用户名: 密码: 验证码:
光动力法制备抗小鼠H22肝癌肿瘤疫苗的实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用疫苗来预防疾病是人类追求的目标,更是肿瘤防治的方向。关于肿瘤疫苗的制备,当前大多数的研究主要集中在应用基因工程技术或者肿瘤相关抗原诱导DC(Dendritic Cells)制备肿瘤疫苗。但是这些方法大部分仍处于实验研究阶段。光动力法(PDT)是一种治疗肿瘤的新方法,PDT法能否应用于制备肿瘤疫苗,其制备的肿瘤疫苗对肿瘤是否具有预防和治疗作用,正在成为肿瘤预防和治疗领域一个新的研究热点。
     论文首先介绍了本研究的选题背景,接着对国内外光动力现状和肿瘤疫苗技术做了详细的介绍,在此基础上,将PDT法应用于肿瘤疫苗制备技术。论文主要从以下几个方面展开。
     1、分别采用532nm和630nm激光器作为光源,光敏剂采用HMME(Hematoporphyrin Monomethyl Ether,血卟啉单甲醚),瘤株选用H22小鼠肝癌体外培养细胞株,制备相应的肿瘤疫苗,并且对所制备肿瘤疫苗的效果进行了检测。实验结果表明PDT法制备的抗小鼠H22肝癌肿瘤疫苗对小鼠肝癌肿瘤具有一定的抑制作用,提示该方法制备的肿瘤疫苗有可能成为一种辅助预防肿瘤的手段。
     2、主要讨论了氧含量对PDT所制备疫苗效果的影响。由于PDT对氧含量的要求比较高。为了观察氧含量的不同对所制备抗肿瘤疫苗效果的影响。我们针对同一种肿瘤细胞选择不同的功率密度来制备相对应的疫苗,并用所制备的疫苗免疫小鼠,然后再接种同种肿瘤细胞,观察其抗肿瘤效果,优化制备肿瘤疫苗的光学参数。
     3、对PDT法所制备疫苗的治疗效果和安全性做了初步的研究。指出对于PDT方法制备的肿瘤疫苗的使用,同样存在把握时机的问题。实验结果表明,在肿瘤生长早期,PDT法制备的肿瘤疫苗还是具有一定的治疗作用,但是当在肿瘤生长中晚期的时候,采用该疫苗不但没有治疗作用,反而会加快肿瘤生长。
     4、我们对光动力疗法制备疫苗过程中,与氧有关的问题进行了理论研究。探索氧含量与光动力疗法所制备肿瘤疫苗的无效或效果轻微是否有所关联以及关联的机制;是否存在氧含量的阈值,使得光动力效果产生质的区别;有无方法可以改善疫苗的抗肿瘤效果等等。由于光动力疗法中的氧的消耗涉及代谢耗氧、反应耗氧、氧扩散等一系列问题,在分析中最合理的方法是建立数学模型,通过解析这个数学模型,争取能够解答以上问题。改变光照射条件,降低光功率密度,将这种改变用数学方式代入模型,验证是否能够对所制备的疫苗的抗瘤效果产生优化,将理论研究与实验结果对比。
     论文最后总结了本论文创新性的工作,同时提出了一些将继续深入开展的研究问题。PDT之所以能够在世界范围内形成热潮,是源于现代社会对它的需要。因此作者有理由相信基于PDT法制备肿瘤疫苗的技术将开辟肿瘤疫苗研究的一片新天地。
For human, vaccines can not only be used to defend against diseases but also to be a good prevention and cure for different kinds of tumor. Now most research is mainly focused on the application of gene technology or tumor vaccines prepared from tumor-related antigen inducing dendritic cells (DCs), but most of them are all under laboratory experimental stage, Photodynamic therapy is a new technique for tumor therapy, whether it can be used for tumor vaccines generation, and whether tumor vaccines generated by PDT can be used for cancer defence and cure, which now is becoming a new hot research topic in the field of tumor therapy.
     In this dissertation, the background of this topic is introduced, and then the study and developments of PDT and tumor vaccines at home and abroad have been reviewed in detail. Based on above statement, the author applied PDT to the generation of tumor vaccines.
