用户名: 密码: 验证码:
挡土墙动力特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国西部大开发的开展,越来越多的高速公路开始向西部延伸。西部地区大部分为典型的山地地形,在这种地方修建高速公路,不可避免地会遇到大量的半挖半填及陡坡路堤,必须采用支挡结构来保证路堤的稳定,以确保公路运输的安全。而衡重式挡土墙以胸坡很陡,下墙墙背仰斜,可减少挡土墙的设计高度和施工土石方开挖量的优点得到广泛应用。四川大部分地区位于地震高烈度区,对挡土墙进行抗震设计尤为重要。目前各国对路基、挡土墙的自振频率研究很少,仍采用静力法计算地震作用,我国规范是以重力式挡土墙为典型墙型,只考虑水平地震力作用进行抗震设计,还有日本、美国和新西兰等国规范亦没有考虑竖直地震力的作用,但欧洲规范却考虑了。本文通过现场震害调查、大型的振动台实验,结合有限元ANSYS数值模拟,探讨了挡土墙在地震作用下的动力响应。本文主要进行了以下几个方面的研究工作:
     1、通过挡土墙振动台实验得出了墙后土的水平加速度和动土压力沿墙高的分布规律,结合通用有限元分析软件ANSYS对实验进行数值模拟,将实验结果与数值模拟结果对比,两者基本吻合,为校正数值模拟模型提供了实验依据。
     2、运用ANSYS对两种路肩墙进行模态分析,提取了前五阶的频率和振型,按照4m、6m、8m、10m和12m 5种墙高,对比衡重式与仰斜式的结果,得出了自振频率随墙高的增大而减小;同一种高度,衡重式的基频比仰斜式要大。
     3、运用ANSYS对土基上的8m墙高的衡重式挡土墙进行瞬态分析,采用汶川波实震波形,按照0.1g、0.2g、0.4g、0.6g、0.8g和0.9g六种输入波峰值,分析了在仅受水平地震力、仅受竖直地震力和水平地震力与竖直地震力共同作用三种工况下墙顶最大水平位移随震级的关系,得出水平地震力对挡土墙水平位移起主导作用,竖直地震力影响很小,可以忽略不计。
With the propulsion of China's western development, more and more highway began to extend to the west. Most of the western region is a typical mountainous topography. In such places to building highways, it will inevitably encounter a lot of half-dug half-filled and steep embankments, retaining structures must be used to guarantee the stability of the embankment in order to ensure that the road transport security. The balance weight retaining wall's chest-slope is very steep and its back wall is tipsy, so it is widely used because it can reduce the height of retaining wall designed and the amount of earth excavation. Most parts are located in a high-intensity earthquake zone in Sichuan Province, seismic design of retaining walls is particularly important.
     Currently the studies of self-vibration frequency of roadbed and retaining structures are few, using static method to calculate seismic effect. Gravity retaining wall based on our standards for a typical wall type in our country, and only considers the role of horizontal seismic force to conduct seismic design seismic forces. But also Japan, the United States and New Zealand norms have not been considered the role of vertical seismic forces, but European standards are taken into account. In this paper, by earthquake damage surveys, large-scale shaking table test, combining with ANSYS finite element numerical simulation to explore the role of the retaining wall under seismic dynamic response. In this paper, I carried out research in the following areas:
     1.Through the retaining wall shaking table test, I has reached the distribution of the horizontal acceleration and the seismic active earth pressure along the wall high, combining with general-purpose finite element analysis software ANSYS to simulate the experiment, the experimental results and numerical simulation result. They come to a conclusion that correct numerical simulation model providing an experimental basis.
     2. Using ANSYS modal to analyze two types of shoulder wall, I extract ahead five frequencies and mode shape. According to 4m,6m,8m,10m and 12m, contrasting the conflation of the balance weight retaining wall and steep retaining wall,1 have obtained that the vibration frequency decrease with the increase of the high walls; at the same height, weight balance type of vibration frequency larger than the steep type.
     3. Using ANSYS transient analysis about the 8m-high balance weight retaining wall on soil based, using Wenchuan seismic wave, in accordance with 0.1g,0.2g,0.4g,0.6g,0.8g and 0.9g 6 kinds of input-wave peak, analyze the subject only to the horizontal of seismic forces, subject only to vertical seismic force and horizontal earthquake force and joint action of vertical earthquake force, conclude the maximum horizontal displacement of top of the wall with the earthquake magnitude, the horizontal of seismic derived the retaining wall displacements play a leading role, vertical seismic forces has little effect and can be negligible.
引文
[1]Matsuo H,O'Hara S.Lateral earth pressure and stability of Quay walls during earth quake engmeering.Proc of the Second World Conference on Earthquake Engineerin g.Tokyo and Kyoto,Julyll-18,1960.Vol.Ⅰ,165-181.
    [2]王云球.地震土压力的非线性分布.华东水利学院学报,1983(4)
    [3]Newmark N M. Effects of earthquakes on dams and embankments.Geotechnique,1 965,15(2):137-161.
