用户名: 密码: 验证码:
铜尾矿废弃地生态恢复过程中植物群落与基质性质变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以杨山冲尾矿废弃地早期人工恢复坡面(YSC)和水木冲尾矿废弃地近期人工恢复坡面(SMC)为对象,采用理化分析法研究了两尾矿废弃地不同人工恢复坡面基质理化性质、基质微生物量、呼吸作用强度、基质酶活性以及植物体内养分与金属元素含量变化,探讨了不同植被群落的组成与结构对尾矿废弃地中重金属迁移、土壤微生物量和酶活性等的影响。结果表明:
     (1)YSC中覆土白茅A、B层基质养分含量最高,SMC中早期栽种香根草A、B基质养分状况较好。有效态Cu、Zn及总量金属Al、Ca和Fe在两尾矿废弃地不同人工恢复坡面基质中的含量均最高,且不同有效态重金属和总量金属在基质垂直方向上的变化较复杂。对比发现,YSC中基质理化性质与有效态重金属、总量金属之间相关性较好。
     (2)YSC中覆土白茅A、B层基质具有较高的微生物量C、N和较低的呼吸作用强度及代谢熵。SMC中早期栽种香根草A、B层基质具有较高的微生物量C、N,且白茅群落下基质呼吸作用最强。微生物量C、N和呼吸作用在两尾矿废弃地不同人工恢复坡面基质垂直方向上基本表现为自上而下逐渐减小。与YSC相比,SMC基质中这4种微生物学指标与基质理化性质、有效态重金属以及总量金属之间的相关性较差。
     (3)在YSC覆土白茅A、B层基质,SMC早期栽种香根草A、B层基质中,土壤脱氢酶、过氧化氢酶、碱性磷酸酶和脲酶的活性均较高。这4种酶活性在两尾矿废弃地不同人工恢复坡面基质垂直方向上基本表现为自上而下逐渐降低。对比发现,YSC基质中4种土壤酶活性之间及其与基质理化性质、有效态重金属、总量金属、4种微生物学指标之间的相关性明显好于SMC。
     (4)YSC中紫穗槐体内总氮含量最高,盐肤木体内总磷含量最高,且总磷、总氮之间呈显著正相关。SMC内中期香根草植物体内总氮和总磷含量均最高,且总磷、总氮之间无显著相关性。YSC中,草本植物对重金属富集能力较强,其中矛叶荩草对Al、Cu、Fe、As、Cd和Cr富集量均最高,重金属元素之间相关性较好,但对植物体内氮、磷影响较小。SMC中香根草体内重金属积累量较大,重金属元素之间相关性较差,但对植物体内总磷影响较大。
With the artificial recovery slopes of Yangshanchong (YSC) and Shuimuchong (SMC) copper mine tailings as test objects, this paper studied the soil physicochemical properties, soil microbial biomass, soil respiration, soil enzyme activities and the contents of nutrient and metal elements inside plant, using methods of physicochemical analysis. The main objective of this paper was to explore the effect of structure and composition of different vegetation communities on heavy metal migration, microbial biomass C and N, and soil enzyme activities. The results indicated that:
     (1) The content of soil nutrient in the substrates (layers A and B) under covering Imperata cylindrica community was highest at YSC. The soil nutrient in the substrates (layers A and B) under early vetiver grass communities was comparatively well at SMC. The contents of available heavy metals (Cu. Zn) and total heavy metals (Al, Ca and Fe) were highest, and the change of available heavy metals and total metals in vertical direction was more complicated at YSC and SMC. In addition, the correlation between physicochemical properties and available heavy metals and total metals at YSC is better than SMC.
