用户名: 密码: 验证码:
过渡金属-TiO_2介孔复合材料的制备及其在造纸中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛在空气净化、水的杀菌消毒和含有机污染物的废水光催化降解中有重大的应用,且无二次污染,成为目前最引起科学家关注的绿色环保型催化剂之一。介孔TiO_2由于具有很高的比表面积和规整的介孔孔道,具有比TiO_2更优越的物理和化学性能,通过掺杂过渡金属离子制备介孔复合材料,能有效提高其光催化活性和反应效率,在处理废水有机污染物等方面具有广阔的应用前景。
     本项研究以三嵌段共聚物P123作模板,采用溶胶–凝胶法制备掺杂Mn~(2+)和Yb~(3+)的介孔TiO_2复合材料,利用X–射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、N_2吸附-解吸分析和傅里叶变换红外光谱分析(FT–IR)等手段对样品进行表征。结果表明:金属离子的掺杂对改性介孔二氧化钛的晶型和平均粒径有很大的影响;Mn~(2+)和Yb~(3+)离子起到了光生电子捕获剂的作用,减少了光生电子–空穴对的复合几率;金属离子的掺杂量对TiO_2的光催化活性有一定的影响,掺杂量过大时,会有多余的金属离子包裹在TiO_2的表面,阻碍了紫外线对TiO_2的照射,影响TiO_2的光催化活性。适量Mn~(2+)和Yb~(3+)掺杂能有效抑制纳米TiO_2晶粒的成长,使晶体发育良好,粒度分布均匀,产物分散性较好;Mn~(2+)和Yb~(3+)均匀分散在TiO_2中;金属离子掺杂使TiO_2粒子表面含有大量羟基,有利于提高TiO_2的光催化活性,提高TiO_2对太阳光的利用率。
     以对氯苯酚为目标降解物,考察了掺杂过渡金属离子后介孔TiO_2光催化性能的变化。发现掺杂后的介孔TiO_2复合材料比纯的介孔TiO_2有更好的光催化性能,能有效提高对氯苯酚的光催化降解。介孔TiO_2复合材料光催化氧化降解反应受温度、催化剂用量、通氧方式、光照时间的影响较大:温度升高有利于目标降解物的去除;催化剂用量存在一个最佳值。用量过多或过少都会影响光催化反应的降解率。过少的催化剂不足以完全降解有机物,过多则会使溶液变的混浊,使紫外光难以透过,阻碍紫外线对TiO_2的照射,从而降低TiO_2的催化效率;通氧方式对降解效果也有很大的影响,通入工业氧时,降解效果最佳,通空气次之,不通气,降解效果最差;光催化反应的降解率随光照时间的增长而增大,反应速率均是先快后慢。
     分别以Mn~(2+)/TiO_2和Yb~(3+)/TiO_2介孔复合材料作催化剂处理造纸废水,考察了光催化体系中光照时间、催化剂的用量、初始pH值、通氧方式等对降解造纸废水的影响因素,探明了在反应条件为:催化剂用量为1.5 g/L、初始pH = 12、连续通氧条件下降解效果最佳,在紫外光照射下,反应12 h后,废水的CODCr去除率分别达到78.3%和75.3%,色度去除率分别达到92.5%和91.4%。与纯的介孔TiO_2相比均有了很大提高。
Titanium dioxide (TiO_2) is one of the green catalysts, which has attracted much attention due to its promising applications in the purification of air, the bactericidal action of water, and environmental photocatalytic degradation of organic pollutant compounds in waste water. The mesoporous TiO_2 has the better physical and chemical properties than TiO_2 because of its high specific surface area and well-regulated pore structure. The photocatalytic activity and efficiency of TiO_2 can be enhanced obviously and the degradation of organic wastewater has a promising future by doping some transitional metal ions.