    [4]LysmerJ., KulemeyerR.L., Finite dynamic model for infinite media,J.Eng.Mech Div., ASCE, Vol.95,1969,759-877
    [5]White W.,Valliappan S.,Lee I.K.,Unified boundary for finite dynamic models,J.Eng. Mech.div.,,ASCE,Vol.103,1977,949-964
    [6]Smith W.D.,A monreflecting plane boundary for wave propagation problems,J.Comp utational Physics,Vol.15,1974,492-503
    [7]Cundall P.A.,Kunar R.R.,Carpenter P.C.,Marti J.,Solution of infinite dynamicproblem s by infinite modeling in time domain,Conf.Appl.Number Modeling,Madrid,Spain.19 78
    [8]Lysmer J.,G.Wass,Shear waves in plane infinite structures,J.Eng.Mech.Div.,ASCE,Vol. 98,1972,85-105
    [9]Engquist B.,Majda A.,Absorbing boundry conditions for the numerical simulation of waves, Math Computation,Vol 31,1977,629-651
    [10]Clayton R.,Engquist B.,Absorbing boundary conditions for acoustic and wave equati ons,Bulletin of the Seismological Society of America,Vol.67,1977,1529-1540
    [11]廖振鹏著.工程波动理论导引.北京科学出版社,1996
    [12]廖振鹏,杨柏坡.频域透射边界.地震工程与工程振动,6(4),1986,1-9
    [13]杨柏坡,廖振鹏.结构-土相互作用有限元解法及改造通用程序的初步结果.地震工程与工程振动,6(4),1986,10-20
    [14]丁海平,廖振鹏,周正华.土-结构相互作用通用程序的改进.地震工程与工程振动,19(2),1999,51-55
    [15]Domingucz J.,Dynamic stiffness of rectangular foundation,Dept.of Civil En g,MIT, Cambridge,MA,Report No.R78-24,1978
    [16]Domingucz J.,Response of embedded foundation to traveling waves,Dept.of Civil Eng.,MIT,Cambridge,MA,Report No.R78-24,1978
    [17]Karabalis D.L.,BeskosD.E.,Dynamic response of 3-D flexible foundation by time d omain BEM and FEM,Soil Dyn.Earthquake Eng.,Vol4,1985,91-101
    [18]Spyrakos C.C.,Beskos Dynamic response of flexible strip-foundations by boundary and finite elements,Soil Dyn.Earthquake Eng.,Vol.5,1986,84-96
    [19]Lamb H.,On the propagation of tremors at the surface of an elastic solid,Phil Tra ns.Roy.Soc,London,Series A.203,1-42
    [20]Franssens G.R.,Calculation of elastodynamic Green's function in layered media by means of a modified propagator matrix method,Geo.J.Roy,Astronomical Soc,Vol.75,1 983,669-691
    [21]LucoJ.E.,Apsel R.J.,On the Green's functions for a layered half-space Part Ⅰ,Bull eism Soc Am,Vol.74,1983,909,929
    [22]Apsel R.J.,Luco.I.E.,On the Green's functions for a layered half-space Part Ⅱ,Bul 1 Seism Soc.Am,Vol.73,1983,931-951
    [23]Bouchon M.,A simple method to calculate Green's function for elastic layered me dia,Bull Seism Soc.Am,Vol.71,1981,959-971
    [24]Kausel E.,Peek R.,Dynamic load in the interior of a layered stratum:an explicit s olution,Bull Seism Soc.Am,Vol.72,1982,1459-1481
    [25]Wolf J.P.,Dynamic soil-structure interaction,New Jersey:Englewood Cliffs,Prentice-H all,1985
    [26]Wolf J.P.,Darbre G.R.,Dynamic-stiffness matrix of soil by the boundary element m ethod:conceptual aspects,Earthquake Eng.Struct,Dyn,Vol.12,1984,385-400
    [27]徐俊祥,朱为玄,王向东,徐道远.直接边界元法及其在弹性力学问题中的应用.南通工学院学报(自然科学版).2003.2(1)
    [28]王泳嘉.离散单元法—一种适用于节理岩石力学分析的数值方法.第一届全国岩石力学数值计算及模型试验讨论会论文集.西南交通大学出版社,1986
    [29]鲁军,张楚汉,王光纶,金峰.岩体动静力稳定分析的三维离散元数值模型.清华大学学报(自然科学版).清华大学学报(自然科学版).1996.3(10)
    [30]吴国三.岩土工程数值模拟方法的发展.科技信息
    [31]曹志远张雄勤.地下结构动力计的双有限条法.计算给构攀及其应用.1984.1(4)
    [32]Tassoulas J.L.,Dynamic soil-structure interaction,In:Besks D.E.,eds.New York:Bounda ry element methods in structural analysis.1988,273-308
    [33]Nandakumaran P.Behaviour of retaining wall under dynamic loads[Ph.D.Thesis].Ror kee, India.1973
    [34]Ichthara M, Matsuzawa H, Kawamura M.Earthquake resistant design of quay Walls.Proc of the Sixth World Conference on Earthquake Engineering.New Delhi, I ndia, January,1977.1969-1974.