     1、We adopted the PDT method with 532nm and 630nm laser system where HMME was used as a photosensitizer to prepare the tumor vaccine on H22 tumor. Our studies suggest that PDT-generated vaccines could effectively inhibit tumor growth, improve survival rate of mice in experimental group, and enhance antitumor immune response significantly. PDT-generated vaccines may have well clinical potential as an adjuvant therapy.
     2、The influences of Oxygen content on PDT-generated vaccines are discussed. Oxygen content has great influences on PDT effect. In order to research the influences of different level of oxygen content on antitumor effects of PDT-generated vaccines, the same tumor cells are treated with different power density under the same energy, after immunity with PDT-generated vaccines, mice are challenged with the same cell line, antitumor effects were observed to optimize the optical parameter during process of PDT-generated vaccines.
     3、Pilot study about the security and therapy effect of tumor vaccines were carried out. We draw a conclusion that for the use of PDT-vaccines should also grasps at right time. The experimental results indicated that PDT-generated vaccines are of some good curative effect at the early stage of tumor development, but at the medium and late stage of tumor development, PDT-generated vaccines have no any curative effects, on the contrary, it can accelerate the tumor growth.
     4、The theoretical studies with different oxygen content during the progress of PDT-generated vaccines were carried out. We explore whether there are relations between oxygen content and the effect of PDT-generated vaccines, and mechanism of these relations also is studied. Is there a threshold value which can decide the effects of PDT? And are there methods which can improve the antitumor effects of PDT-generated vaccines? Oxygen deplete during PDT is related to many progress such as metabolism, reaction, diffusion and so on. We designed mathematical model and parsed it to solve the problems which were put forward above. We compared the experimental results with the results which are deduced from mathematical model, and found the results from mathematical model are consistent with experimental results.
     Finally, the creationary points of the dissertation are summarized. Some further research proposals are given.The reason why PDT can be popular all over the world is the need of modern society. Therefore, we believe that PDT will exploit a new field for tumor vaccine study.
引文
1. Henderson, B.W. and T.J. Dougherty, How does photodynamic therapy work? Photochem Photobiol, 1992. 55(1): p. 145-57.
    2. Fingar, V.H., et al., The effects of thromboxane inhibitors on the microvascular and tumor response to photodynamic therapy. Photochem Photobiol, 1993. 58(3): p. 393-9.
    3. Fingar, V.H., et al., Vascular damage after photodynamic therapy of solid tumors: a view and comparison of effect in pre-clinical and clinical models at the University of Louisville. In Vivo, 2000. 14(1): p. 93-100.
    4. Obochi, M.O., et al., Targeting activated lymphocytes with photodynamic therapy: susceptibility of mitogen-stimulated splenic lymphocytes to benzoporphyrin derivative (BPD) photosensitization. Photochem Photobiol, 1995. 62(1): p. 169-75.
    5. Oleinick, N.L. and H.H. Evans, The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res, 1998. 150(5 Suppl): p. S146-56.
    6. Lin, Q.S., Mitochondria and Apoptosis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 1999. 31(2): p. 116-118.
    7. . Moan, J., Properties for optimal PDT sensitizers. J Photochem Photobiol B, 1990. 5(3-4): p. 521-4.
    8. Ochsner, M., Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B, 1997. 39(1): p.1-118.
    9. Milanesi, C, et al., Zn(II)-phthalocyanine as a photodynamic agent for tumours. II. Studies on the mechanism of photosensitised tumour necrosis. Br J Cancer, 1990. 61(6): p. 846-50.
    10. Jori, G., et al., Evidence for a major role of plasma lipoproteins as hematoporphyrin carriers in vivo. Cancer Lett, 1984. 24(3): p. 291-7.
    11. Reddi, E., M.A. Rodgers, and G. Jori, Photophysical and photosensitizing properties of hematoporphyrin bound with human serum albumin. Prog Clin Biol Res, 1984. 170: p. 373-9.