     In this work, Mn~(2+)-doped and Yb~(3+)-doped TiO_2 were prepared by a sol–gel process and triblock copolymer P123 as the templates. The composition, micro-structure and properties of the prepared TiO_2 powders were characterized by X–ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscope (SEM), N2 adsorption-desorption and Fourier transform infrared spectrophotometer (FT–IR), and so on. The results indicated that the crystallographic forms and diameter of the samples were greatly affected by doping of transitional metal ions. Mn~(2+) and Yb~(3+) could be an effective capturer of photo–induced electron and reduced the recombination of photo–generated holes and electrons. The amount of doping has effect on the photocatalytic activity of mesoporous TiO_2: redundant metal ions may surround the TiO_2 to block the ultraviolet irradiation, which depress the activities of samples. The suitable doping of Mn~(2+) and Yb~(3+) could decrease the growth of anatase grains and could effectively improve the dispersion of grains. Doped ions had not been found in FT–IR of complex TiO_2 materials and there were an amount of hydroxyl groups on surface of the samples.
     The photocatalytic activity of metal ions-doped TiO_2 was much better than the pure mesoporous TiO_2 in degradation of P-chlorophenol. The effects of temperature, amount of catalysts, the different modes of oxygen aeration and irradiation time on the photocatalytic degradation were great. The high temperature was advantaged the removal of P-chlorophenol. The lacking catalysts could not degraded P-chlorophenol completely, while the overabundance would make the solution turbid, blocking the ultraviolet irradiation. The removal rate received the maximum when the oxygen was aerated. The degradation rate increased as the irradiation time.
     The Mn~(2+)/TiO_2 and Yb~(3+)/TiO_2 were used as catalysts to treat the papermaking wastewater. The influencing factors of the weight of photocatalysts, the irradiation time, the initial pH value and different modes of oxygen aeration were examined. The removing rate of CODCr of papermaking wastewater was up to 78.3 % and 75.3%, the removing rate of chroma was 92.5% and 91.4% respectively. The best parameters during the photocatalysis processes were determined also, its best conditions were photocatalyst amount 1.5 g/L, pH = 12, bulling with oxygen ultraviolet irradiation and reaction time 12h. There were great improvements compared with the pure mesoporous TiO_2.
引文
[1] Kresge C T, Leonowicz M E, Roth W J. Ordered mesoporous molecular sieves synthesized by liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712
    [2] Sumit B, Ashwin S, Aruna D, et al. Synthesis of ordered hexagonal mesostructrured nickel oxide[J]. Langmuir, 2003, 19, 5522-5525
    [3] Chen C Y, Burkett S L, Li H X, et al. Studies on mesoporous materials (Ⅰ): Synthesis and characterization of MCM241[J]. Micro Mater, 1993, 2(1): 27-34
    [4] Stucky G D, Huo Q S, Margolese D I. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature, 1994, 368: 317 -321.
    [5] Stucky G D, Huo Q S, Firouzi A. et al. In progress in Zeolite and microporons materids[J]. Studies in Surface Science and Catalysis, 1997, 105: 3-28
    [6] Augustynski. Characterization of electrodepositedTiO2 films[J]. Electrochim. Acta. 1993, 38(1): 43-46
    [7] Burdett J K. Electronic control of the geometry of rutile and related structures[J]. Inorg. Chem. 1985, 24(14): 2244-2253
    [8] 张金龙, 陈锋, 何斌. 光催化[M]. 华东理工大学出版社. 2004 年 10 月第一版: 15
    [9] Henrich V E, Kurtz R L. The surfaces of metal oxides[J]. Rep Prog Phys, 1985, 48: 1481-1541
    [10] Bartynski, R. A. ;Yang, S. ;Hulbert, S. L. ;Kao, C. C. ;Weinert,M.; Zehner, D. M. Phys. Rev. Lett, 1992, 68:2247
    [11] Sanjines R, Tang H, Berger H, et al. Electronic structure of anatase TiO2 oxide[J]. Appl. Phys, 1994, 75(6): 2945-2951
    [12] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photo-catalysis[J]. Photochem Photobiol, C; Photochem Rev, 2000, 1: 1-21
    [13] Ranjit K T, Willner I, Bossmann S H. Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid[J]. Environ Sci Technol, 2001, 35: 1544-1549
    [14] Ju X S, Huang P, Xu N P. Studies on the preparation of mesoporous titania membrane by the reversed micelle method[J]. Membrane, 2002, 202: 63-71
    [15] Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method[J]. Angew Chem Int Ed, 1995, 34 (18): 2014-2020
    [16] Corma A, Martinez-Soria V, Schnoeveld E. Alkylation of benzene with short-chainolefins over MCM-22 zeolite: catalytic behaviour and kinetic mechanism [J]. Cata, 2000, 192: 163-173
    [17] Pei-Shing E. D, Robert J. Taylor Jr, et al. Isopropyl alcohol and ether production from crude by-product acetone[J]. Catal Today, 1995, 26: 3-11.
