用户名: 密码: 验证码:
鄂尔多斯块体电性结构研究及其与地质构造的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以在华北鄂尔多斯地区所采集的35-40号大地电磁剖面数据为依托。在室内系统运用了先进的数据处理方法,完成了大地电磁数据处理工作,得到了可靠的MT响应。采用先进的二维反演算法,获得了研究区域具有较高可信度的二维电性结构模型。
     大地电磁场观测数据的阻抗张量分解结果表明,研究区域的地下介质电性结构近似为二维结构,电性主轴方位近南北向,这说明鄂尔多斯块体的主构造方向为近南北向。
     沿剖面范围内分布着多个电性异常带与畸变带,与区域构造资料对比,这些电性梯度带和畸变带的位置与区域内的深大断裂带相吻合,这些断裂带同时也是研究区域内各构造单元的边界断裂带。鄂尔多斯块体内部岩石圈范围内电性结构大致可以分为三层,即上、下为高阻层,中间为高导层,表层低阻层可能是新生代或中新生代的沉积层。研究区域中下地壳普遍发育有30欧姆米以下的高导层,高导体在鄂尔多斯块体内发育最为广泛和连续,以东西埋深小,中间埋深大特点为主,北部高导体在厚度和规模上大于南部,鄂尔多斯块体中南部上地幔发育圆环状高导体,圆环中心为一高阻体。鄂尔多斯西缘过渡带中下地壳普遍发育高导体,产状水平,规模较大,电阻率值相对较高。祁连快体东部,阿拉善块体东部以及吕梁地块下地壳高导体发育较少。鄂尔多斯块体莫霍面埋深在40-45公里,岩石圈厚度在120-150公里之间。
     鄂尔多斯块体内部中下地壳的高导体很可能是由于含盐流体或是局部熔融和含盐流体共同作用的结果,他们与鄂尔多斯块体内部的隐伏断层不无关系。鄂尔多斯块体东西两侧断裂带附近的的下地壳和上地幔高导体很可能是部分熔融和流体的共同作用,岩石部分熔融或者水分析出的热源来自于块体的运动,摩擦生热,并造成岩层的破碎,形成一系列断层,上地幔物质向上涌,形成壳幔混合物。鄂尔多斯最北端结晶基底是孔兹岩,孔兹岩是含石墨富铝的片岩、片麻岩夹大理岩和石英岩的区域变质岩组合,所以鄂尔多斯北部块体内部的下地壳的高导体可能是由石墨导致。沿着鄂尔多斯西缘褶断带的低阻体发育连续,且规模巨大,青藏高原的塑性的物质可能沿此逃逸。
The thesis based on the No.35-40 magnetotelluric profiles data which is collected in Ordos region. In the Lab, we systemic used the advanced data processing methods, and completed the work of MT data processing to obtain a reliable MT response. After used the advanced two-dimensional inversion algorithm, we finally got the high confidence two-dimensional electrical structural model of the studies region.
     As the decomposition of the magnetotelluric impedance tensor show the underground electrical structure of research area is approximately a two-dimensional structure,in which electrical axis is nearly east-west direction,thus indicating the main structure of Ordos region is north-south direction.With MT sounding response analyzed.
     The research results show that there are distributed number of anomalous zone and electrical distortion zone, the position of the electric gradient and distortion zones roughly coincides with the major fault line delineated by regional geological data. These fault zones simultaneously are also to be the each tectonic element's dividing line fault zone in the study area. The internal electrical structure of the lithosphere in Ordos block can be divided into three layers, contain the upper and lower layer of high resistance, and the middle layer of high conductivity, the surface layer conductive bed possibly is the Cainozoic Era or Cainozoic Era's deposit formation. Study area generally development the high-conductivity layer below 30 Oumu Mi in lower crust. The high-conductivity layer development extensively and continuously within Erods block,which the main feature is:the depth in East and West are small,by contrast the middle of the profile are large.The thickness and scale of the high conductivity layer in north of the Erods block larger than the south of the Erdos block.The circle of high conductivity body development in the middle and south Erdos block,which center is a high resistivity.The east of alashan block、qilian block and the north and south lvliang upheaval in west of north china development few high conductivity body in lower crust which scale is not large. Transition zone in the western margin of Ordos widespread development of high conductive body with relatively high resistivity values and a large scale in lower crust,which occurrence is level.The depth of Moho surface is nrarly 40-45 Km in Erdos block,and the thickness of the lithosphere is 120-150Km.
