用户名: 密码: 验证码:
直接甲醇燃料电池阻醇质子交换膜制备、表征及其质子/甲醇传输机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC),其燃料甲醇常温下为液体,储存和运输较为便利和安全,并且具有高的能量密度;因其直接氧化甲醇,电池系统较为简单和易于小型化。因此直接甲醇燃料电池作为新一代高效电源在便携式电子设备、电动车上具有良好的应用前景。作为直接甲醇燃料电池关键组件之一的质子交换膜,目前广泛使用的是全氟磺酸膜,如杜邦公司生产的Nafion系列产品。这种材料具有优异的化学及热稳定性,并且当其充分润湿时表现出优秀的质子电导率。但是全氟磺酸膜也存在着燃料甲醇从阳极向阴极渗透严重的问题,甲醇渗透不但浪费燃料(因渗透造成得浪费率最多可达40%),而且会在阴极造成混合电位并毒化阴极催化剂,从而大大降低了燃料电池的性能,因此甲醇渗透成为阻碍直接甲醇燃料电池实际应用的主要问题之一。
     要改进现有质子交换膜的性能,就必须深入了解质子交换膜中甲醇传输的机制以及影响甲醇传输的各项主要因素。基于以上研究目标,本论文对现有全氟磺酸膜进行了复合改性以降低其甲醇渗透率,尝试制备了几种新型部分氟化型复合聚合物膜体系,并对质子交换膜的结构、阻醇性能及其可能的物质传输机理进行了研究,取得的主要结果如下:
     1.硅氧化物表面不同基团调控全氟磺酸质子交换膜性能的研究
     论文选用了具有极性较强的相对亲水有机基团的硅烷偶联剂,制备了一系列Nafion/有机硅氧化物复合膜。发现当复合膜中所含的硅氧化物量基本相同时,使用有机基团中含有氨基的硅烷偶联剂改性的复合膜表现出极低的甲醇渗透率及质子电导率。在此基础上还发现,当改变与-NH_2相连的基团的电负性时,可以对生成的复合膜的甲醇渗透率及质子电导率进行调控。如利用带有脲基的有机硅烷偶联剂改性的复合膜与Nafion117膜相比,甲醇渗透率降低了89%,而质子电导率仅下降了49%;并且表现出比Nafion117更稳定的电池性能。实验结果表明为降低全氟磺酸膜的甲醇渗透率,应从甲醇的渗透通路——膜内部互相连接的离子簇入手。而离子簇是由磺酸基团充分水合并集聚形成的,因此利用与磺酸基团有相互作用的添加剂可以影响离子簇的形成,从而抑制甲醇的渗透,但由于质子传导也必须经由相互连接的离子簇,所以这种影响同时降低了膜的质子电导,对膜的综合性能的提高产生了不利影响。
     2.半互贯穿网络型(semi-IPN)Nafion/PVP(聚乙烯吡咯烷酮)复合膜的性能研究。
     通过对Nafion/有机硅氧化物复合膜的研究发现,所得复合膜的甲醇渗透率的降低总是以牺牲其质子电导率为代价的。这可能是由于在磺酸化质子交换膜中甲醇与质子有着近似的传输路径,因而很难提高此类膜对质子的选择透过性。而互贯穿聚合物网络膜(IPN)由两种或多种相互独立的交联聚合物构成,通过调节各种聚合物的比例、交联程度、交联结构有可能获得高质子选择性的质子交换膜。
     本论文选择4,4’-双叠氮菧-2,2’二磺酸钠(DAS)为交联试剂,以紫外光引发,使聚乙烯吡咯烷酮(PVP)在Nafion膜中发生交联,从而制备了semi-IPN型Nafion/PVP复合膜。对复合膜的性能测试发现,PVP含量不同的复合膜,均表现出较低的甲醇渗透率(为Nafion117的41~47%),而PVP含量较少的复合膜表现出比Nafion117更高的室温质子电导率(最多可增加~30%),并且复合膜还表现出比Nafion117膜更佳的热稳定性,其氟醚支链的分解温度提高了近60度。通过对复合膜广角X射线衍射及1H固体核磁共振谱的表征,认为这是因为网状的交联PVP结构限制了Nafion分子链的自由蠕动,影响了全氟磺酸膜充分水合时内部离子簇的相互连接,从而抑制了甲醇渗透;而质子具有通过氢键的跃迁传输机制,交联试剂的引入同时增加了复合膜中磺酸基团的密度,所以特定交联度的复合膜表现出更高的质子电导。研究结果表明,利用质子相对于甲醇所独有的跃迁传输机制,可能设计出质子选择性更优的高性能质子交换膜。
     3.互贯穿网络型(IPN)聚偏氟乙烯(PVDF)/2-丙烯酰胺基-2-甲基丙磺酸(AMPS)复合聚合物质子交换膜。
     针对目前全氟磺酸质子交换膜价格昂贵的问题,并为了进一步研究IPN型质子交换膜的特性,本论文还开展了IPN型部分氟化复合聚合物质子交换膜的研究。合成了以聚偏氟乙烯(PVDF)为阻醇聚合物及质子交换膜聚合物骨架,以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为离子交换载体(以乙烯基三乙氧基硅烷(VTES)、二乙烯基苯(DVB)、N,N′-亚甲基双丙烯酰胺(NMBA)等对AMPS进行交联)的IPN型PVDF/AMPS质子交换膜。通过对AMPS的预聚合,选择合适的交联试剂及用量,优化交联反应时间和温度等措施,使制备的质子交换膜具有良好的机械性能,与Nafion117相比甲醇渗透率降低了2/3,质子电导率基本不变,质子选择系数可达Nafion117膜的2.5倍。同时发现,相对于离子聚合物中离子交换位(磺酸基团密度)的多少,膜的交联程度、微观结构及表面形貌对质子交换膜的性能影响更大。在此基础上,我们对PVDF/AMPS质子交换膜进行了紫外接枝AMPS的表面修饰,实验结果发现,表面改性可进一步提高质子交换膜的质子电导,使膜的质子选择系数达到Nafion117膜的~3.0倍。
The direct methanol fuel cell (DMFC) is a promising power source candidate forportable electronic devices and electric vehicles due to its high energy efficiency andenvironmental compatibility. Its fuel, methanol, which is liquid at room temperature,can be easily and safely stored and transported. In addition, the DMFC system issimple in design and can be operated without fuel reforming. So far, theperfluorosulfonic acid (PFSA) membrane (e.g. Nafion by Dupont) has been usedwidely as proton exchange membrane (PEM) for the DMFC, owing to its excellentstability both in chemical and thermal environment, as well as its high protonconductivity when contains enough water. However the main disadvantage of PFSAmembrane is methanol crossover, and over 40% of methanol could across themembrane at most. Methanol crossover causes loss of fuel, reduced cathode voltageand cell performance. Such disadvantage is also one of the major problems in DMFCapplication.
     In order to improve the performance of the existing PEM, it's important tounderstand the methanol crossover mechanism and the effects of PEM properties onthe methanol transport in PEM. Therefore, the thesis mainly concentrated onmodifying the PFSA membrane to lower its methanol permeability, trying to designpartial fluorizated PEM candidate, as well as investigating the structure, themethanol-blocking performance, methanol and proton transport mechanism of thePEM. The main results of the thesis are as follows:
     1.The effects of organic silica bearing different organic groups on the performancesof the Nafion/organic silica composite membranes.