    12. Maziere, J.C., P. Morliere, and R. Santus, The role of the low density lipoprotein receptor pathway in the delivery of lipophilic photosensitizers in the photodynamic therapy of tumours. J Photochem Photobiol B, 1991. 8(4): p. 351-60.
    13. Dougherty, T.J., Photodynamic therapy. Photochem Photobiol, 1993. 58(6): p. 895-900.
    14. Ochsner, M., Photodynamic therapy: the clinical perspective. Review on applications for control of diverse tumorous and non-tumorous diseases. Arzneimittelforschung,1997.47(11):p.1185-94.
    15.许德余,光动力治癌药物的历史、现状、进展、问题和前景.中国激光医学杂志,,2001.10:p.44-47.
    16.郑卫峰,光动力治疗中光敏剂特性的研究.2002,福建师范大学:福建.
    17.Star,W.M.,Light dosimetry in vivo.Phys Med Biol,1997.42(5):p.763-87.
    18.Whitehurst,C.,et al.,In vivo laser light distribution in human prostatic carcinoma.J Urol,1994.151(5):p.1411-5.
    19.Svaasand,L.O.and R.Ellingsen,Optical penetration in human intracranial tumors.Photochem Photobiol,1985.41(1):p.73-6.
    20.Arnfield,M.R.,et al.,Optical dosimetry for interstitial photodynamic therapy.Med Phys,1989.16(4):p.602-8.
    21.Marijnissen,J.P.,et al.,Tumor and normal tissue response to interstitial photodynamic therapy of the rat R-1 rhabdomyosarcoma.Int J Radiat Oncol Biol Phys,1992.22(5):p.963-72.
    22.Fenning,M.C.,D.Q.Brown,and J.D.Chapman,Photodosimetry of interstitial light delivery to solid tumors.Med Phys,1994.21(7):p.1149-56.
    23.Pogue,B.W.,et al.,Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin.Photochem Photobiol,2001.74(5):p.700-6.
    24.Henderson,B.W.,et al.,Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment,depending on fluence rate.Cancer Res,2000.60(3):p.525-9.
    25.Curnow,A.,J.C.Haller,and S.G.Bown,Oxygen monitoring during 5-aminolaevulinic acid induced photodynamic therapy in normal rat colon.Comparison of continuous and fractionated light regimes.J Photochem Photobiol B,2000.58(2-3):p.149-55.
    26.Huang,Z.,et al.,Hyperoxygenation enhances the tumor cell killing of photofrin-mediated photodynamic therapy.Photochem Photobiol,2003.78(5):p.496-502.
    27.Gollnick,S.O.,L.Vaughan,and B.W.Henderson,Generation of effective antitumor vaccines using photodynamic therapy.Cancer Res,2002.62(6):p.1604-8.
    28.Korbelik,M.and J.Sun,Photodynamic therapy-generated vaccine for cancer therapy.Cancer Immunol Immunother,2006.55(8):p.900-9.
    29.张丽,顾瑛,刘凡光,光动力疗法与氧效应.中国激光医学杂志。,2002。11(4):p.241-245.
    30.Fuchs,J.and J.Thiele,The role of oxygen in cutaneous photodynamic therapy.Free Radic Biol Med,1998.24(5):p.835-47.
    31.Franzeck,U.K.,et al.,A triple electrode for simultaneous investigations of transcutaneous oxygen tension,laser-Doppler flowmetry and dynamic fluorescence video microscopy. Int J Microcirc Clin Exp, 1994. 14(5): p. 269-73.
    32. Offringa, R., Cancer. Cancer immunotherapy is more than a numbers game. Science, 2006. 314(5796): p. 68-9.
    33. Yoshikawa, T., et al., Nanoparticles built by self-assembly of amphiphilic gamma-PGA can deliver antigens to antigen-presenting cells with high efficiency: a new tumor-vaccine carrier for eliciting effector T cells. Vaccine, 2008. 26(10): p. 1303-13.
    34. Rosenberg, S.A., Progress in human tumour immunology and immunotherapy. Nature, 2001. 411(6835): p. 380-4.
    35. Lee, C.L., K.S. Hsieh, and Y.C. Ko, Trends in the incidence of hepatocellular carcinoma in boys and girls in Taiwan after large-scale hepatitis B vaccination. Cancer Epidemiol Biomarkers Prev, 2003. 12(1): p. 57-9.