     The Saline fluid and Partial melting interaction with the saline fluid are the reason for the high conductive layer development at the internal Erdos block, which are impossible irrelated with the buried fault in the Erdos block.The most possible reasons for high conductivity larer which developmente in lower crust and upper mantle in the fault belt located in both sides of the Erdos block are partial melting and fluid interaction.The heat source of the rock particl and the water move out of the rock is the block movement,which made fiction product heat and cause fragmentation of rock,which forming a series of fault.Material in upper mantle upwelling forming crust-mantle mixture.The crustle base in north Erdos block is khondalite,which is aluminum-rich schist with graphite gneiss folder、marble and quartzite combination of regional metamorphic rocks.So the high conductivity body in the internal north of the Erdos block maybe due to the Graphite.the low resistivity body in the western margin of Ordos fold belt which the material in Tibetan Plateau escaped development continuously,which scale is large.
引文
[1]Constable S C, Parker R L, Constable C G. Occam's inversion:A practical algorithm for generating smooth models from electromagnetic sounding data.Geophysics, 1987,52(3):289-300
    [2]Frey M, Bucher K, Frank E, et al.1980. Alpine metamorphism along the Geotraverse Basel-Chiasso:A review Eclogae Geol Helv,73:527-546
    [3]Frost B R, Fyfe W S, Tazaki K, et al.1989. Grain-boundary graphite in rocks and implications for high electrical con-ductivity in the lower crust. Nature, 340:134-136
    [4]Gaudemer Y, Tapponnier P, Meyer B,et al.1995. Partitioning of crustal slip between linked active faults in the eastern Qilian Shan, and evidence for a major seismic gas, the "Tianzhu gap ", on the western Haiyuan Fault, Gansu (China). Geophysical Journal International,120:599-645
    [5]Jones A G, Evans R L, Eaton D W.2009. Velocity-conductivity relationships for mantle mineral assemblage in Archean cratonic lithospheres based on a view of laboratory data and Hashin-Shtrikman extremal bounds. Lithos,109:131-143
    [6]Gough D I.1986. Seismic reflectors, conductivity, water and stress in the continental crust. Nature,323:143-144
    [7]Guochun Zhao, Min Sun.2005. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited.Geology,136(2005):177-202
    [8]Haak V, Hutton V R S.1986. Electrical resistivity in continental lower crust. The Nature of the Lower Continental Crust,24:35-49
    [9]JiraceKGR.1984. The Magnetotelluric Method Lecture Notes. SanDiegoScate University, SanDiego
    [10]Nover, G., Heikamp, S., Meurer, H. J.&Freund, D.,1998. In~situ electrocal conductivity and permeability of mid~crustal rocks from the KTB drilling:consequences for high conductive layers in the Earth crust, Surv. Geophys.,19,73-85
    [11]Northrup C J, Royden H, Burchfiel B C.1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology,23:719-722
    [12]Peltzer G, Tapponnier P, Zhang Z T, et al.1985. Neogene and Quaternary left-lateral displacement along the Qinling Shan. Nature,317:500-505
    [13]Rodi W L, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics,2001,66(1):174-187
    [14]Shenghui Li, Martyn J. Unsworth, John R. Booker, et al, Partial melt or aqueous fluid in the mid-crust of Southern Tibet?Constraints from INDEPTH magnetotelluric data Geophys. J. Int. (2003)153,289-304
    [15]Tapponnier P, Peltzer G, Le Dain A Y, et al.1982. Propagating extrusion tectonics in Asia:new insights from simp le experiment with p lastine. Geology, 10:611-616.