    [35]Lai C S.Behavior of Retaining Wall Under Seismic Loading.M.E.Report79/9, Depa rtment of Civil Engineering, Univ.of Canterbury, Christchurch, New Zealand,197 9.
    [36]Kawamura M, Kuribayashi E.Effect of instructions on dynamic active earth Pressu res.Developments in geotechnical engineering, Vol(43), soil structure interaction, Th ird international Conference on soil Dynamics and Earthquake Engineering.June,19 87.103-110.
    [37]Chang C Y, Power M S, Mok C M,Tang Y K,Tang H T.Analysis of dynamic la teral earith pressures recorded on lotung reactor containment modelstructure.Proe.of Forth U.S.National Conference on Earthquak eEngineering.Palm Spring, CA, May, 1990.Vol.3,643-652.
    [38]王云球,施善云.地震动土压力研究.河海科技进展,1991年9月
    [39]Richards, R Jr, Fishman K L, Divito R C.Threshold acceleration for rotation or sliding of bridge abutments.J.of Geoteclinical Engineering, ASCE,1996,122(9):75 2-759.
    [40]Bolton M D, Steedman R S.The behavior of fixed cantilever subjected to lateral shaking.Pro of a symposium on the application of centrifuge modeling to geotechni cal design.Manchester, APril,1984.301-313.
    [41]Pahwa A, Whitman R V, Lee J.Quick release tests on centrifuge ofwall retaining saturated sand bacefill, Seismic Design of Retaining Wall.Reseach Report R87-18, DePartment of civil engineering, MIT,1987.
    [42]唐志成,彭胤宗,宋教吾.无粘性土中刚性挡土墙离心模型试验研究.重庆交通学院学报.1988(2)
    [43]Whitman R V, Ting N H.Experimental results for tilting wall with saturated back fill.International Conference on the Verification of Numerical Procedures for the An alysis of soil Liquefaction Problems.Arulanandan and scott(eds),1993.Vol.2,1515-1 528.
    [44]Zeng X.Seismic response of gravity quay walls 1:Centrifuge Modeling.J.Geot.Engr g, ASCE,1998,124(5):406-17.
    [45]Madabhushi SPG, Zeng X.Seismic response of gavity quay walls11:Numerieal Modeling.Journal of Geotechnical Engineering, ASCE,1998,124(5):418-427.
    [46]Aliev H, Mamedov H, Radgabova T.lnvestigation of the seismic Pressureof soils on the retaining walls and interdependence between foundation soils and constructio ns.SymPosium on Earth and EarthStructures Under Earthquake and Dynamic Loads. Roorkee, India, March,1973.3-10.
    [47]Fukuoka M, lmamura Y.Researcher on retaining walls during earthquakes.Proc.of t he 8th World Conference on Earthquakes Engineering.July21-28, San Francisco, CA, 1984.Vol,Ⅲ,501-508.
    [48]吴从师,徐泽沛,陈听.爆破地震作用下重力式挡土墙的稳定分析.岩石力学与工程学报.2003(11):1939-1942.
    [49]冯瑞成.共同沟振动台模型试验与抗震性能评价.哈尔滨工业大学硕士论文
    [50]汤爱平,李志强,冯瑞成,周锡元等.共同沟结构体系振动台模型试验与分析.哈尔滨工业大学校报.2009(6).
    [51]邓晓红.考虑土一结构相互作用的桥墩杭震分析.西南交通大学硕士论文.
    [52]ANSYS工程结构数值分析.人民交通出版.2007.5
    [53]吴世明,土动力学[M].中国建筑工业出版社.2000.12
    [54]刘立平.水平地震作用下桩一土一上部结构弹塑性动力相互作用分析.重庆大学博士论文.
    [55]王呼佳,陈洪军等著.ANSYS工程分析进阶实例.中国水利水电出版社.2006.9
    [56]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元.岩土工程学报.2006.28(9)
    [57]刘晶波,王振宇,杜修力,杜义欣.波动问题中的三维时域粘弹性人工边界[J].工程力学.2005,22(6)
    [58]刘晶波,杜义欣,闫秋实。粘弹性人工边界及地震动输入在通用有限元软件中的实现.防灾减灾工程学报.2007.27
    [59]刘忠玉,杨会朋,何盛东.刚性挡土墙地震主动土压力的非线性分布.郑州大学学报(工学版).2004.25(2)
    [60]铁路工程抗震设计规范(GB 50111-2006)
    [61]陈念英.从日本阪神地震再谈竖向地震作用的重要性.成都大学学报(自然科学版).1996,15(1)
    [62]刘健新,赵国辉.“5·12”汶川地震典型桥梁震害分析.建筑科学与工程学报.2009.26(2)
    [63]张建经,冯君,肖世国,刘昌清.支挡结构抗震设计的2个关键技术问题.西南交通大学学报.2009.44(33)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700