     A series of Nafion/organic silica hybrid membranes has been prepared by usingorganic silane coupling agents (SCA) bearing different hydrophilic functional groupsWith approximate silica content, the composite membrane modified by SCA bearingaliphatic amino groups (SILCPM3) was found to exhibit extremely low protonconductivity and methanol permeability compared with other composite membranes. Moreover, by controlling the electronegativity of the group connected to the aminogroup, the methanol permeability and proton conductivity of the compositemembrane could also be adjusted. E.g. the composite membrane modified by SCAbearing urea group was found to exhibit 89% lower methanol permeability, 49%lower proton conductivity, as well as improved cell performance compared withNafion 117 membrane. The results showed that, in order to decrease methanolcrossover in the films, we should modify the PFSA membrane aiming at themethanol transfer path(the connected ion clusters formed by terminal -SO_3Hgroups). Thus the additive which has interaction with sulfonic group could alsoaffect the formation of ion clusters, and restricts the methanol permeability as well.However, proton transportation also involves in the connected clusters, the effect ofadditive on sulfonic group may also depress the proton conductivity, and worsen thecell performance of the composite membranes.
     2. The study of Nafion/cross-linked PVP semi-interpenetrating polymer network(IPN) membrane.
     From the study of Nafion/organic silica composite membranes, it can be seen thatthe transfer of proton and methanol decreases simultaneously under modifying. Thissuggests that protons and methanol have similar molecular transport mechanisms insulfonic acid containing PEMs, which makes it difficult to improve selectivity forthe DMFC application. Interpenetrating polymer networks (IPNs) consists of twoindependent cross-linked polymer, the IPNs may obtain high selectivity in theory byadjusting the structure, the molar ratio, and the cross-linking degree of the twopolymers.
     The thesis chose 4, 4'-diazostilbene-2, 2'-disulfonic acid disodium salt (DAS)as cross-linking agent to crosslink poly(vinyl pyrrolidone) (PVP) in commercialNafion117 membranes under the irradiation of ultraviolet. The semi-IPNNafion/PVP membranes exhibited decreasing methanol permeability with theincreasing of the content of PVP. However, with appropriate amount of PVP, thesemi-IPN membrane showed even higher proton conductivity than Naifonl 17(~30% higher). It was also found that the decomposition temperature of the fluorinated etherside-chain of semi-IPN membranes was 60℃higher than that of Nafion117, whichmeans that the semi-IPN membranes had better thermal stability than pristineNafion1 17. From the characterization of wide angle XRD and 1 H solid-state NMRspectra, it can be concluded that the introduction of cross-linked PVP networkrestricted the free squirm of Nafion side-chain, which influenced the hydration ofterminal sulfonic acid group and weakened the connection of ion clusters, thusdepressed the methanol crossover. Howerver, the extra sulfonic acid groups suppliedby crosslinking agent DAS as well as the acid-base interaction produced by aminogroup and sulfonic acid group strengthened the hopping transfer of proton, thus thesemi-IPN membranes exhibited improved proton conductivity with appropriateamount of PVP. Furthermore, the unique Grotthuss transfer mechanism of protoncompared with methanol moleculer should be taken into account for designing andsynthesizing more suitable proton exchange membrane candidates for DMFC.
     3. The preliminary study of PVDF/AMPS interpenetrating polymer networkmembrane.
     Aiming at reducing the cost of PEM, and the further exploration of new IPNmembranes with good performance, a novel partial fluorizated PEM candidate wasalso been prepared. Poly (vinylidene fluoride) (PVDF) was chosen as polymermatrix, 2-acryamido-2- methyl-1-propane sulfonic acid (AMPS) was chosen asionomer. AMPS was cross-linked by different cross-linking agents (e.g.vinyltriethoxysilane (VTES), divinylbenzene (DVB), andN,N'-Methylenebisacrylamide (NMBA)) to form PVDF/ AMPS IPN membranes.Through the pre-polymerization of AMPS, selecting proper cross-linking agent, aswell as optimizing molar ratio, reaction time and temperature, the performance of thePVDF/AMPS IPN membranes had been optimized. Compared with Naifonl17, thenew membrane exhibited~2/3 lower methanol permeability but similar protonconductivity, and~1.5 time higher proton selectivity. It was also found that thecross-linking degree, the micro structure and the surface morphology of the IPN membranes was more important to proton selectivity than the amount of ionomer.The thesis also tried to do some surface modification of PVDF/AMPS IPNmembrane via photoinitiated graft polymerisation with AMPS. The results showedthat, after surface modification, the proton selectivity of the new membrane canreach 3 times of that of Naifon117.
引文
[1]N.A.Hampson,M.J.Wilars,The methanol-air fuel cell: A selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes,J.Power Sources 4 (1979)191-201.
    [2]X.Ren,M.S.Wilson,S.Gottesfeld,High Performance Direct Methanol Polymer Electrolyte Fuel Cells.J.Electrochem.Soc.143(1996)L12-15.
    [3]S.R.Narayanan,A.Kindler,B.Jeffries-Nakamura,W.Chun,H.Frank,M.Smartm,T.I.Valdez,S.Surampudi,G.Halpertm J.Kosek,C.Cropley,in: Proceedings of the 11th Annual Battery Conference on Applied Advances,1996,p.113.
    [4]T.Schultz,K.Sundmacher,Mass,charge and energy transport phenomena in a polymer electrolyte membrane (PEM)used in a direct methanol fuel cell (DMFC): Modelling and experimental validation of fluxes,J.Membr.Sci.,276(2006)272-285.
    [5]毛宗强,燃料电池,北京:化学工业出版社,2005,47-48
    [6]E.J.Roche,M.Pineri,R.Duplessix,A.M.Levelut,Small-angle scattering studies of nafion membranes,J.Polym.Sci.,Polym.Phys.Ed.19(1981)1-11.
    [7]E.J.Roche,M.Pineri,R.Duplessix,Phase separation in perfluorosulfonate ionomer membranes,J.Polym.Sci,Polym.Phys.Ed.20(1982)107-116
    [8]W.Y.Hsu,T.D.Gierke,Ion transport and clustering in nafion perfluorinated membranes,J.Membr.Sci.13(1983)307-326.
    [9]K.A.Mauritz and R.B.Moore,State of Understanding of Nafion,Chem.Rev.,104 (10)(2004)4535-4586
    [10]M.Fujimura,T.Hashimoto,H.Kawai,Small-angle x-ray scattering study of perfluorinated ionomer membranes.1.Origin of two scattering maxima,Macromolecules,14(1981)1309-1315.
    [11]M.Fujimura,;R.Hashimoto,H.Kawai,Small-angle x-ray scattering study of perfluorinated ionomer membranes.2.Models for ionic scattering maximum,Macromolecules 15(1982)136-144.
    [12]K.D.Kreuer,Proton Conductivity: Materials and Applications,Chem.Mater.,8 (1996)610-641
    [13]K.D.Kreuer,W.Weppner,A.Rabenau,Vehicle mechanism,a new model for the interpretation of the conductivity of fast proton conductors,Angew.Chem.,Int.Ed.Engl.21(1982)208-209.
    [14]K.Krynicki,Ch.D.Green,D.W.Sawyer,Pressure and temperature dependence of self-diffusion in water,Faraday Discuss.Chem.Soc.66(1978)199-208.
    [15]K.R.Harris,L.A.Woolf,Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water,J.Chem.Soc.Faraday Trans.l 76(1980)377-385.
    [16] Th. Dippel, K.D. Kreuer, Proton transport mechanism in concentrated aqueous solutions and solid hydrates of acids, Solid State Ionics 46(1991)3-9.
    [17] K.D. Kreuer, Th. Dippel, W. Meyer, J. Maier, Mater. Res.Soc. Symp. Proc. 1993,293: 273.
