNA cloning of the juvenile hormone binding protein of Heliothis virescens and ligand binding by native and mutant forms. Biochem., 1995, 34:5234-5241.
    29. Touhara, K., and Prestwich, G.D. Binding site mapping of the photoaffinity-labeled juvenile hormone binding protein. Biochem. Biophys. Res. Com., 1992, 182:466-473.
    30. Hamiaux C., Stanley D., Greenwood D.R., Baker E.N., Richard D. Newcomb. Crystal Structure of Epiphyas postvittana Takeout 1 with Bound Ubiquinone Supports a Role as Ligand Carriers for Takeout Proteins in Insects. J. Biol. Chem., 2009, 284:3496-3503.
    31. Justice, R.W., Dimitratos, S., Walter, M.F., Woods, D.F., Biessmann, H. Sexual dimorphic expression of putative antennal carrier protein genes in the malaria vector Anopheles gambiae. Insect Mol. Biol., 2003, 12:581-594.
    32. Bohbot J., Vogt R.G. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol., 2005, 35:961-979.
    33. Saito K., Su Z.H., Emi A., Mita K., Takeda M. and Fujiwara Y. Cloning and expression analysis of takeout/JHBP family genes of silkworm, Bombyx mori. Insect Mol. Biol., 2006, 15(3):245-251.
    34. Ghanim M., Dombrovsky A., Raccah B., Sherman A. A microarray approach identifies ANT, OS-D and takeout-like genes as differentially regulated in alate and apterous morphs of the green peach aphid Myzus persicae (Sulzer). Insect Biochem. Mol Biol., 2006, 36:857-868.
    35. Meunier N., Belgacem Y.H. and Martin J.R. Regulation of feeding behaviour and locomotor activity by takeout in Drosophila. J. Exp. Biol., 2007, 210:1424-1434.
    36. Hagai T., Cohen M., Bloch G. Genes encoding putative Takeout/juvenile hormone binding proteins in the honeybee (Apis mellifera) and modulation by age and juvenile hormone of the takeout-like gene GB19811. Insect Biochem. Mol. Biol., 2007, 37:689-701.
    37. Schwinghammer M.A., Zhou, X.G. Kambhampati S., Bennett G.W., Scharf M.E. A novel gene from the takeout family involved in termite trail-following behavior. Gene, 2010, doi:10.1016/j.gene.2010.11.012.
    38. Jordan, M., Stanley, D., Marshall, S. D. G., Silva, D., Crowhurst, R. N.,Gleave, A. P., Greenwood, D. R., and Newcomb, R. D. Expressed sequence tags and proteomics of antennae from the tortricid moth, Epiphyas postvittana. Insect Mol. Biol., 2008, 17:361-373.
    39. Benito J., Hoxha V., Lama C., Lazareva A.A., Ferveur J.F., Hardin P.E. and Dauwalder B. The circadian output gene takeout is regulated by Pdp1ε. PNAS., 2010, 107:2544-2549.
    40. Villella, A. and Hall, J.C. Courtship anomalies caused by doublesex mutations in Drosophila melanogaster. Genetics, 1996, 143:331-344.
    41. Angioy A.M., Liscia A., Crnjar R., Porcu A., Cancedda A. and Pietra P. Mechanism of JH in?uence on the function of labellar chemosensilla in Phormia: experimental suggestions. Boll. Soc. Ital. Biol. Sper., 1983, 59:1453-1456.
    42. Haisun Zhu, Casselman A., Reppert S.M. Chasing Migration Genes: A Brain Expressed Sequence Tag Resource for Summer and Migratory Monarch Butterflies (Danaus plexippus). PLoS ONE., 2008, 3(1):e1345.
    43. Herman W.S., Tatar M. Juvenile hormone regulation of longevity in the migratory monarch butterfly. Proc. Biol. Sci., 2001, 268:2509-2514.
    44. Bauer J., Antosh M., Chang C., Schorl C., Kolli S., Neretti N. and Helfand S.L. Comparative tranciptional profiling identifies takeout as a gene that regulates life span. Aging, 2010, 2:298-310.
    45. Guo W., Wang X.H., Ma Z.Y., Han J.Y., Xue L., Yu D., Kang L., 2011. CSP andtakeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLos Genet., 7: e1001291, 1-13. (doi:10.1371/journal.pgen.1001291).