     (2) The soil microbial biomass C and N were relatively high, and the soil respiration and metabolic quotient were lower in the substrates (layers A and B) under covering Imperata cylindrica community at YSC. The soil microbial biomass C and N were quite high in the substrates (layers A and B) under early vetiver grass communities, and soil respiration was strongest under Imperata cylindrica community at SMC. The soil microbial biomass C and N, and respiration presented as decreases gradually in the soil vertical (from up and down) at YSC and SMC. Compare with YSC, the correlation between four soil microbial indicator and physicochemical properties, available heavy metal and total metals is poor at SMC
     (3) The activities of dehydrogenase. catalase, alkaline phosphatase and urease was higher in the substrates (layers A and B) under covering Imperata cylindrica community at YSC and in the substrates (layers A and B) under early vetiver grass communities at SMC. The activities of four soil enzymes presented as decreases gradually in the soil vertical (from up and down) at YSC and SMC. Furthermore, the correlation between the activities of four soil enzymes and physicochemical properties, available heavy metal and total metals at YSC is much better than SMC.
     (4) The content of total nitrogen was biggest in Amorpha fruticos, and the content of total phosphorus was highest in Rhus chinensis. and a significant positive correlation was presented between total nitrogen and total phpsphorus at YSC. Meanwhile, the highest content of total nitrogen and total phosphorus was accumulated in middle vetiver grass communities, and these had no significant correlation between total nitrogen and total phpsphorus at SMC. The metal elements enrichment in herb was stronger than woody, and the contents of Al, Cu, Fe, As, Cd and Cr were highest in Arthraxon prionodes, and the link of those metal elements was more closely each other, but they had less effect to total nitrogen and total phosphorus at YSC. In additional, the accumulations of different heavy metal were bigger in Vetiveria zizanioiaes at SMC. Compare with YSC, the correlation of different metal elements was less at SMC, but they had larger effect to total nitrogen and total phosphorus.
引文
[1]束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究(Ⅰ)[J].生态科学,2000,19(2):24-29.
    [2]朱利东,林丽,付修银,等.矿区生态重建[J].成都理工学院学报,2001,28(3):310-314.
    [3]姜必亮,王伯荪.可持续发展的生态学透视[J].生态科学,2000,19(1):65-69.
    [4]格默尔R.工业废弃地上的植物定居[M].北京:科学出版社,1987.
    [5]蓝崇钰,束文圣,孙庆业.采矿地的复垦[A].见:陈昌笃.持续发展与生态学[M]. 北京:中国科技出版社,1993.
    [6]黄铭洪,骆永明.矿区土地修复与生态恢复[J].土壤学报,2003,40(2):161-169.
    [7]Romero E, Benltez E, Nogales R. Suitability of Wastes from Olive-Oil Industry for Initial Reclamation of a Pb/Zn Mine Tailing[J]. Water, Air and Soil Pollution, 2005,165(3):153-165.
    [8]张东为,崔建国.金属矿山尾矿废弃地植物修复措施探讨[J].中国水土保持,2006(3):40-42.
    [9]Kent M. Plant growth problems in colliery spoil reclamation:A review[J]. Applied Geography,1982,2(2):83 - 107.
    [10]黄铭洪,束文圣,周海云.环境污染与生态修复[M].北京:科学出版社,2003.
    [11]宋书巧,周永章.矿业废弃地及其生态恢复与重建[J].矿产保护与利用,2001(5):43-49.
    [12]Young K. Destruction of ecological habitats by mining activities[J]. Agricultural Ecology,1988,16:37-40.
    [13]邓建,彭怀生,张强.矿业可持续发展理论及应用[J].黄金,1997, 18(7):20-23.
    [14]潘德成,吴祥云.矿区次生裸地水土保持与生态重建技术探讨[J].水土保持应用技术,2009(4):23-25.
    [15]Toomik A Libbik V. Oil shale mining and processing impact on landscapes in northeast Estonia[J]. Landscape and Urban Planning,1998,41(3-4):285-292.
    [16]束文圣,黄立南,张志权,等.几种矿业废物的酸化潜力[J].中国环境科学,1999,19(5):402-405.
    [17]Singer PC Stumm W. Acidic mine drainage; rate-determining step[J]. Science 1970,167(3921):1121-1123.
    [18]束文圣,蓝崇钰,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报,1997(8):314-318.
    [19]Lan CY, Shu WS, Wong MH. Revegetation of lead/zinc mine tailings at Shao guan, Guangdong Province, China[C]//Phytotoxicity of the Tailings:Global Environmental Biotechnology.1997. London:Elsevier science BV.