    [18] S.J. Paddison, R. Paul, T.A. Zawodzinski, Jr., A statistical mechanical model of proton and water transport in a PEM . J. Electrochem. Soc. 147(2000)617-626
    [19] J. Divisek, M. Eikerling, et al., A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton-Exchange Membranes Swollen in Water, J. Electrochem. Soc. 145 (1998) 2677-2683.
    [20] M.W. Verbrugge, Methanol Diffusion in Perfluorinated Ion-Exchange Membranes, J. Electrochem. Soc. 136 (1989)417-423.
    [21] X. Ren, T. A. Zawodzinski, S. Gottesfeld, et al, Methanol Transport Through Nafion Membranes Electro-osmotic Drag Effects on Potential Step Measurements, J. Electrochem. Soc., 147 (2) (2000) 466-474
    [22] N.W. Deluca, Y.A. Elabd, Polymer Electrolyte Membranes for the Direct Methanol Fuel Cell: A Review, J. Polym. Sci.: B. Polym. Phys. 44(2006)2201-2225
    [23] T. Okada, G. Xie, O. Gorseth, S. Kjelstrup, N. Nakamura, T. Arimura, Ion and water transport characteristics of Nafion membranes as electrolytes, Electrochim. Acta. 43(1998) 3741-3747.
    [24] C. Pu, W. Huang, K.L. Ley, E.S. Smotkin, A methanol impermeable proton conductivity composite electrolyte direct methanol system , J. Electrochem. Soc. 142(7)(1995) L119-121.
    [25] G.T. Burstein, C.J. Barnett, A.R. Kucernak, K.R. Williams, Aspects of the anodic oxidation of methanol, Catal. Today 38(1997) 425-437.
    [26]. T. A. Zawodzinski, Jr., C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E.Springer, and S. Gottesfeld, Water Uptake by and Transport Through Nafion(?) 117 Membranes, J. Electrochem. Soc.l40(1993)1041-1047.
    [27]. T. A. Zawodzinski, Jr., T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, andS. Gottesfeld, A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes, J. Electrochem. Soc. 140(1993)1981-1985.
    [28]. Y. Sone, P. Ekdunge, and D. Simonsson, Proton Conductivity of Nafion 117 as Measured by a Four-Electrode AC Impedance Method, J. Electrochem. Soc. 143( 1996) 1254-1259
    [29]. S. Surampudi, S. R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. Laconti, J. Kosek, G. K. Surya Prakash, and G. A. Olah, Advances in direct oxidation methanol fuel cells, J. Power Sources 47(1994) 377-385.
    [30]. R. F. Savinell, J. S. Wainright, and M. Litt, in Proton Conducting Membrane Fuel Cells II, S. Gottesfeld and T. F. Fuller, Editors, PV 98-27, p. 81, The Electrochemical Society Proceedings Series, Pennington, NJ, 1998
    [31]. K. T. Adjemian, S. J. Lee, S. Srinivasan, J. M. Ogden, and A. B. Bocarsly, Abstract 95, The Electrochemical Society Meeting Abstracts, Vol. 2000-1, Toronto, Ontario,Canada, May 14-18, 2000.
    [32] K.T. Adjemian, S.J. Lee, S. Srinivasan, J. Benziger, A.B. Bocarsly, Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140℃, J. Electrochem. Soc. 149 (3) (2002) A256-261.
    [33]. F. M. Vichi, M. T. Colomer, and M. A. Anderson, Nanopore Ceramic Membranes as Novel Electrolytes for Proton Exchange Membranes, Electrochem. Solid-State Lett. 2(1999)313-316
    [34] P.L. Antonucci, A.S. Ario, P. Creti, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion(?)-silica electrolyte for high temperature operation, Solid State Ionics 125 (1999) 431-437.
    [35] P. Dimitrova, K.A. Friedrich, B. Vogt, U. Stimming, Transport properties of ionomer composite membranes for direct methanol fuel cells, J. Electroanal.Chem. 532 (2002) 75-83.
    [36] P. Dimitrova, K.A. Friedrich, U. Stimming, B. Vogt, Modified Nafion(?)-based membranes for use in direct methanol fuel cells, Solid State Ionics 150 (2002) 115-122.
    [37] R.C. Jiang, H. R. Kunz, J. M. Fenton, Composite silica/Nafion(?) membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells, J. Membr. Sci. 272 (2006) 116-124.
    [38] C.N. Li, G.Q. Sun, S.Z. Ren, et al., Casting Nafion-sulfonated organosilica nano-composite membranes used in direct methanol fuel cells, J. Membr. Sci. 272 (2006) 50-57
    [39] S.Z. Ren, G.Q. Sun, C.N. Li, et al., Organic silica/Nafion(?) composite membrane for direct methanol fuel cells, J. Membr. Sci. 282 (2006) 450-455.
    [40] G.A. Olah, P.S. Iyer, G.K.S. Prakash, Perfluorinated Resinsulfonic Acid (Nafion-H(?)) Catalysis in Synthesis, Synthesis (1986)513-531.
    [41] K.A. Mauritz, R.F. Storey, C.K. Jones, Multiphase Polymer Materials: Blends and Ionomers, ACS Symposium Series No. 395, American Chemical Society, Washington, DC, 1989, p. 401.
    [42] K.A. Mauritz, Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides, Mater. Sci. Eng. C6 (1998) 121-133.
    [43] Q. Deng, R.B. Noore, K.A. Mauritz, Novel NafiodORMOSIL Hybrids via in Situ Sol-Gel Reactions. 1. Probe of ORMOSIL Phase Nanostructures by Infrared Spectroscopy, Chem. Mater. 7 (1995) 2259-2268.
    [44] Q. Deng, R.B. Noore, K.A. Mauritz, Nafion/ORMOSIL Hybrids via in Situ Sol-Gel Reactions. 3. Pyrene Fluorescence Probe Investigations of Nanoscale Environment, Chem. Mater. 9 (1997) 36-44.
    [45] Q. Deng, K.M. Cable, R.B. Noore, K.A. Mauritz, Small-Angle X-Ray Scattering Studies of Nafion/[Silicon Oxide] and Nafion/ORMOSIL Nanocomposites, J. Polym. Sci.: B. Polym. Phys. 34 (1996) 1917-1923.
    [46] Q. Deng, R.B. Noore, K.A. Mauritz, Nafion(?)/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol-gel reactions: Characterization of fundamental properties, J. Appl. Polym. Sci. 68 (1998) 747-763
    [47] S.K. Young, W.L. Jarrett, K.A. Mauritz, Nafion/ORMOSIL nanocomposites via polymer-in situ sol-gel reactions. 1. Probe of ORMOSIL phase nanostrutures by ~(29)Si solid-state NMR spectroscopy, Polymer 43 (2002) 2311-2320.
    [48] N. Miyake, J.S. Wainright, R.F. Savinell, Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Proton Electrolyte Membrane Fuel Cell Applications: Ⅰ. Proton Conductivity and Water Content, J. Electrochem. Soc. 148(8) (2001)A898-A904
    [49] N. Miyake, J.S. Wainright, R.F. Savinell, Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: Ⅱ. Methanol Uptake and Methanol Permeability, J. Electrochem. Soc. 148(8)(2001 )A905-A909
    [50] Y.J. Kim, W.C. Choi, S.I. Woo, W.H. Hong, Proton conductivity and methanol permeation in Nafion~(TM)/ORMOSIL prepared with various organic silanes, J. Membr. Sci., 238 (2004) 213-222.
    [51] M. Lavorgna, L. Mascia, G. Mensitieri et al, Hybridization of Nafion membranes by the infusion of functionalized siloxane precursors, J. Membr. Sci., 294 (2007) 159-168.