    36. Forni, G, et al., Immunoprevention of cancer: is the time ripe? Cancer Res, 2000. 60(10): p. 2571-5.
    37. Greten, T.F. and E.M. Jaffee, Cancer vaccines. J Clin Oncol, 1999. 17(3): p. 1047-60.
    38. Krackhardt, A.M., et al., Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood, 2002. 100(6): p. 2123-31.
    39. Hanna, M.G., Jr., et al., Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized phase III trials show promise. Vaccine, 2001. 19(17-19): p.2576-82.
    40. Vaishampayan, U., et al., Active immunotherapy of metastatic melanoma with allogeneic melanoma lysates and interferon alpha. Clin Cancer Res, 2002. 8(12): p. 3696-701.
    41. Marchand, M., et al., Immunisation of metastatic cancer patients with MAGE-3 protein combined with adjuvant SBAS-2: a clinical report. Eur J Cancer, 2003. 39(1): p. 70-7.
    42. Durrant, L.G., et al., Human anti-idiotypic antibodies can be good immunogens as they target FC receptors on antigen-presenting cells allowing efficient stimulation of both helper and cytotoxic T-cell responses. Int J Cancer, 2001. 92(3): p. 414-20.
    43. Carr, A., et al., Immunotherapy of advanced breast cancer with a heterophilic ganglioside (NeuGcGM3) cancer vaccine. J Clin Oncol, 2003. 21(6): p. 1015-21.
    44. Marshall, J.L., et al., Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol, 2000. 18(23): p. 3964-73.
    45. Lachman, L.B., et al., DNA vaccination against neu reduces breast cancer incidence and metastasis in mice.Cancer Gene Ther,2001.8(4):p.259-68.
    46.Wen,Y.J.,et al.,Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma:promising effector cells for immunotherapy.Blood,2002.99(9):p.3280-5.
    47.Nair,S.K.,et al.,Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells.Ann Surg,2002.235(4):p.540-9.
    48.Chen,Z.,et al.,Enhanced HER-2/neu-specific antitumor immunity by cotransduction of mouse dendritic cells with two genes encoding HER-2/neu and alpha tumor necrosis factor.Cancer Gene Ther,2002.9(9):p.778-86.
    49.Dougherty,T.J.,et al.,Photodynamic therapy.J Natl Cancer Inst,1998.90(12):p.889-905.
    50.Korbelik,M.and G.J.Dougherty,Photodynamic therapy-mediated immune response against subcutaneous mouse tumors.Cancer Res,1999.59(8):p.1941-6.
    51.罗荣辉,陈香才,刘婉华等,光动力疗法对Louis肺癌鼠的杀伤及免疫效应.中国激光.,2002.A29(8):p.763-765。
    52.Gollnick,S.O.,et al.,Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo.Cancer Res,1997.57(18):p.3904-9.
    53.Cecic,I.and M.Korbelik,Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors.Cancer Lett,2002.183(1):p.43-51.
    54.Korbelik,M.,J.Sun,and I.Cecic,Photodynamic therapy-induced cell surface expression and release of heat shock proteins:relevance for tumor response.Cancer Res,2005.65(3):p.1018-26.
    55.Gollnick,S.O.,et al.,Role of cytokines in photodynamic therapy-induced local and systemic inflammation.Br J Cancer,2003.88(11):p.1772-9.
    56.Banchereau,J.,et al.,Dendritic cells as vectors for therapy.Cell,2001.106(3):p.271-4.
    57.Bodey,B.,et al.,Failure of cancer vaccines:the significant limitations of this approach to immunotherapy.Anticancer Res,2000.20(4):p.2665-76.
    58.Liu,B.Y.,et al.,Antitumor effects of vaccine consisting of dendritic cells pulsed with tumor RNA from gastric cancer.World J Gastroenterol,2004.10(5):p.630-3.
