用户名: 密码: 验证码:
组织工程构建新型腹壁修复材料的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     (1)探讨种植骨骼肌成肌细胞于Ⅰ型胶原/聚乳酸/乙醇酸支架,模拟力学环境和组织血供,构建三维立体、具备有序肌纤维和收缩潜力的组织工程骨骼肌的可行性;
     (2)探讨种植成纤维细胞于小肠粘膜下层,复加组织工程骨骼肌形成组织工程材料修复腹壁缺损的可行性;
     (3)探讨组织工程材料与生物材料修复实验动物腹壁缺损的疗效优劣、再生组织差异,探讨进一步改进构建方法的途径。
     方法:
     (1)制备种子细胞和支架材料:①使用酶消化、差速贴壁法从乳鼠骨骼肌标本中分离纯化成肌细胞培养;②使用酶消化从乳鼠皮肤中分离纯化成纤维细胞培养;③按Abraham法制备猪小肠粘膜下层;④利用细胞形态学、免疫组化鉴定鉴定所制备种子细胞,利用免疫组化检查制备的小肠粘膜下层。
     (2)构建组织工程材料,修复腹壁缺损:①成肌细胞接种于Ⅰ型胶原/PLGA混合凝胶,置于机械细胞刺激器中的力学环境,体外培养3周;②成纤维细胞接种于SIS,体外培养3周;③上述两者复合预构的网膜血管网,构建组织工程腹壁修复材料;④制备大鼠全层腹壁缺损,分别使用组织工程材料或生物材料(3层SIS)修复;⑤观察术后动物一般恢复情况,检查术后不同时期修复腹壁的电生理特性;⑥分批处死动物,测定术后不同时期两组修复后再生腹壁的腹壁厚度、抗张强度;⑦观察术后不同时期修复区中心腹壁的组织结构、细胞密度、细胞成分、血管化程度;确定组织工程材料修复后再生腹壁有否形态接近正常骨骼肌的肌肉层结构、新生肌纤维是否与宿主肌纤维融合、有否肌球蛋白重链表达;⑧统计分析。
     结果:
     (1)成功构建三维立体、肌纤维平行有序、具备收缩潜力的组织工程骨骼肌。
     (2)成纤维细胞种植于SIS,复加组织工程骨骼肌构建的组织工程材料治疗腹壁缺损疗效优于生物材料;修复后的腹壁细胞密度更高、厚度更大、机械强度更高;具有纤维组织层和肌肉层结构、表达肌球蛋白重链、存在肌电活动。生物材料在术后2月完全被纤维组织代替。表现在
     (3)术后3月,组织工程材料修复后腹壁厚度较2月时减少、肌电活动强度也减低。
     结论:
     (1)构建三维立体、具有类似正常骨骼肌形态和收缩潜力的组织工程骨骼肌是可行的。
     (2)组织工程材料修复腹壁缺损疗效优于生物材料,且能弥补生物材料修复后再生腹壁主要由纤维组织再生构成、腹壁较正常腹壁薄、机械强度低、组织再生速度缓慢、血管化程度低等不足,有较好的发展前景。
     (3)缺神经支配,组织工程材料在体内不能长久维持在最佳状态,需进一步改进构建方法。
     创新点:
     (1)经文献检索,本实验是国内外关于组织工程学技术应用于疝和腹壁外科的首次探索(附检索证明),为腹壁缺损修复的研究提供了新的思路。
     (2)国内首次构建组织工程骨骼肌组织。
Objective:
     (1)To study the feasibility of three-dimensional,contractile skeletal muscle with parallel muscle fiber constructed by myoblasts seeded on collagen I/PLGA under simulated mechanical circumstance and tissue blood supply.
     (2)To study the feasibility of abdominal wall defect repaired by tissue engineered(TE) patch consist of small intestinal submucosa(SIS) with fibroblasts seeded on it and TE skeletal muscle.