    [20]李艺,李明顺,杨胜香,等.广西凤凰锰矿区废弃地生态环境问题及恢复治理对策[J].地球与环境,2007,35(3):267-272.
    [21]黄树焘,宋静,骆永明,等.铜陵杨山冲尾矿库能源植物生产示范基地的特征化[J].广西农业科学,2009,40(6):691-695.
    [22]孙庆业,任冠举,杨林章,等.自然植物群落对铜尾矿废弃地土壤酶活性的影响[J].土壤学报,2005,42(1):37-43.
    [23]林初夏,黄少伟,童晓立,等.大宝山矿水外排的环境影响:Ⅱ农业生态系统[J].生态环境,2005,14(2):169-172.
    [24]周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报,2004,23(6):1172-1176.
    [25]王振刚,何海燕,严于伦.石门雄黄矿地区居民砷暴露研究[J].卫生研究,1999(1):6-8.
    [26]半振明.固体废物的处理与处置[M].北京:高等教育出版社,1993,5-23.
    [27]侯俊华,霍进臣.辽宁采矿业对环境的影响与水土流失防治对策[J].中国水土保持,2005(4):44-45.
    [28]束文圣,叶志鸿,张志权,等.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003,23(8):1629-1639.
    [29]魏艳,侯明明,卿华,等.矿业废弃地的生态恢复与重建研究[J].矿业工程,2007,5(1):52-55.
    [30]李海波,李克顺,李亚东.我国矿业废弃地复垦现状及对策分析[J].环境科 学与技术,2005,28(zl):59-60,101.
    [31]王友章.矿山复垦的典范[J].湖南地矿,2003,17(2):63-64.
    [32]中国科学技术协会部编著.中国退化土地防治研究[M].北京:中国科学技术出版社,1990.
    [33]潘明才.中国土地复垦概况及发展趋势与对策[J].资源·矿产,2000(7):5-7.
    [34]王克华,刘胜祥.金属尾矿废弃地的生态恢复[J].四川环境,2003,22(1):13-17.
    [35]徐东强,张荣.马兰庄铁矿尾矿复垦实践[J].唐山工程技术学院学报,1995,17(4):99-104.
    [36]Walker LR Powell EA. Soil water retention on gold minesurface in the mojave desert[J]. Restoration Ecology,2001,9(1):95 - 103.
    [37]赵景奎.矿区上地复垦技术与管理[M].北京:农业出版社,1993.
    [38]Bisevac L Majer JD. Comparative study of ant communities of rehabilitated mineral sand mines and heathland, western Australia[J]. Restoration Ecology, 1999,7(2):117-126.
    [39]Frost SM Williams SE. Long-term reestablishment of arbuscular mycorrhizal fungi in a drastically disturbed semiarid surface mine soil[J]. Arid Land Research and Management,2001,15(1):3 - 12.
    [40]Zhang ZQ, Shu WS, Liao WB, et al. Deficiency of nutrients and the role of legume species in rest ration of mine wastelands[C]//Mine Land Reclamation and Ecological Restoration for the 21 Century.2000. Beijing:China Coal Industry Publishing House.
    [41]高利娟,蒋代华,顾明华.重金属污染土壤的植物修复及展望[J].甘肃农业,2006(4):249.
    [42]田胜尼,孙庆业,王铮峰,等.铜陵铜尾矿废弃地定居植物及基质理化性质的变化[J].长江流域资源与环境,2005,14(1):88-93.
    [43]束文圣,黄铭洪.污染与恢复生态学概论[C]//环境污染与生态恢复.2003a.北京:科学出版社.
    [44]Bradshaw A. Restoration of mined lands-using natural processes[J]. Ecological Engineering,1997,8(4):255-269.
    [45]孙庆业,蓝崇钰,廖文波.尾矿植被法治理初探[J].国土与自然资源研究. 1999(3):58-60.
    [46]Tordoff GMA, Baker JM, Wills AJ. Current approaches to revegetation and reclamation of metalliferous mine wastes[J]. Chemosephere,2000,41(1-2): 219-228.