    59.Niu Hongquan,D.Z.,Dong fangyong,et al,Experimental and clinical research of Dendritic cell and syngeneic immunotherapy of brain glioma.The Chinese-German Journal of clinical Oncology.,2004.3(3):p.147-150.
    60.沈瑜,糜福顺,肿瘤放射生物学.2002,北京:中国医药科技出版社.
    61.丁新民,顾瑛,刘凡光,胰腺癌的光动力治疗.世界华人消化杂.,2003. 11(10):p.1621-1623.
    62.丁新民,徐勤枝,顾瑛等,光动力学治疗肿瘤的简史和现状.中国肿瘤.,2003.12(3):p.151-155.
    63.徐克成,牛立志,郭子倩等,光动力疗法及其在消化系肿瘤治疗中的应用.胃肠病学.,2003.8(2):p.110-115.
    64.Bown,S.G.and L.B.Lovat,The biology of photodynamic therapy in the gastrointestinal tract.Gastrointest Endosc Clin N Am,2000.10(3):p.533-50.
    65.Schroder,T.,et al.,Hematoporphyrin derivative uptake and photodynamic therapy in pancreatic carcinoma.J Surg Oncol,1988.38(1):p.4-9.
    66.Selvasekar,C.R.,et al.,Photodynamic therapy and the alimentary tract.Aliment Pharmacol Ther,2001.15(7):p.899-915.
    67.Diwu,Z.,Novel therapeutic and diagnostic applications of hypocrellins and hypericins.Photochem Photobiol,1995.61(6):p.529-39.
    68.Donnett,R.,Photosensitizers of the porphyryin and phthalocyanine series for photodynamic therapy.Chem Soc Rev,1995.24:p.19-33.
    69.陈文晖,余建鑫,第二代肿瘤光动力治疗药物的研究进展.国外医药-合成药、生化药、制剂分册.,1996.17(2):p.81-85.
    70.许德余,陈文晖,张浩等,光动力治癌新药血卟啉单甲醚(HMME)研究.中国激光医学杂志.,1993.2(1):p.1.
    71.Sharman,W.M.,C.M.Allen,and J.E.van Lier,Photodynamic therapeutics:basic principles and clinical applications.Drug Discov Today,1999.4(11):p.507-517.
    72.程刚,钟秋海,黄乃艳等,鲜红斑痣光动力治疗数学模型及临床验证.中国激光,2006.33(6):p.857-862.
    73.李步洪.谢树森.陆祖康.,光动力学疗法新型光敏剂的光谱特性研究.光谱学与光谱分析,2002.22(6):p.902-904.
    74.Golab,J.,et al.,Erythropoietin restores the antitumor effectiveness of photodynamic therapy in mice with chemotherapy-induced anemia.Clin Cancer Res,2002.8(5):p.1265-70.
    75.Golab,J.,et al.,G-CSF prevents the suppression of bone marrow hematopoiesis induced by IL-12 and augments its antitumor activity in a melanoma model in mice.Ann Oncol,1998.9(1):p.63-9.
    76.Chen,Q.,et al.,Damage threshold of normal rat brain in photodynamic therapy.Photochem Photobiol,1996.64(1):p.163-7.
    77.Foster,T.H.and L.Gao,Dosimetry in photodynamic therapy:oxygen and the critical importance of capillary density.Radiat Res,1992.130(3):p.379-83.
    78.Moan,J.and S.Sommer,Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells.Cancer Res,1985.45(4):p.1608-10.
    79.Chapman,J.D.,et al.,Oxygen dependency of tumor cell killing in vitro by light-activated Photofrin II.Radiat Res,1991.126(1):p.73-9.
    80.Foster,T.H.,et al.,Oxygen consumption and diffusion effects in photodynamic therapy.Radiat Res,1991.126(3):p.296-303.
    81.Reddi E,J.G.,Rodgers MAJ,et al,Flash photolysis studies of hemato- and copro-porphyrins in homogeneous and microheterogeneous aqueousdispersions.Photochem.Photobiol,1983.38:p.639-645.
    82.Bonnett,R.,et al.,The triplet and radical species of haematoporphyrin and some of its derivatives.Photochem Photobiol,1983.38(1):p.1-8.