    [16]Tian Z Y, Han P, Xu KD.1992. The Mesozoic-Cenozoic east China rift system. Tectonophysics,208:341 363
    [17]Uyeda S, Kanamori H.1979. Backarc opening and the mode of subduction. Journal of Geophysical Research,84:1049-1061
    [18]Weerachai Siripunvaraporn and Gary Egbert,2000, An efficient data-subspace inversionmethod for 2-D magnetotelluric data, Geophys,65,791-803
    [19]Yamane K, Takasugi S, Lee K H. A new magnetotelluric inversion scheme using generalized RRI method. J. Appl. Geophys,1996,35:209-213
    [20]Zhang Y, Vergely P, Mercier J L.1999. Pliocene-Quaternary faulting pattern and left-slip propagation tectonics in north China. Episodes,22 (2):84-88
    [21]安平.地壳上地幔热结构分析及莫霍面反演结果.鄂尔多斯周缘活动断裂系.北京:地震出版社,1988.290-294
    [22]安三元,胡能高.北秦岭裂陷的形成与变质作用.西安:西北大学出版社,1994
    [23]陈九辉,刘启元,李顺成等.青藏高原东北缘—鄂尔多斯地块地壳上地幔S波速度结构.地球物理学报,48(2):333-342
    [24]陈乐寿、刘任、王天生等,1989,大地电磁资料处理与解释,北京:石油工业出版社
    [25]陈乐寿,王光锷,大地电磁测深法,北京:地质出版社,1990
    [26]陈凌,危子根,程骋.从华北克拉通中、西部结构的区域差异性探讨克拉通破坏.地学前沿,2010,17(1):212-228
    [27]陈小斌.鄂尔多斯地块的现今水平运动状态及其与周缘地块的相互作用.中国科学院研究生院学报.2005,22(3):309-314
    [28]邓起东,程绍平,闵伟等.鄂尔多斯块体新生代构造活动和动力学的讨论.地质力学学报,1999,5(3)13-21
    [29]邓起东,尤惠川.1985.鄂尔多斯周缘断陷盆地带的构造活动特征及其形成机制.现代地壳运动(1).北京:地震出版社,58-78
    [30]丁国瑜(主编).中国岩石圈动力学概论.北京:地震出版社,1991
    [31]傅良魁,电法勘探教程,北京:地质出版社,1983
    [32]谷道全,李国军,高伟.鄂尔多斯盆地盖层类型及特征研究.石油地质,2009,12:94-95
    [33]国家地震局《鄂尔多斯周缘活动断裂系》课题组.鄂尔多斯周缘活动断裂系.北京:地震出版社,1988
    [34]韩鹏,高飞,王建强.鄂尔多斯周缘新生代盆地断陷发生时间探讨.内蒙古石油化工,2008,5:38
    [35]黄汲清.中国地质构造基本特征的初步总结.地质学报,1960,40(1):1-37
    [36]江为为,郝天珧,宋海斌等.鄂尔多斯盆地地质地球物理场特征与地壳结构.地球物理学进展,2000,15(3):45-53
    [37]金胜.青藏高原的壳幔电性结构特征及其动力学意义:[博士学位论文].北京:中国地质大学(北京),2009
    [38]赖晓玲,张先康,方盛明.青藏高原东北缘壳幔过渡带研究.地震学报,26(2):132-139
    [39]李江海,牛向龙.从全球对比探讨华北克拉通早期地质演化与板块构造过程.地学前沿,2004,11(3):273-283
    [40]李江海,牛向龙,程素华,等.大陆克拉通早期构造演化历史探讨:以华北为例.地球科学-中国地质大学学报.2006,31(3):285-293
    [41]李明,高建荣.鄂尔多斯盆地基底断裂与火山岩分布.中国科学,2010,40(8):1005-1013
    [42]李鹏,周仕勇,陈永顺等. 利用双平面波干涉面波层析成像方法研究山西断陷盆地及鄂尔多斯地台三维速度结构.CT理论与应用研究,19(3):47-60
    [43]马润勇,朱浩平,张道法,等.鄂尔多斯盆地基底断裂及其现代活动性.地球科学与环境学报,2009,31(4):400-408
    [44]屈健鹏.1998.鄂尔多斯块体西缘及西南缘深部电性结构与该区地质构造的关系.内陆地震,12(4):312-319