    [18] Kloestra K R, Van.L M, Van B H. Binary caesium-lanthanum oxide supported on MCM-41:A new stable heterogeneous basic catalyst[J]. J Chem Soc Faraday Trans, 1997, 93(6): 1211-1220.
    [19] Zi-Le Hua, Jian-Lin Shi, Ling-Xia Zhang, et al. Formation of Nano-sied TiO2 in Mesoporous Silica Thin Film, Advanced Materials, 2002, 14(11), 830-833.
    [20] Tuel-A, Gontier S, Teissier R. Zirconium containing mesoporous silicas: new catalysts for oxidation reactions in the liquid phase[J]. Chem. Commun., 1996, 5: 651-652
    [21] Wang Xu Xu, Lefebvre, Frederic, et al. Reaction of Surface Hydroxyl Group of MCM-41 with Tetraneopentylzirconium[J]. Micro. Meso. Mater., 2001, 42(2-3): 269-276.
    [22] Gontier S, Tuel A. Synthesis and Characterization of Ti-Containing Mesoporous Silicas[J]. Zeolites, 1995, 15: 601-610.
    [23] Keddy K M. Mesoporous Molecular Sieve MCM-41 Supported Co-Mo Catalyst for Hydrodesulfurization of Petroleum Resida[J]. Cataltsis Today, 1998, 43(3): 261-272
    [24] Kawi S, Te M. MCM-48 supported chromium catalyst for trichloroethylene oxidation[J]. Catalysis Today, 1998, 44: 101-109.
    [25] Zhang W Z, Wang J L, Tanev P T, et a1. A new nonionic surfactant pathway to mesoporous molecular sieve silicas with long range framework order [J]. Journal of the Chemical Society, Chemical Communications, 1999, (18): 1803-1804.
    [26] Bredgeault J M, Piquemal J Y, Briot E, et a1. New approaches to anchoring or inserting highly dispersed tungsten oxo(peroxo) species in mesoporous silicates[J]. Micro. Meso. Mater, 2001, 44-45: 409-417
    [27] Zhao D Y, Goldfarb D. Synthesis of mesoporous manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-L[J]. Chem Soc Chem Commun, 1995: 875-876.
    [28] Das T K, Chaudhari K, Chandwadkar A J, et a1. Synthesis and catalytic properties of mesoporous tin silicate molecular sieves[J]. Chem Soc, Chem Commun, 1995, 2495-2496
    [29] Corm A, Fornes V, Navarro M T, et al. Acidity and stability of MCM-41 crystalline aluminosilicates[J]. Catal., 1994, 148(2): 569-574
    [30] Maschmeyer T, Rey F, Sankar G, et al. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica[J]. Nature, 1995, 378: 159-162
    [31] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatics Compounds[J]. Nature, 1994, 368: 321-323
    [32] 孙建敏, 孟祥举, 肖丰收, 等. Cu修饰的MCM-41的合成、表征及对芳烃羟化反应催化作用的研究[J]. 高等学校化学学报, 2000, 21(9): 1451-1454.