    83.Parker JG,S.W.,Optical determination of the rates of formation and decay of O2(1△g)in H2O,D2O and other solvents.J.Photochem,1984.25:p.545 -547.
    84.Kraljic,L.and V.Sharpatyi,Determination of singlet oxygen rate constants in aqueous solutions.Photochem.Photobiol,1978.28:p.583-586.
    85.李庆扬.,关治,and 白峰杉等,数值计算原理.2000,北京:清华大学出版社.356-408.
    86.Inc.,V.N.,IMSL Math Library Users'Manual.1984.2:p.646-662.
    87.Gear,C.,Numerical initial-value problems in ordinary differential equations.1971,New Jersey:Prentice Hall.45-52.
    88.李庆扬,谢敬东,刚性常微分方程的一种线性多步法.清华大学学报,1991.31(6):p.1-11.
    89.Mitra,S.and T.H.Foster,Photochemical oxygen consumption sensitized by a porphyrin phosphorescent probe in two model systems.Biophys J,2000.78(5).:p.2597-605.
    90.Secomb,T.W.,et al.,Analysis of oxygen transport to tumor tissue by microvascular networks.Int J Radiat Oncol Biol Phys,1993.25(3):p.481-9.
    91.Kavanagh,B.D.,et al.,A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation.Int J Radiat Oncol Biol Phys,2002.53(1):p.172-9.
    92.Dewhirst,M.W.,et al.,Determination of local oxygen consumption rates in tumors.Cancer Res,1994.54(13):p.3333-6.
    93.Dewhirst,M.W.,et al.,Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber.Radiat Res,1992.130(2):p.171-82.
    94.Secomb,T.W.,et al.,Theoretical simulation of oxygen transport to tumors by three-dimensional networks of microvessels.Adv Exp Med Biol,1998.454:p.629-34.
    95.Secomb,T.W.,R.Hsu,and M.W.Dewhirst,Synergistic effects of hyperoxic gas breathing and reduced oxygen consumption on tumor oxygenation:a theoretical model.Int J Radiat Oncol Biol Phys,2004.59(2):p.572-8.
    96.Dewhirst,M.W.,et al.,Arteriolar oxygenation in tumour and subcutaneous arterioles: effects of inspired air oxygen content. Br J Cancer Suppl, 1996. 27: p. S241-6.
    97. Dewhirst, M.W., et al., Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia. Br J Cancer, 1999. 79(11-12): p. 1717-22.
    98. Krogh , A., Anatomy and physiology of capillaries. 1936, New Haven Conn: Yale U.P.
    99. Blum, J.J., Concentration profiles in and around capillaries. Am J Physiol, 1960. 198: p. 991-8.
    100. Lyabakh, K.G., Mathematical modeling of oxygen transport to skeletal muscle during exercise. Hypoxia and V02max. Adv Exp Med Biol, 1999. 471: p. 585-93.
    101. Whiteley, J.P., D.J. Gavaghan, and C.E. Hahn, Mathematical modelling of oxygen transport to tissue. J Math Biol, 2002. 44(6): p. 503-22.
    102. Salathe, E.P. and R.W. Kolkka, Reduction of anoxia through myoglobin-facilitated diffusion of oxygen. Biophys J, 1986. 50(5): p. 885-94.
    103. Salathe, E.P. and C. Chen, The role of myoglobin in retarding oxygen depletion in skeletal muscle. Math Biosci, 1993. 116(1): p. 1-20.
    104. Sharan, M., et al., Finite-element analysis of oxygen transport in the systemic capillaries. IMA J Math Appl Med Biol, 1991. 8(2): p. 107-23.
    105. Salathe, E.P. and Y.H. Xu, Mathematical analysis of transport and exchange in skeletal muscle. Proc R Soc Lond B Biol Sci, 1988. 234(1276): p. 303-18.
    106. Salathe, E.P. and Y.H. Xu, Non-linear phenomena in oxygen transport to tissue. J Math Biol, 1991. 30(2): p. 151-60.
    107. Tannock, I.F., Oxygen diffusion and the distribution of cellular radiosensitivity in tumours. Br J Radiol, 1972. 45(535): p. 515-24.