    46. Evans, J.D., Wheeler, D.E. Gene expression and the evolution of insect polyphenisms. BIOESSAYS, 2001, 23: 62-68.
    47. Zhou, X., Oi, F.M., Scharf, M.E. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. PNAS., 2006b, 103: 4499-4504.
    48. Whitfield, C.W., Ben-Shahar, Y., Brillet, C., Leoncimi, I., Crauser, D., LeConte, Y., Rodriguez-Zas, S., Robinson, GE. Genomic dissection of behavioral maturation in the honey bee. PNAS,, 2006, 103: 16068-16075.
    49. Brisson, J.A., Davis, GK., Stern, D.L. Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum). Evolution & Development, 2007, 9: 338-346..
    50. Pener, M.P. Locust phase polymorphism and its endocrion relations. Adv. insect physiol., 1991, 24:1-79.
    51. Pener, M.P., Simpson, S.J. Locust phase polyphenism: an update. Adv. insect physiol., 2009, 36:1-272.
    52. Uvarov, B.P. Grasshoppers and locusts, Vol. 1. Cambridge University Press, Cambridge, 1966.
    53. Injeyan H.S., Tobe S.S. Phase polymorphism in Schistocerca gregaria: reproductive parameters. Insect Physiol., 1981, 27: 97-102.
    54. Simpson S.J., Sword, G.A. Locusts. Current Biol.,, 2008, 18: R364-R366.
    55. Ellis, P.E. Learning and social aggregation in locust hoppers. Animal Behaviour, 1959, 7: 91-94.
    56. Gray, L.J., Sword, G.A., Anstey, M.L., Clissold, F.J., Simpson, S.J. Behavioutal phase polyphenism in the Australian plague locust (Chortoicetes terminifera). Biology Letters, 2009, 5: 306-309.
    57. Ellis, P.E., Ashall, C. Field studies on diurnal behaviour, movement and aggregation in the Desert Locust (Schistocerca gregaria Forskal). Anti-LocustBulletin, 1957, 25: 1-94.
    58. Stower, W.J. Photographic techniques for the analysis of locust“hopper”behaviour. Animal Behaviour, 1963, 11: 198-205.
    59. Couillaud, F., Mauchamp, B., Girardia, A. Biological, radiochemical and physicochemical evidence for the low activity of disconnected corpora allata in locust. J. Insect Physiol., 1987, 33: 223-228.
    60. Pener, M.P., Orshan, L., De Wilde, J. PrecoceneⅡcauses atrophy of corpora allata in Locusta migratoria. Nature, 1978, 272: 350-353.
    61. Nickerson, B. A possible endocrine mechanism controlling locust pigmentation. Nature, 1954, 174: 357-358.
    62. Wang, H.S., Wang, X.H., Zhou, C.S., Huang, L.H., Zhang, S.F., Guo, W., Kang, L. Cdna cloning of heat shock proteins and their expression in the two phases of the migratory locust. Insect Mol. Biol., 2007, 16: 207-219.
    63. Zhou, J.J., Kang, Y., Antoniw, J., Pickett, J.A., Field, L.M. Genome and EST analyses and expression of a gene family with putative functions in insect chemoreception. Chem. Senses, 2006a, 31: 453-465.
    64. Ma, Z.Y., Guo X.J., Guo W., Wang, X.H., Kang, L. Modulation of behavioural phase changes of the migratory locust by the catecholamine metabolic pathway. PNAS., 2011, doi:10. 1073/pnas. 1015098108/1-6.
    65. Kolodziejczyk R., Bujacz G., Jakób M., Ozyhar A., Jaskolski M., Kochman M. Insect juvenile hormone binding protein shows ancestral fold present in human lipid-binding proteins. J. Mol. Biol., 2008, 377(3):870-881.
    66. Hojo M., Morioka M., Matsumoto T., Miura T. Identification of soldier caste-specific protein in the frontal gland of nasute termite Nasutitermes takasagoensis (Isoptera: Termitidae). Insect Biochem. Mol. Biol., 2005, 35: 347–354.
    67. Rees, H., Shaw, D.D., Wilkinson, P. Nuclear DNA variation among acridid grasshoppers. Proc. R. Soc. London, Ser. B., 1978, 202: 517-525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700