    [52] P. L. Shao, K. A. Mauritz, R. B. Moore, (Perfluorosulfonate Ionomer) (SiO_2-TiO_2) Nano- composites via Polymer-in Situ Sol-Gel Chemistry-Sequential Alkoxide Procedure, J Polym. Sci.: PartB: Polym. Phy. 34(1996)873-882
    [53] H. Uchida, Y. Ueno, H. Hagihara, M. Watanabe, Self-humidifying electrolyte membranes for fuel cells-preparation of highly dispersed TiO2 particles in Nafion 112, J. Electrochem. Soc. 150 (1)(2003)A57-A62
    [54] A. Sacca`, A. Carbone, E. Passalacqua, A. D'Epifanio, S. Licoccia, E. Traversa, et al., Nafion-TiO_2 hybrid membranes for mediumtemperature polymer electrolyte fuel cells (PEFCs), J. Power Sources 152(2005)16-21.
    [55] E. Chalkova, M.B. Pague, M.V. Fedkin, D.J. Wesolowski, et al., Nafion/TiO_2 proton conductive composite membranes for PEMFCs operating at elevated temperature and reduced relative humidity, J. Electrochem. Soc. 152(6)(2005)A1035-1040.
    [56] S.Y. Chen, C.C. Han, C.H. Tsai, J. Huang, et al., Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO_2 on performance of PEMFC with Nafion/TiO_2 composite membrane at elevated temperature and low relative humidity, J. Power Sources 171(2)(2007)363-372
    [57] J.H. Tian, P.F. Gao, Z.Y. Zhang, W.H. Luo, Z.Q. Shan, Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs, International J. Hydrogen. Energy 33(2008) 5686-5690
    [58] V. Baglio, A. Di Blasi, A.S. Arico et al., Influence of TiO_2 nanometric filler on the behaviour of a composite membrane for applications in direct methanol fuel cells, J. New Materials for Electrochemical Systems 7(2004)275-280
    [59] V. Baglio, A.S. Arico et al., Nafion-TiO_2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance, Electrochim. Acta. 50(2005)1241-1246.
    [60] Z.L. Liu, B. Guo, J.C. Huang, et al., Nano-TiO_2-coated polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources 157(2006)207-11.
    [61] Z.M. Wu, G.Q. Sun, W. Jin, H.Y. Hou, S. Wang, Q. Xin, Nafion(?) and nano-size TiO_2-SO_4~(2-) solid superacid composite membrane for direct methanol fuel cell, J. Membr. Sci. 313(2008) 336-343
    [62] D. Truffier-Boutry, A. DeGeyer, L. Guetaz, O. Diat, G. Gebel, Structural study of zirconium phosphate-nafion hybrid membranes for high-temperature proton exchange membrane fuel cell applications, Macromolecules 40 (2007) 8259-8264.
    [63] S.Z. Ren, G.Q. Sun, C.N Li, et al., Sulfated zirconia-Nafion composite membranes for higher temperature direct methanol fuel cells, J. Power Sources, 157 (2006) 724-726
    [64] A.S. Arico, V. Baglioa, A. Di Blasia et al., Influence of the acid-base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells, Solid State Ionics, 161(2003)251-265
    [65] A.S. Arico, V. Baglio, A. Di Blasi, et al., Composite inorganic filler based electrolyte membranes for fuel cells applications, Solid State Ionics-2004 Book Series: Mater. Res.Soc. Symp. Proc, 835(2005)223-234
    [66] K. Yano, A. Usuki, A. Okada, Synthesis and Properties of Polyimide-Clay Hybrid Films, J. Polym. Sci. A 35 (11) (1997)2289-2294.
    [67] G. Pourcelly, C. Gavach, in: P. Colomban (Ed.), Proton Conductors, Cambridge University Press, 1992, p. 45.
    [68] D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell, J. Power Sources 118 (2003) 205-211.
    [69] R.F. Silva, S. Passerini, A. Pozio, Solution-cast Nafion(?)/montmorillonite composite membrane with low methanol permeability, Electrochim. Acta. 50 (2005) 2639-2645
    [70] M.K. Song, Y.M. Kim, Y.T. Kim, et al., Ultrathin reinforced nanocomposite membranes for direct methanol fuel cells, J. Electrochem. Soc. 153(12)(2006)A2239-2244
    [71] C.H. Rhee, H. Kim, J.S. Lee, H. Chang, Nafion/sulfonated montmorillonite composite: a new concept electrolyte membrane for direct methanol fuel cells, Chem. Mater. 17 (2005) 1691-1697.
    [72] Y.K Kim, J.S. Lee, C.H. Rhee, H.K Kim, H. Chang, Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic-inorganic composite membranes, J. Power Sources 162 (2006) 180-185
    [73] W. Lee, H. Kim, T.K. Kim, H. Chang, Nafion based organic/inorganic composite membrane for air-breathing direct methanol fuel cells, J. Membr. Sci. 292 (2007) 29-34
    [74] T.K. Kim, M. Kang, Y.S. Choi, H.K. Kim, et al., Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process, J. Power Sources 165 (2007) 1-8
    [75] V. Tricoli, F. Nannetti, Zeolite-Nafion composites as ion conducting membrane materials, Electrochim. Acta. 48(2003)2625-2633
    [76] V. Baglio, A.S. Arico, A. Di Blasi, et al., Zeolite-based composite membranes for high temperature direct methanol fuel cells, J.Applied Electrochemistry 35 (2005)207-212
    [77] E.N. Gribov, E.V. Parkhomchuk, I.M. Krivobokov, et al., Supercritical CO2 assisted synthesis of highly selective nafion-zeolite nanocomposite membranes for direct methanol fuel cells, J. Membr. Sci. 297 (2007) 1-4
    [78] X. Li, E.P.L. Roberts, S.M. Holmes, V. Zholobenko, Functionalized zeolite A-nafion composite membranes for direct methanol fuel cells, Solid State Ionics 178 (2007) 1248-1255
    [79] V. Tricoli, Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs + and H+ cations, J. Electrochem Soc, 145 (11)(1998)3798-3801
    [80] W.C. Choi, J.D. Kim, S.I. Woo, Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell, J. Power Sources 96 (2001) 411-414.
    [81] Y.M. Kim, K.W. Park, J.H. Choi , et al., A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC, Electrochem Commun, 5(7)(2003)571- 574
    [82] A.H. Tian, J.Y. Kim, J.Y. Shi, K. Kim, K. Lee, Surface-modified Nafion membrane by oleylamine-stabilized Pd nanoparticles for DMFC applications, J. Power Sources 167 (2007) 302-308
    [83] H.L Tang, M. Pan, S.P. Jiang, R.Z. Yuan, Modification of Nafioni membrane to reduce methanol crossover via self-assembled Pd nanoparticles, Materials Letters 59 (2005) 3766 - 3770
    [84] M. Pan, H.L. Tang, S.P. Jiang, Z.C. Liu, Self-assembled membrane-electrode-assembly of polymer electrolyte fuel cells, Electrochem. Commun. 7 (2005) 119-124.
    [85] M. Pan, H.L. Tang, S.P. Jiang, Z.C. Liu, Fabrication and performance of polymer electrolyte fuel cells by self-assembly of Pt nanoparticles, J. Electrochem. Soc. 152 (2005) A1081-A1088.