    [33] Beck J S,Vatuli J C,Roth W J,et a1. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates[J]. Journal of the American Chemical Society, 1992, 114: 10834-10843
    [34] Corma A, Martinez A, M artinez, et a1. Hydrocracking of vacuum gas oil on the novel mesoporous MCM-41 aluminosilicate catalyst[J]. Journal of Catalysis, 1995, 153: 25-31.
    [35] Grieken R V, Serrano D P, Aguado J, et a1. Heterogeneous events in the crystallization of zeolites[J]. J. Mater. Chem, 2001, 58.59: 127-142.
    [36] Shinoda T, Izumi Y, Makoto O. Proposed Models of Mesopore Structures in Sulfuric Acid-Treated Montmorillonites and K10[J]. Chem. Soc. Chem. Commun., 1995: 1801-1802.
    [37] Jentys A, Schiesser W, Vinek H. Catalytic activity of Pt and tungstophosphoric acid supported on MCM-41 for the reduction of NOx in the presence of water[J]. Catalysis Today, 2000, 59: 313-321.
    [38] Toshio O A, Noritaka M, Makoto M. Catalysis by heteropoly compounds--recent developments[J]. Applied Catalysis A: General, 2001, 222: 63-77.
    [39] 刘持标, 朱凯征, 吴 越, 等. 铜铝水滑石类化合物催化苯酚羟化反应的研究[J]. 化学学报, 1998, 56(1): 32-36.
    [40] Behrens P. Voids in variable chemical surroundings: mesoporous metal oxides[J]. Angew Chem Int Ed Engl, 1996, 35(5): 515-518
    [41] Linsebigier A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surface: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95(3): 735 - 758
    [42] 沈伟韧, 赵文宽, 贺飞, 等. TiO2光催化器及其在废水处理中的应用[J]. 化学进展, 1998, 10(4): 349-361
    [43] Driessen M D, Grassian V H. Photooxidation of trichloroethylene on Pt/TiO2[J]. Phys. Chem., B 1998, 102 (8): 1418-1423
    [44] 钟萍, 孔令仁, 刘光明, 等. 正十六烷光催化降解的羟自由基测定及其反应速率常数[J]. 高等学校化学学报, 2002, 23 (12): 2313-2316
    [45] 范崇政, 丁延伟, 吴缨, 等. 纳米TiO2光催化氧化正丙醇和异丙醇反应的研究[J]. 中国科学技术大学学报, 2003, 33 (1): 99-106
    [46] 赵德明, 史惠祥. 复合纳米TiO2光催化氧化苯酚的动力学[J]. 中国给水排水, 2004, 20(1): 48-49
    [47] 李芳柏, 古国榜, 李新军. 纳米复合的 SbO2-TiO2 光催化性能研究[J]. 无机化学学报, 2001, 17 (1): 37-42
    [48] 颜秀茹, 郭伟巍, 宋宽秀. 新型光催化 TiO2-SiO2 的制备和催化性能研究[J]. 化学工业与工程, 2000, 17 (6): 330-335
    [49] 丁新更. 银离子掺杂纳米二氧化钛粉体的制备、性能研究与应用[D]. [博士论文]. 浙江: 浙江大学, 2001
    [50] Nicole Jaffrezic – Renault, Pierre Pichat, Alain Foissy, et al. Study of the effect of deposited platinum particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoreses, and labeled – ion adsorption[J]. J. Phys. Chem., 1986, 90(12): 2733-2738
    [51] 李芳柏, 李湘中, 古国榜, 等. 金离子掺杂对二氧化钛光催化性能的影响[J]. 化学学报, 2001, 59: 1072
    [52] Wonyong Choi, Termin A, Hoffmann R M. The Role of Metal Ion Dopants in Quantum – Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics[J]. J. Phys. Chem., 1994, 98(51): 13669-13679
    [53] 侯梅芳, 李芳柏, 李瑞丰,等. 钕掺杂提高TiO2光催化活性的机制[J]. 中国稀土学报, 2004, 22(1): 76-80
    [54] Milis A, Peral J, Domenech X. Heterogeneous Photocatalytic oxidation of nitrite over Fe – doped TiO2 samples[J]. Journal of Molecular Catalysis, 1994, 87(1): 67-74
    [55] Y R Do, Lee W, Dwight K, et al. The effect of WO3 on the Photocatalytic activity of TiO2[J]. Journal of Solid State Chemistry, 1994, 108(1): 198-201