    108. Nilsson, J., B.K. Lind, and A. Brahme, Radiation response of hypoxic and generally heterogeneous tissues. Int J Radiat Biol, 2002. 78(5): p. 389-405.
    109. Toma-Dasu, I., et al., Theoretical simulation of oxygen tension measurement in the tissue using a microelectrode: II. Simulated measurements in tissues. Radiother Oncol, 2002. 64(1): p. 109-18.
    110. Toma-Dasu, L., et al., Theoretical simulation of oxygen tension measurement in tissues using a microelectrode: I. The response function of the electrode. Physiol Meas, 2001. 22(4): p. 713-25.
    111. Pogue, B.W., et al., Estimation of oxygen distribution in RIF-1 tumors by diffusion model-based interpretation of pimonidazole hypoxia and eppendorf measurements. Radiat Res, 2001. 155(1 Pt 1): p. 15-25.
    112. Dasu, A., I. Toma-Dasu, and M. Karlsson, Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol, 2003. 48(17): p. 2829-42.
    113. Steve, M. The courses of computer physics. Website of Drexel University [cited; Available from:http://einstein.drexel.edu/courses/Comp_Phys/Phvsics-307/outline.html.
    114. Tang, P., On the rate of oxygen consumption by tissues and lower organisms as a function of oxygen tension. Q. Rev. Biol, 1933. 8: p. 260-274.
    115. Vaupel, P., F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res, 1989. 49(23): p. 6449-65.
    116. Thomlinson, R.H. and L.H. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer, 1955. 9(4): p. 539-49.
    117. Olive, P.L., C. Vikse, and M.J. Trotter, Measurement of oxygen diffusion distance in tumor cubes using a fluorescent hypoxia probe. Int J Radiat Oncol Biol Phys, 1992. 22(3): p. 397-402.
    118. Gullino, P.M., F.H. Grantham, and A.H. Courtney, Utilization of oxygen by transplanted tumors in vivo. Cancer Res, 1967. 27(6): p. 1020-30.
    119. Vanderkooi, J.M., M. Erecinska, and I.A. Silver, Oxygen in mammalian tissue: methods of measurement and affinities of various reactions. Am J Physiol, 1991. 260(6 Pt 1): p. C1131-50.
    120. Connett, R.J. and C.R. Honig, Regulation of VO2 in red muscle: do current biochemical hypotheses fit in vivo data? Am J Physiol, 1989. 256(4 Pt 2): p. R898-906.
    121. Nichols, M.G. and T.H. Foster, Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids. Phys Med Biol, 1994. 39(12): p. 2161-81.
    122. Guyton, A., Physiology. Textbook of Medical Physiology. 6 ed. 1981: Saunders, Philadelphia, PA.
    123. Slonim, N.B. and L.A. Hamilton, In Respiratory Physiology. 4 ed. 1981: Mosby, St Louis. MO.
    124. Tsai, A.G., et al., Microvascular and tissue oxygen gradients in the rat mesentery. Proc Natl Acad Sci U S A, 1998. 95(12): p. 6590-5.
    125. Tromberg, B.J., et al., In vivo tumor oxygen tension measurements for the evaluation of the efficiency of photodynamic therapy. Photochem Photobiol, 1990. 52(2): p. 375-85.
    126. Sitnik, T.M., J.A. Hampton, and B.W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. Br J Cancer, 1998. 77(9): p. 1386-94.
    127. Sitnik, T.M. and B.W. Henderson, The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy. Photochem Photobiol, 1998. 67(4): p. 462-6.