    [86] S.C. Mu, H.L. Tang, Z.H. Wan, M. Pan, R.Z. Yuan, Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barriers, Electrochem. Commun. 7 (2005) 1143-1147
    [87] B.S. Pivovar, Y.X. Wang, E.L. Cussler, Pervaporation membranes in direct methanol fuel cells, J. Membr. Sci. 154(1999)155-162
    [88] Z.G. Shao, I.M. Hsing, Nafion Membrane Coated with Sulfonated Poly(vinyl alcohol)-Nafion Film for Direct Methanol Fuel Cells, Electrochem. Solid-State Lett, 5(9)(2002)A185-187
    [89] Z.G. Shao, X. Wang, I.M. Hsing, Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell, J. Membr. Sci. 210 (2002) 147-153
    [90] N.W. Deluca, Y.A. Elabd, Nafion(?)/poly(vinyl alcohol) blends: Effect of composition and annealing temperature on transport properties, J. Membr. Sci. 282 (2006) 217-224
    [91] H.J Kim, H.J. Kim, Y.G Shul. H.S. Han, Nafion-Nafion/polyvinylidene fluoride-Nafion laminated polymer membrane for direct methanol fuel cells, J. Power Sources 135 (2004) 66-71
    [92] K.Y Cho, J.Y. Eom, H.Y. Jung, N.S. Choi, Y.M. Lee, J.K. Park, et al., Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC), Electrochim. Acta 50 (2004) 583-588
    [93] L.J. Hobson, Y. Nakano, H. Ozu, S. Hayase, Targeting improved DMFC performance, J. Power Sources 104 (2002) 79-84
    [94] P. J Kulesza, M. Matczak, A. Wolkiewics, et al., Electrocatalytic properties of conducting polymer based composite film containing dispersed platinum microparticles towards oxidation of methanol, Electrochim. Acta. 44(1999)2131-2137.
    [95] N.Y. Jia, M.C. Lefebvre, J. Halfyard, Z.G. Qi, P.G. Pickup, Modification of Nafion Proton Exchange Membranes to Reduce Methanol Crossover in PEM Fuel Cells, Electrochem. Solid-State Lett, 3 (12) (2000)529-531
    [96]B.L.Langsdorf,B.J.MacLean,J.E.Halfyard,J.A.Hughes,P.G.Pickup,Partitioning and Polymerization of Pyrrole into Perfluorosulfonic Acid (Nafion)Membranes,J.Phys.Chem.B.107(2003)2480-2484
    [97]E.B.Easton,B.L.Langsdorf,J.A.Hughes,J.Sultan,Z.G.Qi,A.Kaufman,P.G.Pickup,Characteristics of Polypyrrole /Nafion Composite Membranes in a Direct Methanol Fuel Cell,J.Electrochem.Soc.150 (10)(2003)C735-C739
    [98]H.S.Park,Y.J.Kim,W.H.Hong,Y.S.Choi,H.K.Lee,Influence of Morphology on the Transport Properties of Perfluorosulfonate lonomers/Polypyrrole Composite Membrane,Macromolecules 38(2005)2289-2295
    [99]H.S.Park,Y.J.Kim,W.H.Hong,H.K.Lee,Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC,J.Membr.Sci.272 (2006)28-36
    [100]S.P.Jiang,Z.C.Liu,Z.Q.Tian,Layer-by-Layer Self-Assembly of Composite Polyelectrolyte-Nafion Membranes for Direct Methanol Fuel Cells,Adv.Mater.18(2006)1068-1072
    [101]G.K.S.Prakash,M.C.Smart,Q.J.Wang,et al.,High efficiency direct methanol fuel cell based on poly(styrenesulfonic)acid (PSSA)-poly(vinylidene fluoride)(PVDF)composite membranes,J.Fluorine.Chem.125(2004)1217-1230
    [102]范钦柏,氢能时代离我们还有多远——燃料电池的市场化仍需努力,化学与物理电源系统,1(2007)4-9.
    [103]V.I.Basura,C.Chuy,P.D.Beattie,et al.Effect of equivalent weight on elecrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated α,α,β-trifluorostyrene (BAM)and sulfonated styrene-(ethylene-butylene)-styrene triblock (DAIS-analytical)copolymers.J.Electroanalytical Chemistry,501(201)77-88
    [104]P.D.Beattie,F.P.Orfino,V.I.Basura,et al.Ionic conductivity of proton exchange membranes.J.Electroanalytical Chemisry.503(2001)45-56.
    [105]B.Bahar,A.Hobson,J.Kolde,and D.Zuckerbrod,U.S.5,547,551.1996.
    [106]B.A.Bahar,R.S.Mallouk,A.R.Hobson,and J.A.Kolde,U.S.RE37,307.2001.
    [107]B.Bahar,C.Cavalca,S.Cleghorn,et al.Effective selection and use of advanced membrane electrode power assemblies.Journal of New Materials for Electrochemical Systems,2 (1999)179-182.
    [108]S.Gaboury,DOE Hydrogen and Fuel Cells Annual Report,FC6,2006.http:// wwwl.eere.engergy.gov/hydrogenandfuelcell/fuelcells/
    [109]Y.S.Kim,DOE Hydrogen and Fuel Cells Annual Report,FC3,2006.http:// wwwl.eere.engergy.gov/hydrogenandfuelcell/fuelcells/
    [110]Y.S.Kim,M.J.Sumner,W.L.Harrison,et al.Direct methanol fuel cell performance of disulfonated poly(arylene ether benzonitrile)copolymers.J.Electrochem.Soc.151(2004)A2150-2156
    [111]任素贞,直接甲醇燃料电池用新型质子交换膜的研究,大连理工大学博士学位论文,大连,2005.
    [112]H.K.Skim,et al,Partially fluorinated copolymer based on trifluorostyrene and substituted vinyl compound and ionic conductive polymer membrane formed therefrom,EP 1170310.
    [113]梁振兴,直接甲醇燃料电池Nafion膜的红外光谱表征和阻醇质子交换膜的研究,中国科学院研究生院硕士学位论文,大连,2004.
    [114]T.Hatanaka,N.Hasegawa,A.Kamiya,et al,Cell performances of direct methanol fuel cells with grafted membranes,Fuel 81(2002)2173-2176.
    [115]K.Scott,W.M.Taama,P.Argyropoulos,Performance of the direct methanol fuel cell with radiation-grafted polymer membranes,J Membr Sci 171(2000)119-130.
    [116]V.Tricoli,N.Carretta,M.Bartolozzi,A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes,J.Electrochem.Soc.,147(2000)1286-1290.
    [117]M.Rikukawa,K.Sanui,Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. 25 (2000) 1463-1502
    [118] K.D.Kreuer,A.Fuchs,M.Ise,M.Spaeth,and J.MaierJmidazole and pyrazole-based proton conducting polymers and liquids.Electrochimica Acta, 43 (1998) 1281-1288.
    [119] S. Xue, G. Yin, Methanol permeability in sulfonated poly(etheretherketone) membranes: A comparison with Nafion membranes, Euro. Polym. J. 42 (2006) 776-785
    [120] W. Li, A. Bellay, A. Manthiram, et al, N,N(?) -Bis-(1H-benzimidazol-2-yl)-isophthalamide as an additive in sulfonated polymer membranes for direct methanol fuel cells, J. Power Sources 180 (2008) 719-723
    [121] Z. Qi, M.C. Lefebvre, P.G. Pickup, Electron and proton transport in gas diffusion electrodes containing electronically conductive proton-exchange polymers, J Electroanal Chem 459(1998)9-14.
    [122] D.J.Jones and J.Roziere, Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications.Journal of Membrane Science,2001(185):41-58.
    [123] M.Kawahara,J.Morita,M.Rikukawa,K.Sanui,and N.Ogata,Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules.Electrochimica Acta,2000(45): 1395-1398.
    [124] T. Kobayashi, M. Rikukawa, K. Sanui, Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene), Solid State Ionics 106(1998)219-225.
    [125] J. Kerres, W. Zhang, L. Jorissen, et al, Synthesis and characterization of polyaryl blend membranes having different composition, different covalent and/or ionical cross-linking density, and their application to DMFC, Desalination 147(2002)173-178.