    [56] Patrick B, Prashant V, Kamat. Photoelectrochemistry in semiconductor particulate systems. Part 17. Photosensitization of large – bandgap semiconductors: charge injection from triplet excited thionine into zinc oxide colloids[J]. J. Phys. Chem., 1992, 96(3): 1423-1428
    [57] Kamat P V, Patrick B. Photoelectrochemistry in semiconductor particulate systems. Part 17. Photosensitization of large – bandgap semiconductors. Charge injection from triplet excited thionine into ZnO colloids[J]. J. Phys. Chem., 1992, 96: 1423-1428
    [58] 孙 康, 王永刚. 溶胶-凝胶法制备超细 TiO2 粉末[J]. 无机盐工业, 1997, (3): 9-10
    [59] Miah M Y, Hiroaki I, Hiroshi H. Preparation of mesoporous TiO2 thin films by surfactant templating[J]. Non-Cryst Solids, 2001, 285: 90-95
    [60] Soler-Illia G J A, Louis A, Sanchez C. Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly[J]. Chem Mater, 2002, 14 (2): 750-754
    [61] 郑 珊, 高 濂, 张青红, 等. TiO2 修饰的介孔分子筛 MCM-41 的合成、表征及光催化性研究[J].化学学报, 2002, 58 (11): 1403-1408
    [62] Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method[J]. Angew Chem Int Ed, 1995, 34 (18): 2014-2020
    [63] Dai Q, Li P, Miao Y Q. Synthesis of pure TiO2 mesoporous molecular sieves and their photocatalytic activity[J]. Chinese Journal of Catalysis, 1998, 19 (6): 483-484
    [64] Yue Y H, Gao Z. Synthesis of mesoporous TiO2 with a crystalline framework[J]. Chem Commun, 2000, 18: 1755-1758
    [65] David G, Galo J A A, Florence B. Highly organized mesoporous titania thin films showing mono-or-iented 2D hexagonal channels[J]. Adv Mater, 2001, 13 (14): 1085-1088
    [66] Yue Y H, Ma Z, Hua W M, et al. Sy0nthesis and characterization of mesoporous titanium dioxide[J]. Actu Chem Sinica, 2000, 7 (58): 777-780
    [67] Wei Y, Jin D L, Ding T Z. A non-surfactant templating route to mesoporous titanium materials[J]. Advanced Materials, 1998, 3 (4): 313-316
    [68] 郑金玉, 丘坤元, 危 岩. 有机小分子模板法合成二氧化钛中孔材料[J]. 高等学校化学学报, 2000, 21 (4): 647-650
    [69] Zheng J Y, Pang J B, Qiu K Y. Synthesis of mesoporous titanium dioxide materials by using a mixture of organic compounds as a non-surfactant template[J]. Mater Chem, 2001, 11: 3367-3372
    [70] Yao N, Xiong G X, Zhang Y H. Preparation of novel uniform mesoporous alumina catalysts by the sol-gel method[J]. Catalysis Today, 2001 (68): 97-109
    [71] Zhang Q H, Gao L, Zheng S. Preparation of mesoporous TiO2 photocatalyst by selective dissolving of Titania-Silica binary oxides[J]. Chem Lett, 2001: 1124-1125
    [72] Pang J B, Qiu K Y, Wei Y. Synthesis of mesoporous silica materials with ascorbic acid as template via sol-gel process. Chinese[J]. Chem, 2000, 18 (5): 693-697
    [73] Zheng J Y, Pang J B, Qiu K Y. Synthesis of mesoporous silica materials weith hydroxyacetic acid derivatives as templates via a sol-gel process[J]. Inorg. Organometallic Polymers, 2000, 10 (3): 103-113
    [74] Pang J B, Qiu K Y, Wei Y. Preparation of mesoporous silica materials with non-surfactant hydroxyl-carboxylic acid compounds as templates via sol-gel process.[J]. Non-Cryst. Solids, 2001, 283: 101-108
    [75] Soonhyun Kim, Wonyong Chio. Kinetics and Mechanisms of Photocatalytic Degradation of (CH3)n NH4 in TiO2 Suspension: the Role of OH Radicals[J]. Environ Sci Technol, 2002, 36(9): 2019-2025.
