用户名: 密码: 验证码:
一维光子晶体滤波器的设计及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体最本质特征是具有光子带隙,即频率处于光子带隙范围内的光或电磁波在光子晶体中传播是被严格禁止的。光子晶体的性能是由其光子能带结构决定的,而光子能带结构取决于组份材料(介电常数)和空间结构。组成一维光子晶体的组份材料通常是两种不同的介电材料,这两种材料一旦确定,光子晶体的性能就主要靠其结构设计来调节和控制。本论文以实验制备的组份膜的光学常数为依据,研究不同结构光子晶体的光子能带结构。为了获得不同滤波性能的一维光子晶体,着重研究了性能与结构参数之间的关系。
     一,采用射频磁控溅射方法在玻璃基片上制备TiO2和Al2O3单层膜,利用椭圆偏振法研究薄膜的光学常数。首先利用椭偏仪测量得到样品的椭偏参数,通过反演计算,拟合得到薄膜光学常数对波长的色散关系,并将反演计算得到的透射谱与实验测试结果进行对比,二者吻合,从而验证了拟合结果的正确性,为结构设计提供了准确的材料光学性能参数。
     二,以TiO2和Al2O3为组分材料设计了结构为(HL)mL(HL)n的一维缺陷光子晶体。为了研究该结构的滤波性能并对其优化,利用传输矩阵方法拟合计算了不同结构的光学透射谱。研究结果显示,该种结构光子晶体的光子带隙中央存在一个极窄的透射窗口;通过调整缺陷层前后的光子晶体重复周期、缺陷层厚度和波的入射角可以改变窄带透过窗口的位置和窄带的宽度;经过结构优化,在m=19、n=20、缺陷层光学厚度为387.5nm时,窄带透过窗口的波长在参考波长(1550nm)处,且其半功率带宽小于0.001nm,窗口内的透射率可以接近100%。
     三,以TiO2和Al2O3为组分材料设计了结构为(HL)m(KHκL)m的异质结结构一维光子晶体。分别研究了(HL)m的重复周期、周期厚度和入射角对光子带隙的位置、p偏振和s偏振光所产生的影响。同时,在电磁波斜入射的条件下,利用(HL)m与(κHκL)m的p偏振光的能带叠加,设计出在带隙区域内,获得允许p偏振光透过而阻止s偏振光透过的偏振带通滤波器。该滤波器具有膜层较少、小型化和类矩形等特点,制作简单,具有实用价值。
Photonic crystal (PC) is characterized by its photonic bandgap (PBG), where the transport of light or electromagnetic with the frequency falling in the gap is strictly forbidden. The properties of PCs are determined by the photonic band structures (PBS), which rely on the constituent materials (refraction indices) and their spatial structures. PCs are usually composed of two dielectric materials with different refractive indices. Once the constituent materials are chosen, the properties of the PCs are controlled by structure design. Based on the experimentally measured optical constants of the thin films, this work studies the PBS of various structures, and focuses on the relationship between defect structure and the properties of filters based on one-dimensional photonic crystal.
     Firstly, TiO2 and SiO2 thin films were prepared on glass substrates by RF magnetron sputtering, respectively. The optical constants were determined by the ellipsometry with inversion calculation of the two ellipsometric parameters. The dispersion relationship between thin-film optical constants and wavelength was determined. It was found the inversion calculation of the transmission spectra matched the experimental results, which further verified the simulated results. Those results could provide accurate material optical properties for design of filter structure.
     Secondly, a defect structure (HL) mL (HL)n of one-dimensional photonic crystal was designed, using TiO2 and Al2O3 as layered constituents. In order to study and optimize the structures of filters, the transfer matrix method was adopted to simulate the optical properties. The results showed that:1) there is a very narrow central transmission window within the photonic band gap; 2) the window position and its width changes while the repetition number of structures aside the defect-layer, the thickness of the defect-layer and the incidence angle are adjusted; 3) when m=19, n=20 and the optical thickness of defect-layer is 387.5nm, the window width can be smaller than O.OOlnm with the window position in 1550nm and the window transmittance almost reaches to 100%.
     Thirdly, the hetero-structure of (HL)m (κHκL)m was designed again, using the TiO2 and Al2O3 layers as components. The influence of repetition number, thickness, incidence angle of the one-dimensional photonic crystal (HL) m on the photonic band gap position, p-and s-polarized light were investigated. At oblique incidence, a filter allowing p-polarized light to pass, but blocking s-polarized light was designed within the photonic band gap by overlaying the p-polarized energy bands. The structure of these filters contains small number of coatings, and has quasi-rectangular characteristics, which makes them economic and practically applicable.