    [126] C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications, J Membr Sci 206(2002) 443-453.
    [127] S. Zhong, X. Cui, H. Na, et al, Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover, J. of Power Sources 180 (2008) 23-28
    [128] M. Kawahara, M. Rikukawa, K. Sanui, Relationship between Absorbed Water and Proton Conductivity in Sulfopropylated Poly(benzimidazole), Polym. Adv. Technol. 11(2000)544-547
    [129] J. Qiao, T. Hamaya, T. Okada, New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs), Polymer 46(2005)10809-10816.
    [130] H. Wu, Y. Wang, S. Wang, A methanol barrier polymer electrolyte membrane in direct methanol fuel cells, J. New Mater. Electrochem. Sys. 5(2002)251-254.
    [131] JC Lassegues. In: P. Colomban, editor. Proton conductors: solids, membranes and gels. Cambridge, UK: Cambridge University Press, 1992. p. 311-328.
    [132] J.R. Stevens, W. Wieczorek, D. Raducha, et al, Proton conducting gel/H_3PO_4 electrolytes, Solid State Ionics 97(1997)347-358.
    [133] C. W. Walker Jr. Proton-conducting polymer membrane comprised of a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and 2-hydroxyethyl methacrylate, J Power Sources 110(2002)144-151.
    [134] G.K.R. Senadeera, M.A. Careem, K. West, et al, Enhanced ionic conductivity of poly(ethylene imine) phosphate, Solid State Ionics 85(1996)37-42.
    [135] H.Wang, G.A.Capuano, Behavior of Raipore radiation-grafted polymer membranes in H_2/O_2 fuel cells, J.Electrochem.Soc, 145(1998)780-784.
    [136] N.Carretta, V.Tricoli, F.Picchioni, Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation, J.Membr.Sci, 166(2000)189-197.
    [1].M.Akagi,S.Nonogaki,Y.Tomita,et al,A water-soluble,reciprocity-law-failing photoresist,Polym Eng Sci 17(1977)353-355.
    [2].Nakamachi,M.;Kann,E.Photosensitive Polymers;Science Press: Beijing,1984;p.138.
    [3].J.Lu,Q.Nguyen,J.Zhou,Z.H.Ping;Poly(vinyl alcohol)/Poly(vinyl pyrrolidone)Interpenetrating Polymer Network: Synthesis and Pervaporation Properties,J.Appl.Polym.Sci.,89(2003)2808-2814
    [4]V.Tricoli,Proton and methanol transport in poly(perfluorosulfonate)membranes containing Cs+ and H+cations,J.Electrochem.Soc.,145 (1998)3798-3801.
    [5]V.Tricoli,N.Carretta,M.Bartolozzi,A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes,J.Electrochem.Soc.,147(2000)1286-1290.
    [6]白春礼扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992.
    [7]常铁军,祁欣.材料近代分析测试方法.哈尔滨工业大学出版社,哈尔滨,1999
    [8]赵胜亮.聚合物锂离子电池中电解质隔膜的研究[D].厦门大学理学硕士学位论文,厦门,2002
    [9]邓勃,宁永成,刘密新,仪器分析,清华大学出版社,1991
    [10]钱逸泰等著,结晶化学导论[M],合肥:中国科学技术大学出版社,1999
    [11]黄华,郭灵虹,晶态聚合物结构的X射线衍射分析及其进展,化学研究与应用,1998.10
    [12].T.Ozawa,Thermal analysis-review and prospect,Thermochimica Acta,355(2000)35-42
    [13].Michael E.Brown,Introduction to Thermal Analysis-Techniques and Applications (Second Edition),Kluwer Academic Publishers,New York,Boston,Dordrecht,London,Moscow,2004
    [14]M.Rikukawa,K.Sanui,Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers,Prog.Polym.Sci.25 (2000)1463-1502
    [15]李劼,锂离子电池正极材料LiNixCoyMn1-x-yO2和电解液添加剂碳酸乙烯亚乙酯(VEC)的性能研究,厦门大学理学博士学位论文,厦门,2008
    [16]杨文火等编著,核磁共振原理及其在结构化学中的应用。福州,福建科学技术出版社,1988.
    [17]毛希安.NMR前沿领域的若干新进展[J].化学通报,1997(2):13
    [18]高汉宾等著,核磁共振原理与实验方法,武汉,武汉大学出版社,2008
    [19]刘传富,孙润仓,叶君,固体核磁CP/MAS~(13)C-NMR在植物纤维原料研究中的应用,中国造纸学报,2005(20)
    [20]薛奇,高分子结构研究中的光谱方法,高等教育出版社,1995
    [21]陈旸,聚氧乙烯及其复合物含水体系的固体核磁共振研究,华东师范大学硕士学位论文,上海,2005.
    [22].G.R.Goward,M.F.H.Schuster.D.Sebastiani,I.Schnell,H.W.Spiess,High-Resolution Solid-State NMR Studies of Imidazole-Based Proton Conductors: Structure Motifs and Chemical Exchange from 1H NMR,J.Phys.Chem.B 106 (2003)9322-9334.
    [23].B.S.Hickman,M.Mascal,J.J.Titman,I.G.Wood,Protonic Conduction in Imidazole: A Solid-State 15N NMR Study,J.Am.Chem.Soc.121 (1999)11486-11490.
    [24]G.Ye,C.A.Hayden,G.R.Goward,Proton Dynamics of Nafion and Nafion/SiO_2 Composites by Solid State NMR and Pulse Field Gradient NMR,Macromolecules 40 (2007)1529-1537.
    [1]R.Kannan,B.A.Kakade,V.K.Pillai,Polymer Electrolyte Fuel Cells Using Nafion-Based Composite Membranes with Functionalized Carbon Nanotubes,Angew.Chem.47 (2008)2653-2656
    [2]L.C.Chen,T.L.Yu,H.L.Lin,S.H.Yeh,Nafion/PTFE and zirconium phosphate modified Nafion/PTFE composite membranes for direct methanol fuel cells,J.Membr.Sci.307 (2008)10-20
    [3]L.Li,Y.M.Zhang,Chemical modification of Nafion membrane with 3,4-ethyl-enedioxythiophene for direct methanolfuel cell application,J.Power Sources 175 (2008)256-260
    [4]S.P.Jiang,Z.C.Liu,Z.Q.Tian,Layer-by-Layer Self-Assembly of Composite Polyelectrolyte-Nafion Membranes for Direct Methanol Fuel Cells,Adv.Mater.18(2006)1068-1072
    [5]Z.G.Shao,I.M.Hsing,Nafion Membrane Coated with Sulfonated Poly(vinyl alcohol)-Nafion Film for Direct Methanol Fuel Cells,Electrochem.Solid-State Lett,5(9)(2002)A185-187
    [6].F.M.Vichi,M.T.Colomer,and M.A.Anderson,Nanopore Ceramic Membranes as Novel Electrolytes for Proton Exchange Membranes,Electrochem.Solid-State Lett.2(1999)313-316
    [7]K.A.Mauritz,R.F.Storey,C.K.Jones,Multiphase Polymer Materials: Blends and lonomers,ACS Symposium Series No.395,American Chemical Society,Washington,DC,1989,p.401.
    [8]K.A.Mauritz,Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides,Mater.Sci.Eng.C6 (1998)121-133.
    [9]Q.Deng,R.B.Noore,K.A.Mauritz,Novel NafiodORMOSIL Hybrids via in Situ Sol-Gel Reactions.1.Probe of ORMOSIL Phase Nanostructures by Infrared Spectroscopy,Chem.Mater.7 (1995)2259-2268.