    [76] Alexandre V, Vorontsov, Evgueni N, et al. TiO2 reaction in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor[J]. Applied Catalysis B:Environmental, 2002, 44(1): 25-40
    [77] 姜鸿基, 李彦锋, 叶正芳, 等. 纳米TiO2光催化剂的制备及在降解有机物方面的研究进展[J]. 功能材料, 2002, (4): 260.
    [78] 崔晓莉,江志裕. 纳米TiO2薄膜制备方法研究进展[J]. 化学进展, 2002, 14(5): 325-331
    [79] 程银兵, 马建华, 等. 热处理对溶胶—凝胶TiO2薄膜的晶相转变和性能影响[J]. 功能材料, 2003, 34(1): 73-75
    [80] Yamashita H, Harada M, Misaka J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2[J]. Catal Today, 2000, 84: 191.
    [81] Okuya M, Prokudina N, K Mushika, et al. Thin Films Synthesized by the Spray Pyrolysis Deposition (SPD) Technique [J]. Journal of the European Ceramic Society, 1999, 19(6): 903-906
    [82] Okuya M, Nakade K, Kaneko S. Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 2002, 70(11): 425-435
    [83] Furman P, Gluszek J, masalaki J. Titanium dioxide film obtained using the MOCVD method on 316L steel[J]. J Mater Sci Lett, 1997, 16(6): 471-472.
    [84] Kavan L, O'Regan B, Kay A, et al. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3[J]. J Electroanal Chem, 1993, 346: 291-307.
    [85] 崔晓莉, 江志裕. 纳米二氧化钛薄膜的制备及特性研究[J]. 电镀与涂饰, 2002 (10) :17-21
    [86] Deki S , Aoi Y. Titanium(IV) oxide thin films prepared from aqueous solution[J].Chem lett, 1996(294): 433-434
    [87] Nagayama H , Murata A, Honda H, et al. Profiles of circulating inflammatory and anti-inflammatory cytokines in patients with hemolytic uremic syndrome due to e.colio157 infection[J]. Electrochem Soc[J ] , 1998, 10(7): 544-548
    [88] 周磊, 赵文宽. 液相沉积法制备光催化活性TiO2薄膜[J]. 应用化学, 2002, 19(10): 919
    [89] Gao Yuan, Yu Wei. Sol-Gel Template Synthesis and Photocatalytic Activity of TiO2 Nanofibrils Loaded on Al2O3 Template[J]. Chinese Chemical Lettrts, 2002, 13(11): 1115
    [90] 李晓娥, 祖庸. 化工新型材料溶胶-凝胶法制备超细二氧化钛[J]. 化工新型材料, 1997 (10) : 28.
    [91] 王瑞斌, 戴松元, 王孔嘉. Sol-Gel法制备纳米TiO2过程中水解pH值的影响及其性能表征[J]. 功能材料, 2002 (3): 296
    [92] 陈国平, 李启甲, 陈平. TiO2光催化膜的成膜技术[J]. 西北轻工业学院学报, 2001(6): 9
    [93] 刘鸿, 成少安, 张鉴清, 等. 泡沫镍载二氧化钛光催化降解磺基水杨酸[J]. 中国环境科学, 1998, 18(6): 548-551
    [94] 范山湖, 陆强. TiO2固定床光催化氧化活性的研究[J]. 中山大学学报(自然科学版), 1999, 38(6): 127
    [95] Nozawa M, Tanigawa K, Hosomi M, et al. Removal and decompositionof malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon[J]. Water Science and Technology, 2001, 44: 127-133.