     (3)To compare the effect and regenerating organ of TE patch and SIS on repairing abdominal wall defect in animal models.To look for the potential approach to upgrade constructing.
     Method:
     (1)Preparation of seed cells and scaffold.①Utilize different methods,such as enzymatic digestion,adherence,flow cytometer and so on to isolate、purify,culture skeletal myoblasts from the skeletal muscles of neonate rat.②Utilize enzymatic digestion to isolate,purify, culture dermatic fibroblasts from neonate rats.③Manufacture porcine small intestinal submucosa following the method invented by Abraham.④Identify the myoblasts,fibroblasts, SIS through the observation of the shape of the cell with inverted microscope and immunocytochemistry.
     (2)Construction of TE patch and repair abdominal wall defect in animal models.①skeletal myoblasts were suspended into a collagen/PLGA gel,under simulated mechanical circumstance inside mechanical cell stimulator for 3 weeks in vitro.②Suspend fibroblasts on SIS and co-cultivate for 3 weeks in vitro.③The above-mentioned two,combined with omental vasoganglion to form TE patch.④All animal underwent creation of a 3×2.5cm full-thickness abdominal wall defect and the defect was repaired by TE patch or biomaterial(3 layers of SIS).⑤Animal's recover information and electrophysiological characteristic of repaired abdominal wall postoperatively in two sets were recorded.⑥The mechanic strength of repaired abdominal wall postoperatively in two sets was measured.⑦The observation of tissue structure,cell density,cell component of the centre of repaired body wall was performed to confirm whether there was muscle layer similar to normal skeletal muscle in appearance,whether anagenetic muscle fiber could confluence with host muscle fiber,whether H-chain of myoglobulin could be detected.⑧Statistical analysis
     Results:
     (1) Three-dimensional skeletal muscles with parallel and ordered muscle fiber,potential to contract were constructed successfully.
     (2)TE patch,consist of TE skeletal muscle and fibroblast seeded on SIS,was superior to biomaterial in the effect of repairing abdominal wall defect.in two sets were both execelent and similar.Anagenetic body wall in TE set was thicker,with fibrous tissue layer and muscle layer,displayed higher in cell density with better cellular infiltration.H-chain of myoglobulin was detected and electromyography evidenced single motor-unit potentials,sometimes grouped into arithmic discharges in t TE set.While Sixty days after surgery,biomaterials were completely replaced by fibrous tissue,no electric activity detected.
     (3)The thickness of myoblast-seeded patches and intensity of their myoelectric activity were inferior at day 90 to 60 after implantation,suggesting a loss of contractile muscle fibers.
     Conclusion:
     (1)Construction of three-dimensional TE skeletal muscle,with similarity to normal skeletal muscle in appearance and potential to contract,is feasible.
     (2)The therapeutic efficacy of TE patch to abdominal wall defect is superior to biomaterial.TE patch represent a very promising tool for body-wall defect repair and can retrieve biomaterial in scar replacing repaired body wall,low recovery rate,high long-term rate of heria,since they are repopulated by skeletal muscle cells and fibroblasts,show positive responses in the electrophysiological studies.
     (3)Studies shouid be under way to identify strategies to improve and maintain the structural and functional integrity of implants for a longer time,especially in innervation.
     Innovation:
     (1)To our knowledge,this experiment is the first exploration of tissue engineering used in repairing of abdominal wall defect(certification affiliated).
     (2)This experiment is also the first construction of tissue engineered skeletal muscle in China.
引文
1.Stoles JT.Discussion on metalsand synthetic materials in relation to soft tissue:tissue reaction synthetic materials.Prec R Sec Med,1953,46:647.
    2.Disa JJ,Goldberg NH,et al.Recalcitrant abdominal wall integrity in contaminated tissue -deficient wounds using autologous fascia grafts.Plast Reconstr Surg,2004,113:673-675.