    [10]Q.Deng,R.B.Noore,K.A.Mauritz,Nafion/ORMOSIL Hybrids via in Situ Sol-Gel Reactions.3.Pyrene Fluorescence Probe Investigations of Nanoscale Environment,Chem.Mater.9 (1997)36-44.
    [11]Q.Deng,K.M.Cable,R.B.Noore,K.A.Mauritz,Small-Angle X-Ray Scattering Studies of Nafion/[Silicon Oxide]and Nafion/ORMOSIL Nanocomposites,J.Polym.Sci.: B.Polym.Phys.34 (1996)1917-1923.
    [12]Q.Deng,R.B.Noore,K.A.Mauritz,Nafion(?)/(SiO2,ORMOSIL,and dimethylsiloxane)hybrids via in situ sol-gel reactions: Characterization of fundamental properties,J.Appl.Polym.Sci.68 (1998)747-763
    [13] S.K. Young, W.L. Jarrett, K.A. Mauritz, Nafion/ORMOSIL nanocomposites via polymer-in situ sol-gel reactions. 1. Probe of ORMOSIL phase nanostrutures by 29Si solid-state NMR spectroscopy, Polymer 43 (2002) 2311-2320.
    [14] N. Miyake, J.S. Wainright, R.F. Savinell, Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Proton Electrolyte Membrane Fuel Cell Applications: Ⅰ. Proton Conductivity and Water Content, J. Electrochem. Soc. 148(8) (2001)A898-A904
    [15] N. Miyake, J.S. Wainright, R.F. Savinell, Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: Ⅱ. Methanol Uptake and Methanol Permeability, J. Electrochem. Soc. 148(8)(2001 )A905-A909
    [16] Y.J. Kim, W.C. Choi, S.I. Woo, W.H. Hong, Proton conductivity and methanol permeation in Nafion~(TM)/ORMOSIL prepared with various organic silanes, J. Membr. Sci., 238 (2004) 213-222.
    [17] C.N. Li, G.Q. Sun, S.Z. Ren, et al., Casting Nafion-sulfonated organosilica nano-composite membranes used in direct methanol fuel cells, J. Membr. Sci. 272 (2006) 50-57
    [18] S.Z. Ren, G.Q. Sun, C.N. Li, et al., Organic silica/Nafion(?) composite membrane for direct methanol fuel cells, J. Membr. Sci. 282 (2006) 450-455.
    [19] M. Lavorgna, L. Mascia, G. Mensitieri et al, Hybridization of Nafion membranes by the infusion of functionalized siloxane precursors, J. Membr. Sci., 294 (2007) 159-168.
    [20] J. Divisek, M. Eikerling, et al., A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton-Exchange Membranes Swollen in Water, J. Electrochem. Soc. 145 (1998) 2677-2683.
    [21] M.W. Verbrugge, Methanol Diffusion in Perfluorinated Ion-Exchange Membranes, J. Electrochem. Soc. 136 (1989)417-423.
    [22] H.S. Park, Y.J. Kim, W. H. Hong, Y.S. Choi, H. K. Lee, Influence of Morphology on the Transport Properties of Perfluorosulfonate Ionomers/Polypyrrole Composite Membrane, Macromolecules 38(2005)2289-2295
    [23] H.S. Park, Y.J. Kim, W.H. Hong, H.K. Lee, Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC, J. Membr. Sci.272 (2006) 28-36
    [24] R.C. Jiang, H. R. Kunz, J. M. Fenton, Composite silica/Nafion(?) membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells, J. Membr. Sci. 272 (2006)116-124.
    [25] A. Gruger, A. Regis, T. Schmatko, and P. Colomban, Nanostructure of Nafion(?) membranes at different states of hydration: An IR and Raman study, Vib. Spectrosc, 26(2001) 215.
    [26] J.G.. Wu, The techniques and application of Fourier transform infrared spectra (in Chinese), Scientific and Technical Documents publishing House, Bei Jing, 1994, pp. 601.
    [27] R.B. Moore Ⅲ, C.R. Martin, Chemical and morphological properties of solution-cast perfluorosulfonate ionomers, Macromolecules, 21(1988) 1334.
    [28] T.D. Gierke, G.E. Munn, F.C. Wilson, The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies, J. Polym. Sci. Phys., 19(1981) 1687.
    [29] W.L. Xu, T.H. Lu, C.P. Liu, W.Xing, Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells, Electrochimica Acta, 50 (2005) 3280.
    [30] P.L. Antonucci, A.S. Ario, P. Creti, E. Ramunni, V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion(?)-silica electrolyte for high temperature operation, Solid State Ionics, 125 (1999) 431.
    [31] P. Staiti, A.S. Arico, V. Baglio, F. Lufrano, E. Passalacqua, V. Antonucci, Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells, Solid State Ionics, 145 (2001) 101.
    [32] P. Dimitrova, K.A. Friedrich, U. Stimming, B. Vogt, Modified Nafion(?)-based membranes for use in direct methanol fuel cells, Solid State Ionics, 150 (2002) 115.
    [33] Z.G. Shao, P. Joghee, I M. Hsing, Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells, J. Membr. Sci., 229 (2004) 43.
    [34] S.H. Almeida, Y. Kawano, Thermal behavior of Nafion membranes, J. Therm. Anal. Calorim., 58 (1999) 569.
    [35] K. T. Adjemian, R. Dominey et al. Function and characterization of metal oxide-Nafion composite membranes for elevated-temperature H2/O2 PEM fuel cells, Chem. Mater., 18(2006) 2238.
    [1]C.N.Li,G.Q.Sun,S.Z.Ren,et al.,Casting Nafion-sulfonated organosilica nano-composite membranes used in direct methanol fuel cells,J.Membr.Sci.272 (2006)50-57
    [2]Z.L.Liu.B.Guo,J.C.Huang,et al.,Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources 157(2006)207-11.
    [3] D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell, J. Power Sources 118 (2003) 205-211.
    [4] K.Y Cho, J.Y. Eom, H.Y. Jung, N.S. Choi, Y.M. Lee, J.K. Park, et al., Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell (DMFC), Electrochim. Acta 50 (2004) 583-588 [5] S.P. Jiang, Z.C. Liu, Z.Q. Tian, Layer-by-Layer Self-Assembly of Composite Polyelectrolyte-Nafion Membranes for Direct Methanol Fuel Cells, Adv. Mater. 18(2006)1068-1072
    [6] Y.A. Elabd, E. Napadensky, C.W. Walker, K.I.Winey, Transport Properties of Sulfonated Poly(styrene-b-isobutylene-b-styrene) Triblock Copolymers at High Ion-Exchange Capacities, Macromolecules 39(2006)399-407.
    [7] N.W. Deluca, Y.A. Elabd, Polymer Electrolyte Membranes for the Direct Methanol Fuel Cell: A Review, J. Polym. Sci.: B. Polym. Phys. 44(2006)2201-2225
    [8] GK.S. Prakash, M.C. Smart, Q.J. Wang, et al., High efficiency direct methanol fuel cell based on poly(styrenesulfonic) acid (PSSA)-poly(vinylidene fluoride) (PVDF) composite membranes, J. Fluorine. Chem. 125(2004)1217-1230
    [9]. K. Y. Cho, H. Y. Jung, et al., Proton conducting semi-IPN based on Nafion and crosslinked poly(AMPS) for direct methanol fuel cell, Electrochimi. Acta 50 (2004) 589-593
    [10]. C. W. Walker, Jr., Proton-Conducting Interpenetrating Polymer Network with Reduced Methanol Permeability, J. Electrochem. Soc. 151 (11) (2004) A1797-A1803
    [11]. M. Matsuguchi, H. Takahashi, Methanol permeability and proton conductivity of a semi-interpenetrating polymer networks (IPNs) membrane composed of Nafion(?) and cross-linked DVB, J. Membr. Sci. 281 (2006) 707-715
    [12]. J. A. Kerres, Development of ionomer membranes for fuel cells, J. Membr. Sci. 185 (2001) 3-27
    [13] R.B. Moore Ⅲ, C.R. Martin, Chemical and morphological properties of solution-cast perfluorosulfonate ionomers, Macromolecules, 21(1988) 1334.