    [47]丁邦贵.铜陵铜尾矿植被重建的调查研究[J].生物学通报,2004,39(5):57-58.
    [48]张学洪,刘杰,黄海涛,等.广西荔浦锰矿废弃地植被及优势植物重金属生物蓄积特征[J].地球与环境,2006,34(1):13-18.
    [49]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报,2001,21(11):1932-1940.
    [50]Sparling GP. Soil microbial biomass, activity and nutrient cycling as indicators of soils health[C]//Biological indicators of soil health.1997. Hamilton:Manaaki Whenua-Landcare Research.
    [51]DeDeyn GB, Raaijmakers CE, Zoomer HR, et al. Soil invertebrate fauna enhances grassland succession and diversity[J]. Nature,2003(422):711-713.
    [52]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [53]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.
    [54]Turner BL, Bristow AW, Haygarth PM. Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance[J]. Soil Biology and Biochemistry, 2001,33(7-8):913-919.
    [55]Adriano DC, Wenzel WW, Blum WEH. Role of phytoremediation in the establishment of a global soil remediation network[C]//Proceedings International Seminar on Use Plants for Environmental Remediation.1997. Tokyo:Kosaikaikan.
    [56]蒋宏剑,周晓阳.重金属污染毒害与植物修复机制研究[J].山东林业科技,2009(4):118-123.
    [57]卫智军,李青丰,贾鲜艳,等.矿业废弃地的植被恢复与重建[J].水土保持学报,2003,17(4):172-175.
    [58]龙健,黄昌勇,滕应,等.天台铅锌矿区香根草(Vetiveria zizanioides)等几种草本植物的重金属耐性[J].应用与环境生物学报,2003,9(3):226-229.
    [59]Antiochia R, Campanella L, Ghezzi P, et al. The use of vetiver for remediation of heavy metal soil contamination[J]. Analytical and Bioanalytical Chemistry,2007, 388(4):947-956.
    [60]卞正富,张国良.矿山土复垦利用试验[J].中国环境科学,1999,19(1):81-84.
    [61]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605.
    [62]王焕校.污染生态学[M].北京:高等教育出版社,2000.
    [63]李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003(1):24-26.
    [64]辛蕊,张思冲,周晓聪,等.大庆城区土壤重金属污染及相关性分析[J].农业资源与环境科学,2008,24(9):416-420.
    [65]郭薇.抚顺西露天采场植物修复的研究[J].能源环境保护,2006,20(3):27-32.
    [66]张辉.南京地区土壤沉积物中重金属形态研究m环境科学学报,1997,17(3):346-351.
    [67]卢瑛,龚子同,张甘霖.南京城市土壤中重金属的化学形态分布[J].环境化学,2003,22(2):131-136.
    [68]王祖伟,李宗梅,王景刚,等.天津污灌区土壤重金属含量与理化性质对小麦吸收重金属的影响[J].农业环境科学学报,2007,26(4):1406-1410.
    [69]陈凤,濮励杰.昆明市农业土壤基本性质与重金属含量及二者的关系[J].土壤学报,2007,39(2):291-296.
    [70]高焕梅,孙燕,和林涛.重金属污染对土壤微生物种群数量及活性的影响[J].江西农业科学,2007,19(8):83-85.
    [71]Jagadish CT, Meena SC, Kathju S. Influence of straw size on activity and biomass of soil microorganisms during decomposition[J]. European Journal of Soil Biology,2001,37(3):157-160.
    [72]Sudipta T, Ashis C, Kalyan C,et al. Enzyme activities and microbial biomass in coastal soils of India[J]. Soil Biology and Biochemistry,2007,39(11):2840-2848.
    [73]薛萐,刘国彬,戴全厚,等.不同植被恢复模式对黄土丘陵区侵蚀土壤微生 物量的影响[J].自然资源学报,2007,22(1):20-27.
    [74]Wang QK Wang SL. Microbial biomass in subtropical forest soils:effect of conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation[J]. Journal of Forestry Research,2006,17(3):197-200.