    3.Talor SG,Dwyer PJ.Chronic groin sepsis following tension-free inguinal hernioplasty.Br J Surg,1999,86:62-565.
    4.Welty G,Kinge U,et al.Functional imjpairment and complaints following incisional hernia repair with different polypropylene meshes.Hernia,2001,5:142-147.
    5.Kinge U,Junge K,et al.Do multifilament alloplastic mesh increase infection rate? Analysis of polymeric surface,the bacteria adherence and the in vivo consequence in a rat model.J Biomed Mater Res,2002;63:765-771.
    6.Harrell AG,Novistsky YW,et al.In vitro infectability of prosthetic mesh by methiciliin- resistant Staphylococcus aureus.Hernia 2006;10:120-124.
    7.Chung S,Hazen A,et al.Vascularized acellular dermal matrix island flaps for the repair of abdominal muscle defects.Plast Reconstr Surg,2003,111:225-229.
    8.Szabo A,Haj M,et al.Evaluation of seprafilm and amniotic membrane as adhesion prophylaxis in mesh repair of abdominal wall hernia in rats.Eur Surg Res,2000,32:125-130.
    9.Sandoval JA,Lou D,et al.The whole truth:Comparative analysis of diaphragmatic hernia repair using 4-ply versus 8-ply small intestinal submucosa in a growing animal model.J Pediatr Surg,2006,41:518-524.
    10.Obermiller FJ,Hodde JP,et al.A comparison of suture retention strength for three biometerials.Med Sci Monit,2004,10:11-15.
    11.Freytes DO,Badylak SF,et al.Biaxial strength of multilaminated extracellular matrix scaffolds.Biomaterials,2004,25:2353-2361.
    12.Ansaloni L,Catena F,et al.Prospective randomized,double-blind,controlled trial comparing Lichtenstein's repair of inguinal hernia with polypropylene mesh versus Surgisis gold soft tissue graft:preliminary results.Acta Biomed,2003,74:10-14.
    13.Burger JW,Halm JA,et al.Evaluation of new prosthetic meshes for ventral hernia repair.Surg Endosc,2006,20:1320-1323
    14.Thomas PR,Benjamin KP,et al.A Comparative analysis of expanded polytetrafluoroethylene and small intestinal submucosa-implications for patch repair in ventral herniorrhaphy.J Surg Res,2007,143:44-49.
    15.Konstantinovic ML,Lagae P,et al.Comparison of host response to polypropylene mesh and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model.Br J Obstet Gynaecol,2005,112:1554-1560.
    16.Badylak SF,Kokini K,et al.Strength over time of a resorbable bioscaffold for body wall repair in a dog model.J Surg Res 2001;99:282-287.
    17.Montgomery SP,Swiecki CW,et al.The evaluation of casualties from Operation Iraqi Freedom on return to the continental United States from March to June 2003.J Am Coll Surg,2005,201:7-12,discussion 12-3.
    18.Kotwal RS,Meyer DE,et al.Army Ranger casualty,attrition,and surgery rates for airborne operations in Afghanistan and Iraq.Aviat Space Environ Med,2004,75:833-40.
    19.Sebesta J.Special lessons learned from Iraq.Surg Clin North Am,2006,86:711-726
    20.Johnson MK,Paquette EL.Use of Surgisis for Abdominal Wall Reconstruction/Closure in Battlefield Casualties during Operation Iraqi Freedom.Military Medicine,2007,172:1119-1124.
    1.Abraham GA,Murray J,et al.Evaluation of the porcine intestinal collagen layer as a biomaterial.J Biomed Mater Res,2000,51:442-452.
    2.Webster C,Pavlath GK,et al.Isolation of human myoblast with the fluorescence-activate cells sorter.Exp Cell Res,1998,174:252-255.
    3.Rando TA,Blau HM.Primary mouse myoblast purification,characterization,and transplantation for cell-mediated gene therapy.J Cell Biol,1994,125:1275-1287.