    [14] T.D. Gierke, GE. Munn, F.C. Wilson, The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies, J. Polym. Sci. Phys., 19(1981) 1687.
    [15] S.H. Almeida, Y. Kawano, Thermal behavior of Nafion membranes, J. Therm. Anal. Calorim. 58 (1999) 569-577.
    [16] H.S. Park, Y. J. Kim, W. H. Hong, H. K. Lee, Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC, J. Membr. Sci. 272 (2006) 28-36.
    [17]. K.T. Adjemian, R. Dominey, et al., Function and Characterization of Metal Oxide-Nafion Composite Membranes for Elevated-Temperature H2/O2 PEM Fuel Cells, Chem. Mater. 18 (2006) 2238-2248.
    [18]. R.C. Jiang, H. R. Kunz, J. M. Fenton, Composite silica/Nafion(?) membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells, J. Membr. Sci. 272 (2006)116-124.
    [19] K. D. Kreuer, Proton Conductivity: Materials and Applications, Chem. Mater. 8 (1996) 610-641.
    [20] G. R. Goward. M. F. H. Schuster, D. Sebastiani, I. Schnell, H. W. Spiess, High-Resolution Solid-State NMR Studies of Imidazole-Based Proton Conductors: Structure Motifs and Chemical Exchange from 1H NMR, J. Phys. Chem. B 106 (2003) 9322-9334.
    [21] B. S. Hickman, M. Mascal, J. J. Titman, I. G. Wood, Protonic Conduction in Imidazole: A Solid-State 15N NMR Study, J. Am. Chem. Soc. 121 (1999) 11486-11490.
    [22] G. Ye, C. A. Hayden, G. R. Goward, Proton Dynamics of Nafion and Nafion/SiO2 Composites by Solid State NMR and Pulse Field Gradient NMR,Macromolecules 40 (2007)1529-1537.
    [23]G.Ye,N.Janzen,G.R.Goward,Solid-State NMR Study of Two Classic Proton Conducting Polymers:Nafion and Sulfonated Poly(ether ether ketone)s,Macromolecules 39 (2006)3283-3290.
    [24]N.Bloembergen,E.M.Purcell,R.V.Pound,Relaxation Effects in Nuclear Magnetic Resonance Absorption,Phys.Rev.73(1948)679
    [25]Y.L.Wang,H.R.Tang,P.S.Belton,Proton NMR relaxation studies of solid L-alaninamide,Chem.Phys.Lett.268(1997)387-392
    [26]Y.L.Wang,P.S.Belton,H.R.Tang,Proton NMR relaxation on studies of solid tyrosine derivatives and their mixtures with L-leucinamide,Solid State NMR 14(1999)19-32
    [27]F.Lufrano,I.Gatto,E.Passalacqua,et al,Sulfonated polysulfone ionomer membranes for fuel cells,Solid State Ionics 145(2001)47-51
    [28]张利民,几种高分子材料的域结构、分子动力学和相互作用的固体NMR研究,中国科学院研究生院博士学位论文,武汉,2007
    [1]V.Tricoli,N.Carretta,M.Bartollozzi,A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes,J Electrochem Soc 147(4)(2000)1286-1290.
    [2]H.T.Pu,Q.Z.Liu,G.H.Liu,Methanol permeation and proton conductivity of acid-doped poly(N-ethylbenzimidazole)and poly(N-methylbenzimidazole),J Membr Sci 241(2004)169-175.
    [3]Y.A.Elabd,C.W.Walker,F.L.Beyer,Triblock copolymer ionomer membranes Part Ⅱ: Structure characterization and its effects on transport properties and direct methanol fuel cell performance,J Membr Sci 231(2004)181-188.
    [4]J.W.Rhim,H.B.Park,M.Y.Lee,et al.Crosslinked poly(vinyl alcohol)membranes containing sulfonicacid group: proton and methanol transport through membranes.J Membr Sci 238(2004)143-151.
    [5]N.Carretta,V.Tricoli,F.Picchioni,Ionomeric membranes based on partially sulfonated poly(styrene):synthesis,proton conduction and methanol permeation.J Membr Sci 166(2000)189-197.
    [6]B.Bae,D.Kim,Sulfonated polystyrene grafted polypropylene composite electrolyte membranes for direct methanol fuel cells.J Membr Sci 220(2003)75-87.
    [7]Y.Yin,J.H.Fang,K.I.Okamoto,et al.Synthesis,proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2,4-diaminophenoxy)propane sulfonic acid.Polymer;44(16)(2003)4509-4518.
    [8]Y.Woo,S.Y.Oh,B.Jung,et al.Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell.J Membr Sci 20(2003)31-45.
    [9]S.Xue,G.Yin.Methanol permeability in sulfonated poly(etheretherketone)membranes: A comparison with Nafion membranes.Eur.Polym.J.42 (2006)776-785
    [10]H.J.Kim,H.J.Kim,H.S.Han,et al.Nafion-Nation/polyvinylidene fluoride-Nafion laminated polymer membrane for direct methanol fuel cells,J.Power Sources 135 (2004)66-71
    [11]K.C.Ho,T.G.Rukavina,C.B.Greenberg,Tungsten Oxide-Prussian Blue Electrochromic System Based on a Proton-Conducting Polymer Electrolyte,J.Electrochem.Soc.,141(1994)2061-2067
    [12]J.P.Randin,Ion-containing polymers as semisolid electrolytes in WO_3-based electrochromic devices,J.Electrochem.Soc.,129 (1982)1215-1220
    [13]M.C.Bernard,A.H.L.Goff,and W.Zeng,Elaboration and study of a PANI/PAMPS/WO_3 all solid-state electrochromic device,Electrochim.Acta,44(1998)781-796
    [14]C.W.Walker,Jr.,Proton-Conducting Interpenetrating Polymer Network with Reduced Methanol Permeability,J.Electrochem.Soc.151 (11)(2004)A 1797-A1803
    [15]C.W.Walker,Jr.,Proton-conducting polymer membrane comprised of a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and 2-hydroxyethyl methacrylate,J.Power Sources.110 (2002)144-151
    [16]何曼君,陈维孝,董西侠编,高分子物理。上海,复旦大学出版社,1990.
    [17]戈明亮.微波在聚合物科学中的应用,合成材料老化与应用,33(2004)37-40
    [18]A.Taguet,B.Ameduri,B.Boutevin,Crosslinking of Vinylidene Fluoride-Containing Fluoropolymers,Adv Polym Sci 184 (2005)127-211
    [19]T.Boccaccio,A.Bottino,P.Piaggio,et al.Characterization of PVDF membranes by vibrational spectroscopy.J Membr Sci.210 (2002)315-329
    [20]S.H Kalfayan,R.H Silver,S.S Liu,Rubber Chem Techn 49 (1976)1001
    [21]V.Kochkodan,W.Weigel,M.Ulbricht.Thin layer molecularly imprinted microfiltration membranes by photofunctionalization using a coated a-cleavage photoinitiator,Analyst,126(2001)803-809
    [22]N.Hilal,V.Kochkodan,T.Levadna,et al.Surface modified polymeric membranes to reduce (bio)fouling:a microbiological study using E.coli.Desalination 167 (2004)293-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700