    [45]屈健鹏.鄂尔多斯块体西南定边—大罗山大地电磁剖面解释.1996.西北地震学报,18(4):32-37
    [46]屈健鹏,朱佐全,杨国栋等.鄂尔多斯地块西缘定边-景泰地壳和上地幔电性结构分析。西北地震学报,1998,20(2):70-75
    [47]任纪舜,王作勋,陈炳蔚等.从全球看中国大地构造:中国及邻区大地构造图说明书.北京:地质出版社,1997
    [48]石应骏,刘国栋,吴光耀等.大地电磁测深法教程.北京:地震出版社,1985
    [49]时志强,韩永林,张锦泉.鄂尔多斯盆地早侏罗世富县期岩相古地理特征.矿物岩石,2001,21(3):124-127
    [50]孙洁,史书林,江钊,等.山西临汾盆地及外围地区大地电磁与地壳构造活动研究,
    [51]马宗晋主编,山西临汾地震研究与系统减灾,北京:地震出版社,1993:1261-2741
    [52]谭捍东,魏文博等.大地电磁法张量阻抗通用计算公式.石油地球物理勘探,2004,39(1):114-120
    [53]谭捍东,余钦范,BookerJ等.大地电磁三维快速松弛反演.地球物理学报,2003,46(6):850-855
    [54]汤吉,赵国泽等.青藏高原东北缘玛沁—兰州—靖边剖面地壳上地幔电性结构研究.地球物理学报.2005,48(5):1205-1216
    [55]唐新功.鄂尔多斯地区重力均衡研究.工程地球物理学报,6(4):395-398
    [56]王涛,徐鸣洁,王良书等.鄂尔多斯及邻区航磁异常特征及其大地构造意义.地球物理学报,50(1):163-170
    [57]滕吉文,王夫运,赵文智等.鄂尔多斯盆地上地壳速度分布与沉积建造和结晶基底起伏的构造研究.地球物理学报,51(6):1753-1766
    [58]汪泽成,王玉新.鄂尔多斯西缘马家滩滑脱型冲断构造.石油与天然气地质,1996,17(3):221-225
    [59]魏文博.我国大地电磁测深新进展及瞻望.地球物理学进展,2002,17(2):245-254
    [60]魏文博,金胜等.大陆岩石圈导电性的研究方法.地学前沿,2003,10(1):15-20
    [61]徐黎明,周立发,张义楷,等.鄂尔多斯盆地构造应力场特征及其构造背景.大地构造与成矿学.2006,30(4):455-462
    [62]徐伟进.鄂尔多斯地块区内地震活动特征的初步研究.2008.中国地震,24(4):388-398
    [63]姚宗惠,张明山,曾令邦,等.鄂尔多斯盆地北部断裂分析.石油勘探与开发,2003,30(2):20-23
    [64]于鹏,王一新,王佳林.鄂尔多斯盆地南部MT剖面综合地球物理解释.石油物探,38(3)86-92
    [65]张步春,蔡文伯.华北断块区构造单元的划分及其边界问题.华北断块区的形成与发展.北京:科学出版社,1980
    [66]张泓,何宗莲,晋香兰,等.鄂尔多斯盆地构造演化与成煤作用.北京:地质出版社,2003
    [67]张进,马宗晋,任文军.鄂尔多斯西缘逆冲带南北差异的形成机制.大地构造与成矿学,2000,24(2):124-133
    [68]张景廉,石兰亭,卫平生,等.鄂尔多斯盆地深部地壳构造特征与油气成藏.新疆石油地 质,2009,30(2):272-278
    [69]张抗.鄂尔多斯断块构造与资源.西安:陕西科学技术出版社,1989
    [70]张庆龙,解国爱,任文军,等.鄂尔多斯西缘南北向断裂的发育及其地质意义.石油实验地质,2002,24(2):119-125
    [71]赵重远.鄂尔多斯西缘构造演化与板块应力机制初探.见:鄂尔多斯西缘地区石油地质论文集.呼和浩特:内蒙古人民出版社,1983,20-28
    [72]赵国泽,汤吉等.青藏高原东北缘地壳电性结构和地块变形关系的研究.中国科学D辑地球科学,2004,34(10):908-918
    [73]赵国泽,詹艳,王立凤等.鄂尔多斯断块地壳电性结构.地震地质.2010,32(3):345-359
    [74]赵金仁,李松林,张先康等.青藏高原东北缘莫霍界面的三维空间构造特征.地球物理学报,48(1):78-85
    [75]赵理芳,吴健生等.大地电磁法数据的采集及质量分析.矿产与地质,2004,4(18):393-397
    [76]赵志丹,高山等.秦岭和华北地区地壳低速层的成因探讨-岩石高温高压波速实验证据.地球物理学报,1996,39(5):642-652
    [77]郑国璋.鄂尔多斯盆地-高原转型期区域动力学背景.地球科学与环境学报,2008,30(2):144-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700