    1.Van Meter CH,Ciaycomb WC,et al.Myoblast transplantation in the porcine model:a potential technique for myocardial repair.J Thorac Cardiovasc Surg,1995,110:1442-1448.
    2.Yao Shou-nan,Kurachi K.Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells.J Cell Sci,1993,105:957-963.
    3.Badylak SF,Kokini K,et al.Morphologic study of small intestine submucosa as a body wall repair device.J Surg Res,2002,103:190-202.
    4.McDevitt CA,Wildey GM,Catrone RM.Transforming growth factor-betal in a sterilized tissue derived from the pig small intestine submucosa.J Biomed Mater Res,2003,67:637-640.
    5.Hurst RE,Bonner RB.Mapping of the distribution of significant proteins and proteoglycans in small intestinal submucosa by fluorescence microscopy.J Biomater Sci Polym Ed,2001,12:1267-1279.
    6.Ueno T,Pickett LC,et al.Clinical application of porcine small intestine submucosa in the management of infected or potentially contaminated abdominal defects.J Gastrointest Surg,2004,8:109-112.
    7.Allman AJ,McPherson TB,et al.Xenogenic extracellular matrix grafts elicit a Th2-restricted immune response.Transplantation,2001,71:1631-1640.
    8.Yan W,George S,et al.Tissue engineering of skeletal muscle.Tissue Eng.2007 Nov;13(11):2781-90.
    9.Atala A.Tissue engineering,stem cells and cloning:current concepts and changing trends.Expert Opin Biol Ther,2005,5:879-892.
    10.Pancrazio JJ,Wang F,et al.Enabling tools for tissue engineering.Biosens Bioelectron,2007,22:2803-2811.
    11.Shing HL,Michael SS,et al.Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution.Biomaterials,2005,26:443-449.
    12.Colton C.Implantable biohybrid artificial organs.Cell Transplant,1995,4:415-436.
    13.Li RH,WiIlJams S,et al.Encapsulation matrices for neurotrophic factor-secreting myohlast cells.Tissue Eng,2000,6:151-163.
    14.Moon du G,Christ G,et al.Cyclic mechanical preconditioning improves engineered muscle contraction.Tissue Eng.2008 Apr;14(4):473-82.
    15.Dhawan V,Lytle IF,et al.Neurotization improves contractile forces of tissue-engineered skeletal muscle.Tissue Eng.2007 Nov;13(11):2813-21.
    1.de Vries Reilingh TS,Bodegom ME,et al.Autologous tissue repair of large abdominal wall defects.Br J Surg,2007;94(7):791-803.
    2.Morris DM,Haskins R,et al.Use of carbon fibers for repair of abdominal wall defects in rats.Surg,1990,107:627-631.
    3.Gobin AS,Butler CE,et al.Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend.Tissue Eng,2006;12(12):3383-3394.
    4.Du HL.Elementary experience of reconstruction of abdominal wall defects with SGM composix.J Practical Beauty and Plastic Surg,1994,5:144-147.
    5.Lu CZ.Cae JD.Tolerance observation of Malex in the repair of abdominal wall defects.Chinese Journal of Practical Surgery,2001,21:110-112.
    6.Esfandiari A,Nowrouzian I.Efficacy of polypropylene mesh coated with bioresorbable membrane for abdominal wall defects in mice.J Am Assoc Lab Anim Sci,2006;45(1):48-51.
    7.Bleichrodt RP,Malyar AW,et al.The omentum-polypropylene sandwich technique:an attractive method to repair large abdominal-wall defects in the presence of contamination or infection.Hernia,2007;11(1):71-74.
    8. Hume RH, Bout J. Mesh migration following laparoscopic inguinal hernia repair. J Lap Surg, 1996, 6: 333-336.
    
    9. Danino AM, Malka G, et al. A scanning electron microscopical study of the two sides of polypropylene mesh (Marlex) and PTFE (Gore Tex) mesh 2 years after complete abdominal wall reconstruction. A study of 15 cases.Br J Plast Surg,2005;58(3):384-338.