    1 Shirk M D, Molian P A. Review of ultrashort pulsed laser ablation of materials. J Laser Applications, 1998,10(1): 18
    2 Davis K M, Miura K,Sugimoto N et al. Writing waveguides in glass with a femtosecond laser.Opt.Lett, 1996,21,1729-1731
    3 GlezerEN, Milosavljevic M, Huang L et al. Three—dimensional optical storage inside transparent materials.Opt. Lett., 1996,21,2023-2025
    4 Glezer E N, Mazur E, Ultrafast-laser driver micro-explosions in transparent materials. Appl. Phys. Lett, 1997,71,882-884
    5 Chichkov B N, Momma C, Nolte S et al.. Femtosecond,picrosecond and nanosecond laser ablation of solids. Alrpl. Phys.A, 1996,63:109-115
    6 Nolte S, Momma C, Jacobs H et al. Ablation of metals by ultrashort laser pulses. Opt. Soc. Am. B,1997,14:2716-272
    7 Falkovsky L A, Mishchenko F G. Electro-lattice kineties of metals heated by ultrashort laser pulses.J.Exp.Theor.Phys.,1999,88:84-88
    8 Chen J K, Grimes J E et al. Modeling of femtosecond laser-induced non-equibrium deformation in metal films. International Journal of Solid and Structures,2002, 39: 3199-3216
    9 von der Linder D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime.Appl Surf Sci. 1997.109-110:1
    10 Pronko P P, Dutta S K, Du D, et al. Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses. J Appl Phys, 1995, 78(10): 6233
    
    11 Momma C, Chichkov B N, Nolte S. et al. Short-pulse laser ablation of solid targets. Opt Comm,1996,129(1-2):134
    
    12 Pronko P P, Dutta S K. Squier J, et al .Machining of submicron holes using a femtosecond laser at 800 nm.Optics Communications, 1995,114(1-2):106
    13 Simon P, Ihlemann J. Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses. Appl Surf Sci, 1997, 109-1025.
    14 Zhu, X, Villeneuve D M, Naumov A Yu, et al. Experimental study of drilling sub-10 mm holes in thin metal foils with femtosecond laser pulses. Appl Surf Sci,1999,152(3-4):13
    15 Momma C, Nolte S, Kamlage G,et al .Beam delivery of femtosecond 1 aser radiation by diffractive optical elements. Appl Phys A ,1998,67(5):517
    16 Venkatakrishnan K,Tan B, Sivakumar N R. Sub-micron ablation of metallic thin film by femtosecond pulse laser. Optics&Laser Technology, 2002,34(7):575
    17 Kamlage G, Bauer T, Ostendorf A, et al. Deep drilling of metals by femtosecond laser pulses. Appl Phys A, 2003,77(3—4):30
    18 Nakata Y, Okada T, Maeda M.Lines of periodic hole structures produced by laser ablation using interfering femtosecond lasers split by a transmission grating. Appl Phys A: Materials Science & Processing, 200,77(3-4:399
    19 Nakata Y, Okada T, Maeda M. Nano-sized hollow bump array generated by single femtosecond laser pulse. Jpn J Appl Phys,2003, 42(part 2,12A):145
    20 Venkatakrishnan K, Ngoi B K A, Stanley P et al. Laser writing techniques for photomask fabrication using a femtosecond Laser. Appl .Phys. A,2002,74:493-496
    21 Richard Haight, Peter Longo, Alfred Wagner. Femtosecond laser repair photomasks. Laser Focus World, 2002,38:79
    22 Nolte S, Chichkov B N , Welling H. Nanostructuring with spatially localized femtosecond laser pulses. Opt. Lett.,1999,24:914-916
    23 Xiaobo Y,Nicholas Fang, Xiang Zhang et al. Near-field two-photon nanolithography using an apertureless optical probe. Appl.Phys.Lett.,2002,81:3663-3665
    24 Henglein A.Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem.,1993,97:5457-5472
    25 Tsuji T, Kakita T,Tsuji M. Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl. Surf. Sci., 2003,206:314
    26 Mafune F, Kohno J, Takeda Y, Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant. Phys. Chem. B, 2001,105:5114-5120
    27 Jeon J S, Yeh C H. Studies of Silver Nanoparticles by Laser Ablation Method. Chin. Chem.Soc.,1998,45:721-726
    28 Takami A, Kurita H, Koda.Laser-Induced Size Reduction of Noble Metal Particles, Phys. Chem. B, 1999,103:1226-1232
    29 Link S, Burda C, Nikoobakht B et al .Laser-Induced Shape Changes of Coloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses. Phys.Chem 3,2000,104:6152-6163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700