    [96] 蒋引珊, 金为群, 张军, 等. TiO2/沸石复合物结构与光催化性能[J]. 无机材料学报, 2002, 17(6): 1301-1305.
    [97] 黄丹, 黄宁平, 袁春伟. TiO2薄膜的自组装制备及表征[J]. 东南大学学报, 1997(1): 68-71
    [98] Burnside S D. Self-Organization of TiO2 Nanoparticles in Thin Films[J]. Chem. Mater. 1998, 10: 2419-2425
    [99] Jian Jin, Lin Li. Preparation of titanium dioxide and barium titanate nanothick film by Langmuir–Blodgett technique[J]. Thin Solid Films, 2000 (10): 218
    [100] 周宏湘. 光催化在纤维上的应用[J ]. 丝绸, 1999 (2) : 52
    [101] Edgar lotero, Chau Nguyen. Hybrid TiO2-SiO2 Organic/Inorganic Gels: Preparation, Characterization, and Temperature-Programmed Pyrolysis and Oxidation Studies[J]. Chem. Mater. 1998, 10, 3756-3764
    [102] 吴学栋. 光触媒与造纸[J]. 纸和造纸. 2004, 1 (1): 72-75
    [103] 陈晓青, 杨娟玉, 蒋新宇, 等. 掺铁 TiO2 纳米微粒的制备及光催化性能[J]. 应用化学, 2003, 20 (1): 73-76
    [104] 井立强, 孙晓君, 蔡伟民, 等. 掺杂 Ce 的 TiO2 纳米粒子的光致发光及其光催化活性[J]. 化学学报, 2003, 61 (8): 1241-1245
    [105] Misook K, Suk J C, Jong Y P. Photocatalytic performance of nanometer-sized FexOy/TiO2 particle synthesized by hydrothermal method[J]. Catalysis Today, 2003, 87: 87-97
    [106] Shi Y P, Yang Z H, Feng X, et al. Study on photocatalytic degradation of CHCl3 over Pt/ TiO2 fiber catalyst[J]. Chinese Journal of Catalysis, 2003, 24 (9): 663-668
    [107] Chen H, Jin X L, Zhu K, et al. Photocatalytic oxidative degradation of acridine orange by TiO2 nanoparticles doped with metal ion[J]. China Environmental science, 2000, 20 (6): 561-564
    [108] Castellan A, Stephane G, Manuel G H, et al. Photochemical bleaching of chemical pulps catalyzed by titanium dioxide[J].Chem, 1998, 1(115): 73-80
    [109] Christian L, Knut H, Horst K. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalysts[J]. Applied Catalysis B, 2001, 32(4): 215-227
    [110] Yun H S, Miyazawa K C, Honma I, et al. Synthesis of semicrystallized mesoporous TiO2 thin films using triblock copolymer templates[J]. Mater Sci Engin C, 2003, 23 (16): 487-494
    [111] Li Z J, Hou B, Xu Y, et al. Preparation and characterization of silica-modified titanium dioxide nanoparticles by co-precipitation method[J]. Acta Phys. Chim. Sin. 2005, 21 (3): 229-233
    [112] Hongmei L, Cheng W, Yushan Y. Synthesis of mesostructured titania with controlled crystalline framework[J]. Chem. Mater. 2003, 15 (20): 3841-3846
    [113] Chen P H, Jeng C H. Kinetics of photocatalytic oxidation of trace organic compounds over titanium dioxide[J]. Environment International, 1998, 24(8): 871-879
    [114] Matthews R.W. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide[J]. Catal., 1988, 111(2): 264-272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700