    10. Pu QH, Shi D. Comparative evaluation of expanded polytetrafluoroethylene and polypmpylene mesh for repair of abdominal wall defect in rats. J Chong qing Medical University, 2001, 26: 243-245.
    11. Cobb WS, Kercher KW, et al. The argument for lightweight polypropylene mesh in hernia repair.Surg Innov,2005;12(1):63-69.
    12. Mathes SJ, Steinwald PM, et al.Complex abdominal wall reconstruction: a comparison of flap and mesh closure.Ann Surg, 2000;232(4):586-596.
    13. Moreno-EA, Torralba JA, et al. Conceptual reformulation of the double mesh repair technique: a simple solution for highly complex abdominal wall defects.Cir Esp, 2006;80(2):101-104.
    14. Bellows CF, Albo D, et al. Abdominal wall repair using human acellular dermis.Am J Surg,2007;194(2):192-198.
    15. Butler CE, Langstein HN,et al. Pelvic, abdominal, and chest wall reconstruction with AlloDerm in patients at increased risk for mesh-related complications.Plast Reconstr Surg, 2005;116(5): 1263-1275.
    16. Butler CE. The role of bioprosthetics in abdominal wall reconstruction.Clin Plast Surg, 2006; 33(2): 199-211.
    17. Bellows CF, Alder A, et al. Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities.Expert Rev Med Devices,2006;3(5):657-675.
    18. Holton LH, Kim D, et al. Human acellular dermal matrix for repair of abdominal wall defects: review of clinical experience and experimental data.J Long Term Eff Med Implants,2005;15(5):547-558.
    19. Lowe JB 3rd. Updated algorithm for abdominal wall reconstruction.Clin Plast Surg, 2006;33(2):225-240.
    20. Chung S, Hazen A, et al. Vascularized aceltular dermal matrix island flaps for the repair of abdominal muscle defects. Plastic and Reconstructive Surgery, 2003, 111:134-156.
    21. Patton JH Jr, Berry S, et al. Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions.Am J Surg,2007;193(3):360-363.
    22.Committee Microbiological Safety of Blood and Tissue for Transplantation.Guidance on the microbiological safety of human tissues and organs used in the transplantation.London Department of Health.
    23.Szabo A,Haj M,et al.Evaluation of seprafilm and amniotic membrane as adhesion prophylaxis in mesh repair of abdominal wall hernia in rats.Eur Surg Res,2000,32:125-128.
    24.Ko R,Kazacos EA,et al.Tensile strength comparison of small intestinal submucosa body wall repair.J Surg Res,2006;135(1):9-17.
    25.Ansaloni L,Catena F,et al.Prospective randomized,double-blind,controlled trial comparing Lichtenstein's repair of inguinal hernia with polypropylene mesh versus Surgisis gold soft tissue graft:preliminary results.Acta Biomed,2003,74:10-14.
    26.Burger JW,Halm JA,et al.Evaluation of new prosthetic meshes for ventral hernia repair.Surg Endosc,2006,20:1320-1323
    27.Thomas PR,Benjamin KP,et al.A Comparative analysis of expanded polytetrafluoroethylene and small intestinal submucosa-implications for patch repair in ventral herniorrhaphy.J Surg Res,2007,143:44-49.
    28.Badylak SE,Toll[us R,et al.The use of xenogenic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model.J Biomed Mater Res,1995,29:977-980.
    29.Baillie DR,Stawicki SP,et al.Use of human and porcine dermal-derived bioprostheses in complex abdominal wall reconstructions:a literature review and case report.Ostomy Wound Manage,2007;53(5):30-37.
    30.Parker DM,Armstrong PJ,et al.Porcine dermal collagen(Permacol) for abdominal wall reconstruction.Curr Surg,2006;63(4):255-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700