    [75]王海英,宫渊波,陈林武.嘉陵江上游不同植被恢复模式土壤微生物及土壤酶活性的研究[J].水土保持学报,2008,22(3):172-177.
    [76]Yu ZY, Cheng FS, Zeng DH,et al. Soil inorganic nitrogen and microbial biomass carbon and nitrogen under pine plantations in Zhanggutai sandy soil[J]. Pedosphere,2008,18(6):775-784.
    [77]黄昌勇,李保国,潘根兴,等.土壤学[M].北京:中国农业出版社,2000,50-65.
    [78]潘成荣,汪家权,郑志侠,等.巢湖沉积物中氮与磷赋存形态研究[J].生态与农村环境学报,2007,23(1):43-47.
    [79]赵先丽,程海涛,吕国红,等.土壤微生物生物量研究进展[J].气象与环境学报,2006,22(4):68-72.
    [80]余彬彬,金则新,李钧敏.常绿阔叶林次生演替系列群落土壤微生物生物量及酶活性[J].西北林学院学报,2008,23(5):30-33.
    [81]杨成德,龙瑞军,陈秀蓉,等.东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征[J].草业学报,2007,16(4):62-68.
    [82]陈政,阳贵德,孙庆业.生物结皮对铜尾矿废弃地土壤微生物量及酶活性的影响.[J].应用生态学报,2009,20(9):2193-2198.
    [83]Sun QY, An SQ, Yang LZ, et al. Chemical properties of the upper tailings beneath biotic crusts[J]. Ecological Engineering,2004,23:47-53.
    [84]陈政,阳贵德,孙庆业.植物群落对铜尾矿废弃地土壤微生物量和酶活性的影响[J].生态环境学报,2009,18(6):2189-2193.
    [85]郭朝晖,廖柏寒,黄昌勇.模拟酸雨下Cd、Cu、Zn复合污染对土壤微生物量碳和酶活性的影响[J].应用与环境生物学报,2003,9(4):382-385.
    [86]张玲,叶正钱,李廷强,等.铅锌矿区污染土壤微生物活性研究[J].水土保持学报,2006,20(3):136-140.
    [87]纪玉琨,李广贺,万金颖.污灌区土壤重金属对土壤微生物影响的研究[J]. 农业环境科学学报,2006,25(增刊):118-120.
    [88]Dahlin S, Witter E, Martensson A, et al. Where's the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination[J]. Soil Biology and Biochemistry,1997,29(9-10):1405-1415.
    [89]Singh JS Gupta WH. Plant decomposition and soil respiration in terrestrial ecosystems[J]. Botanical Review,1977,43(4):449-528.
    [90]杨刚,何寻阳,王克林,等.不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J].土壤通报2008,39(1):189-191.
    [91]曾路生,廖敏,黄昌勇,等.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响[J].应用生态学报,2005,16(11):2162-2167.
    [92]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(2):351-357.
    [93]曹靖,贾红磊,徐海燕,等.干旱区污灌农田土壤Cu、Ni复合污染与土壤酶活性的关系[J].农业环境科学学报,2008,27(5):1809-1814.
    [94]Jin K, Sleutel S, Buchan D, et al. Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau[J]. Soil and Tillage Research,2009,104(1):115-120.
    [95]董军,栾天罡,蓝崇钰,等.铅锌矿冶区土壤酶活性特征研究[J].生态环境,2005,14(5):668-671.
    [96]Liu XM, Li Q, Liang WJ, et al. Distribution of Soil Enzyme Activities and Microbial Biomass Along a Latitudinal Gradient in Farmlands of Songliao Plain, Northeast China[J]. Pedosphere,2008,18(4):431-440.
    [97]苏静,欧今次仁,尼霞次仁,等.德兴铜矿周边地区土壤酶活性研究[J].环境污染与防治,2007,29(5):357-360.
    [98]李跃林,彭少麟,李志辉,等.桉树人工林地土壤酶活性与微量元素含量的关系[J].应用生态学报,2003,14(3):345-348.
    [99]王海英,宫渊波,陈林武.不同植被恢复模式下土壤微生物及酶活性的比较一以嘉陵江上游地区为例[J].长江流域资源与环境,2006, 15(2):201-206.