引文
[1]J. D. Joannopoulos, P. R. Villeneuve, I. R. Schmolka, et al. Photonic crystals:putting a new twist on light [J]. Nature,1997,386:143-149.
    [2]茹宗玲等.光子晶体结构、制备技术和应用进展.电子元件与材料,2002,21(9):17-20.
    [3]E. Yablonovitch. Inhibited spontaneous emission solid-state physics and electronics[J]. Phys. Rev. Lett.,1987,58(20):2059-2061.
    [4]S. John. Strong localization of photonic in certain disordered dielectric super lattices [J]. Phys. Rev. Lett.,1987,58(23):2486-2489.
    [5]E. Yablonovitch. Photonic crystals:semiconductors of light [J]. Science, Am,2001,285(6): 46-55.
    [6]S. John. Localization of light [J]. Physics Today,1991,44:32-40.
    [7]P. Shen. Scattering and Localization of Classical Waves in Random Media[M], World Scientific, Singapore,1990.
    [8]J. M. Drake, A. Z. Genack. Observation of nonclassical optical diffusion [J], Phys. Rev. Lett., 1989,63(3):259-262.
    [9]J. D. Joannopoulos, et al. Photonic crystals [M]. Princeton Press, New Jersey,1995.
    [10]Shawn-Yu Lin, Edmund Chow, Vince Hietala, et al. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal[J]. Science,1998,282:274-276.
    [11]J. S. Foresi, P. R. Villeneuve, J. Ferrera, et al. Photonic-bandgap microcavities in optical wavegudes[J]. Nature,1997,390:143-145.
    [12]M. Plihal, A. A. Maradudin. Photonic band structure of two-dimentional systems:the triangular lattices [J]. Phys. Rev B,1991,44(16):8565-8571.
    [13]P. R. Villeneuve, M. Piche. Photonic band structure of two-dimentional square and hexagonal lattices [J]. Phys. Rev B,1992,46(8):4969-4972.
    [14]F. Gadot, A. Chelnokov, A. Delustrac, et al. Experimental demonstration of complete photonic band gap in graphite structure [J]. Appl. Phys. Lett.,1997,71(13):1780-1782.
    [15]C. M. Anderson, K. P. Giapis. Larger two-dimensional photonic bandgaps[J]. Phys. Rev. Lett., 1996,77(14):2949-2952.
    [16]E. Yablonovitch, T. J. Gmitter, K. M. Leung. Photonic band structure:the face-centered-cubic
    case employing nonspherical atoms [J]. Phys. Rev. Lett.,1991,67(12):2295-2298.
    [17]刘思敏等.光子晶体光纤和波导.物理,2001,30(11):676.
    [18]J. D. Joannopoulos, R. D. Meade, J. N. Winn. Photonic crystals:molding the flow of light [M], Princeton Press,1995.
    [19]C. M. Soukoulis. Photonic band gaps and location[M]. Plenum, New York,1993.
    [20]S. Neda, M. Yogiyama, M. Imada, et al. Polarization mode control of two-dimensional photonic crystal laser by unite cell structure design[J]. Science,2001,293:1123-1125.
    [21]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus. Channel drop tunneling through localized states, Phys. Rev. Lett.,1998,80(5):960-963.
    [22]J. Fu, S. He, S. Xiao. Analysis of channel-dropping tunneling processes in photonic crystals with multiple vertical mufti-mode cavities [J], J. Phys. A:Mathematical and General,2001, 33(43):7761.
    [23]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami. Super prism phenomena in photonic crystals [J], Phys. Rev. B,1998,58:10096-10099.
    [24]谢三媛,羊亚平,临志新,等.驱动场作用下光子晶体中三能级原子的自发发射.物理学报,1999,48(8):1459-1469.
    [25]Thomas F. Krauss, M. Richard De La Rue. Photonic crystals in the optical regime-past, present and future[J], Progress in Quantum Electronics,1999,23:51-96.
    [26]V. I. Kopp, B. Fan, H. K. M., et al. Low-threshold lasing at the edge of a photonic stop band in cholesterol liquid crystals[J]. Opt. lett.,1998,23:1707.
    [27]石建平,陈旭南,张小玉.光子晶体.一种新型人工带隙材料[J],材料导报,2003,17:164-165.