    [100]王莉,张强,牛西午,等.黄土高原丘陵区不同土地利用方式对土壤理化性质的影响[J].中国生态农业学报,2007, 15(4):53-56.
    [101]安韶山,黄懿梅,李壁成,等.云雾山自然保护区不同植物群落土壤酶活 性特征研究[J].水土保持通报,2004,24(6):14-18.
    [102]Aon MA Colaneri AC. Temporol and spatial evolution of enzyme activities and physico-chemical properties in an agricultureal soil[J]. Applied Soil Ecology, 2001,18(3):255-270.
    [103]Ros M, Hernandez MT, Garcia C. Soil microbial activity after restoration of a semiarid soil by organic amendments[J]. Soil Biology and Biochemistry,2003, 35(3):463-469.
    [104]Ajwa HA, Dell CJ, Rice CW. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization[J]. Soil Biology and Biochemistry,1999,31(5):769-777.
    [105]王蔚,孙庆业.自然演替过程中铜尾矿土壤酶活性的变化[J].生物学杂志,2009,26(2):27-30,47.
    [106]胡海波,仇才楼,康立新,等.泥质海岸防护林土壤酶活性与理化性质关系的研究[J].东北林业大学学报.,1995,23(5):37-45.
    [107]魏孝荣,邵明安.黄土高原沟壑区小流域不同地形下土壤性质分布特征[J].自然资源学报,2007,22(6):946-953.
    [108]许超,夏北成,冯涓.酸性矿山废水污染对稻田土壤酶活性影响研究[J].农业环境科学学报,2008,27(5):1803-1808.
    [109]滕应,黄昌勇,龙健,等.铅锌银尾矿污染区土壤酶活性研究[J].中国环境科学,2002,22(6):551-555.
    [110]Fernandez P, Sommer I, Cram S, et al. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailing[J]. Science of the Total Environment,2005,348(1-3):231-243.
    [111]罗红,刘鹏,宋小敏.重金属镉、铜、镍复合污染对土壤酶活性的影响[J].水土保持学报,2006,20(2):94-96,121.
    [112]尹君,高如泰,刘文菊,等.土壤酶活性与土壤Cd污染评价指标[J].农业环境保护,1999,18(3):130-132.
    [113]胡学玉,孙宏发,陈德林.大冶矿区土壤重金属积累对土壤酶活性的影响[J].生态环境,2007,16(5):1421-1423.
    [114]黄昌勇,李保国,潘根兴,等.土壤学[M].北京:中国农业出版社,2000,192-214.
    [115]Baath E. Effects of heavy metals in soils on microbial processes and population(a review)[J]. Water Air Soil and Pollution,1989,47(3-4):335-379.
    [116]任天志.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    [117]陈朝琼,严平,魏敏,等.攀枝花矿渣场重金属污染对土壤微生物学指标的影响[J].安徽农业科学,2007,35(18):5504-5506.
    [118]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000,257-282.
    [119]胡学玉,孙宏发,陈德林.铜绿山矿冶废弃地优势植物重金属的积累与迁移[J].长江流域资源与环境,2008,17(3):436-439.
    [120]刘月莉,伍钧,唐亚,等.四川甘洛铅锌矿区优势植物的重金属含量[J].生态学报,2009,29(4):2020-2025.
    [121]Freitas H, Prasad MNV, Pratas J. Plant community tolerant to trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal:environmental implications [J]. Environment International,2004,30(1): 65-72.
    [122]Liu YG, Zhang HZ, Zeng DM, et al. Heavy Metal Accumulation in Plants on Mn Mine Tailings [J]. Pedosphere,2006,16(1):131-136.
    [123]Lei DM Duan CQ. Restoration potential of pioneer plants growing on lead-zinc mine tailings in Lanping, Southwest China[J]. Journal of Environmental Sciences,2008,20(10):1202-1209.
    [124]田胜尼,刘登义,彭少麟,等.香根草和鹅观草对Cu、Pb、Zn及其复合重金属的耐性研究[J].生物学杂志,2004,21(3):15-19,26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700