    [28]李丽,张贵友,陈人杰等.染料敏华太阳能电池及TiO2薄膜材料研究进展[J].功能材料,2008,11(39):1765-1769.
    [29]Orazio A. D., et al. Design of Er3+ doped SiO2-TiO2 planar waveguide amplier[J]. Journal of Non-Crystalline Solids.2003,322:278-283.
    [30]V. G Bessergeneva, I. V. Khmelinskii, et al. Preparation of TiO2 films by CVD method and its electrical, structural and optical properties[J]. Vacuum,2002,64:275-279.
    [31]A. Fujishima, X. Zhang. Titanium dioxide photo catalysis:present situation and future approaches [J]. C. R. Chimie,2006,9:750-760.
    [32]A. Fujishima, Tata N. Rao, D. A. Tryk. TiO2 photocatalysts and diamond electrodes[J]. Electrochemica Acta,2000,45:4683-4690.
    [33]C-K. Jung, S. B. Lee, J-H. Boo, et al. Characterization of growth behavior and structural properties of TiO2 thin films grown on Si (100) and Si (111) substrates [J]. Surface and Coatings Technology,2003,174-175:296-302.
    [34]Chou T. C., Nieh T. G, Mcadams S. D., et al. Microstructure and mechanical properties of thin film of aluminum oxide[J]. Scripta Meatllurgica et Materiala,1991,25:2203-2208.
    [35]Kari Koski, Jorma Holsa, Pierre Juliet. Properties of aluminum oxide thin films deposited by reactive magnetron sputtering [J], Thin Solid Films,1999,339:240-248.
    [36]E. Yablonovitch, T. G. Gmitter. Donor and acceptor modes in photonic band structure [J]. Phys. Rev. Lett.,1991,67(24):3380-3383.
    [37]K. M. Ho,. C. T. Chan, C. M Soukoulis. Existence of a photonic gap in periodic dielectric structures [J]. Phys. Rev. Lett.,1990,65:3152.
    [38]J. B. Pendry., A. MacKinnon, Calculation of photon dispersion relations[J]. Phys. Rev. Lett., 1992,69(19):2772-2775.
    [39]J. B. Pendry. Photonic band gaps and localization[M]. Plenum Press,1993.
    [40]D. M. Sheen, S. M. Ali, et al. IEEE Transactions on Microwave Theory and Techniques [J]. 1990,38(7):849.
    [41]K. M. Leung, Y. Qiu. Multiple-scattering calculation of the two-dimensional photonic band structure[J]. Phys. Rev. B,1993,48(11):7767-7771.
    [42]C. T. Chan, Q. L. Yu, H. K. M. Order-N spectral method for electromagnetic waves [J]. Phys. Rev. B,1993,48(11):8434-8437.
    [43]A. Taflove, Susan C. Hagness. Computational electrodynamics:the finite-difference time-domain method[M]. ARtach House INC, Norwood,1995.
    [44]G. Tayeb, D. Maystre. Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities[J]. J. Opt. Soc. Am. A.,1997,14(12):3323-3332.
    [45]C. T. Chan, Q. L. Yu and K. M. Ho. Order-N spectral method for electromagnetic waves[J]. Phys. Rev.,1995, B51:16635.
    [46]F. Raineri.,. Y. Dumeige, A. Levenson, et al. Nonlinear decoupled FDTD code phase-matching in 2D defective photonic crystals [J]. Electron. Lett.,2002,38:1704-1706.
    [47]X. Wang, X. G. Zhang, Q. Yu, et al. Multiple-scattering theory for electromagnetic waves[J]. Phys. Rev. B,1993,47(8):4161.
    [48]M. Plihal, A. A. Maradudin. Photonic band structure of two-dimensional systems:the triangular lattice [J]. Phys. Rev. B,1991,44 (16):8565-8571.
    [49]K. M. Ho, C.T. Chan and C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures [J]. Phys. Rev. Lett.,1990,65 (25):3152-3155.
    [50]C. T. Chan, Q. L. Yu and K. M. Ho. Order-N spectral method for electromagnetic waves[J]. Phys. Rev B,1995,51 (23):16635-16642.
    [51]M. Qiu, S. He. A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions [J]. J. Appl. Phys,2000,87(12):8268-8275.
    [52]M. Qiu, S. He. Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions [J]. Phys. Rev. B,2000,61(19):12871-12876.
    [53]M. Qiu, S. He. Guided modes in a two-dimensional metallic photonic crystal waveguide[J]. Phys. Lett. A,2000,266:425-429.
    [54]M. Qiu, S. He. FDTD algorithm for computing the off-plane band structure in a two-dimensional photonic crystal with dielectric or metallic inclusions[J]. Phys. Lett. A, 2001,282:85-91.
    [55]J. B. Pendry, A. Mackinnon. Calculation of photon dispersion relation[J]. Phys. Rev. Lett., 1992,69:2772-2775.
    [56]M. Sigalas, C. M. Soukoulis, E. N. Economou, et al. Photonic band gaps and defects in two dimensions:studies of the transmission coefficient [J]. Phys. Rev. B,1994,49:11080-11083.
    [57]Ibrahim Abdulhalim. Analytic propagation matrix method for linear optics of arbitrary biaxial layered media[J]. Appl. Opt.,1999,1:646-653.
    [58]陈燕平,余飞鸿.薄膜厚度和光学常数的主要测试方法[J].光学仪器,2006,28(6):84-88.
    [59]唐文彦,张军,李慧鹏.触针法测量表面粗糙度的发展及现状[J],机械工艺师,2000,11:40-42.
    [60]顾培夫.薄膜技术[M],杭州:浙江大学出版社,1990.
    [61]H. Z. Zhen. Epi-film thickness measurement using emission Fourier transforms infrared spectroscopy [J]. IEEE Transaction on Semiconductor Manufacturing,1995,8(3):340-345.
    [62]F. R. Flory. Thin films for optical systems[M]. New York:Marcel Dekker Inc.,1995.
    [63]J..Rivory Characterization of inhomogeneous dielectric films by spectroscopic ellipsometry[J]. Thin Solid Films,1998,313-314:(333-340).
    [64]王立衡,黄运添,郑海涛.薄膜技术[M],清华大学出版社,1999年10月.
    [65]杨烈宇,关文泽,顾卓明.材料表面薄膜技术[M],人们交通出版社,1991.
    [66]尹树百编著.薄膜光学-理论与实践[M],科学出版社,1987.
    [67]仲永安,谢于深,吴予似译.玻璃镀膜[M],科学出版社,1988年5月.
    [68]A. P. Huang, G J. Wang, S. L. Xu, et al. Oriented AlN films prepared with solid AlCl3 source by bias assisted Cat-CVD [J]. Mater. Sci. Eng. B,2004,107(2):161-165.
    [69]H. Okano, N. Tanaka, et al. Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices [J]. Appl. Phys. Lett.,1994, 64(2):166-168.
    [70]S. Six, J. W. Geriach, B. Rauschenback. Ion beam assisted pulsed laser deposition of epitaxial aluminum nitride thin films on sapphire substrates [J]. Surface and Coatings Technology, 2001,142-144,397-401.
    [71]张继成,吴卫东,许华等.磁控溅射技术新进展及应用[J].材料导报,2004,18(4):56-59.
    [72]M. M. Sigalas, C. T. Chan, K. M. Ho, et al. Metallic photonic band-gap materials. Phys. Rev. B,1995,52 (16):11744-11751.
    [73]S. Gupta, G. Tuttle, K. M. Ho, et al. Infrared filters using metallic photonic band gap structures on flexible substrates. Appl. Phys. Lett.,1997,71 (17):2412-2414.
    [74]M. M. Sigalas, C. M. Soukoulis, E. N. Economou, et al. Photonic band gaps and defects in two dimensions:Studies of the transmission coefficient. Phys. Rev. (B),1993,48 (19):14121-14126.
    [75]唐晋发,光学中的固体薄膜,北京:科学出版社,1987:51-52.
    [76]X. Y. Lei, H. Li, F. Ding, et al. Novel application of a perturbed photonic crystal:high quality filter. Appl. Phys. Lett.,1997,71 (20):2889-2891.
    [77]M. G. Wang, T. J. Li, S. S. Jian. Acta. Phys. Sin.,2003,52:2818(in Chinese).
    [78]Pei-fu Gu, Hai-xing Chen, Xiao-yun Qin, et al. Design of polarization Band-pass filters based on the theory of thin-film photonic crystal super lattice[J]. Acta Physica Sinica,2005, 54(2):773-776(in Chinese).
    [79]J. F. Tang, J. Zheng.1986, Applied Thin-film Optics, Shanghai Science and Technology Press, p244 (in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700