用户名: 密码: 验证码:
低温等离子体发射光谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文概述了双原子分子光谱理论,指出了双原子分子光谱对等离子体光谱诊断学的重要性,总结了应用双原子分子发射光谱和原子发射光谱进行等离子体诊断的原理和实现方法,给出了几个常用的双原子分子的光谱数据。强调光谱分析方法的重要性的同时,对双原子分子光谱精细结构的理论进行了研究,进一步阐述了双原子分子电子能级∧双重分裂的物理实质,建立了不仅适用于双原子分子而且适用于多原子线型分子∧双重分裂理论,推广了双原子分子精细光谱结构理论的适用范围,使得一个精细光谱理论中的代数学问题得到了澄清。
     等离子体发射光谱的空间分辨分析是等离子体光谱学诊断的关键技术。本文提出了一种利用光纤和透镜实现空间分辨发射光谱测量的方案,分析了这种方案进行空间分辨的原理,得到了空间分辨的条件和精度。借助于透镜的会聚可以较好地实现空间分辨测量。与阿贝变换原理获得空间分辨光谱的方法相比,此方法简便有效、适用性强、应用范围广,是针对光学薄体系实现空间分辨光谱测量的有效方法。
     针对几种常用放电体系的低温等离子体,进行了发射光谱研究。包括直流辉光放电、射频辉光放电等离子体的放电动力学研究;针对直流辉光放电和射频辉光放电的对比,进行了发射光谱动力学的碰撞辐射模型数值模拟,得到了一些有关射频辉光放电过程的有用信息,如射频辉光正柱区的电场比直流辉光区的电场强。利用N_2辉光放电中N_2~+的发射光谱研究了放电空间的温度分布的变化规律,发现了直流放电的一些重要特性,如阻碍辉光与正常辉光的光谱差别。研究了磁控溅射沉积CN_x膜过程中CN自由基的形成机制,认为在低温等离子体溅射体系中CN是在溅射靶表面形成的,不同于激光烧蚀等离子体中CN的形成。测量了交流电晕放电CH_4等离子体中CH自由基的转动分辨光谱,得到了等离子体发射光谱条件下获得的转动分辨较好的CH自由基发射光谱结果之一,可用于验证CH自由基的光谱常数和获得CH的生成温度等。
     本文提出了一种不同于光谱模拟的光谱拟合数值计算方法,并且针对这种算法编写了数种计算程序,根据测得的N_2~+第一负带和CN基团的发射光谱进行了N_2~+转动温度和等离子体磁控溅射形成的CN基团的生成温度的拟合和模拟计算,验证了针对低温等
    
     摘 要
    离子体溅射体系本文提出的CN形成过程的化学热力学模型.
     本文在阐述等离于体静电诊断方法的基本理论的基础上提出一种原理较简单、但
    设计细致且需要详细理论分析计算为基础的负离子探针方法。指出了此种探针设计的
    基本原则和必须加以细致处理的几个关键问题,给出了相应理论分析的基本过程和结
    果。同时也指出了这种负离子探针的局限性,即与其它静电探针一样有其使用范围,
    但是针对负离子是一种切实可行的静电诊断方法。分析了高气压低温等离子体的静电
    探针理论的电容模型,阐述了存在磁场的低温等离子体的静电探针理论的管道模型。
     本文附录中介绍了计算过程中所用到的计算程序,包括编写的 N。”和 CN自由基发
    射光谱的拟合和模拟程序。
     本文主要结果:()提出了一个原理简单、但须精心设计的负离子静电探针方案.
     (2)推广了双原子分子光谱理论中电子能级八分裂的理论,使之不仅适用于双原子分
    子而且适用于线性多原子分子。同时澄清了八分裂的系统算法中的一个代数学问题,证
    实了线性分子角动量与非线性分子角动量的代数学性质明显不同,线性分子角动量不
    能构成上升、下降算符。()提出了一种利用光纤和透镜实现空间分辨转动光谱测量
    的实验方案,并且己用于许多场合等离于体发射光谱的空间分辨测量。(4)提出了一
    种针对良好转动分辨的转动光谱带的光谱拟合算法,并实现了相应程序应用于N/第一
    负带进行转动温度拟合分析。(5)利用电晕放电方式实现了较高气压CH#放电中CH自
    由基转动分辨光谱的测量。(6)提出了磁控溅射沉积 CNx膜过程中 CN自由基形成的化
    学热力学模型,并根据CN的发射光谱测量的转动温度结果进行了验证分析。
     创新之处:(1)提出了双原子分子转动分辨发射光谱的拟合方法,并利用拟合方法
    进行了氮气直流辉光放电产生的第一负带转动分辨光谱和磁控溅射沉积CNx膜过程中
    CN基团的振动带的转动线型拟合,获得了相应的转动温度。此拟合方法不但适用于玻尔
    兹曼分布的分析,也适用于非玻尔兹曼分布的分析。(2)提出了一种利用光纤和透镜实
    现空间分辨光谱测量的实验方案,并应用于CN自由基发射光谱的空间分辨测量,证实
    了低温等离子体溅射体系中关于CN自由基形成的化学热力学机理。
Emission Spectroscopy Methodology for Low Temperature Discharge Plasma of Low Pressure Gas
    Low pressure gas discharge has been frequently utilized to generate plasma in laboratory and application. This kind of discharge is capable of providing various kinds of plasma for any requirements and realizing control of plasma parameters. There have been many kinds of gas discharge to generate plasma in a very wide scope of parameters. Discharges maintained with different parameters present different physical chemistry and therefore obeys different laws when they react with other status of mater. Low pressure discharge can be divided into DC discharge; AC discharge; HF (High Frequency) discharge and microwave discharge when the discharge is excited by different power sources. In recent years, many novel discharge schemes are invented, such as electron beam ionization; ion beam ionization; laser breakdown and inhomogeneous phase discharge. No matter how different the discharge scheme is, low pressure discharge plasmas take a common characteristic of bright glow and is generally entitled as low temperature glow discharge. Glow discharge plasma has been selected as a most suitable system for plasma diagnostics in laboratory and for application technology development because of its good stability and reproducibility. Its macro and microscopic properties and the physical-chemistry processes occurring in plasma systems are the focuses of plasma diagnostics, because reliable measurement of plasma parameters and accurate understanding of the mechanism of plasma processes are not only the principal promotion for the development of plasma physics but also the necessary preconditions for the realization of plasma technologies.
    One of the focuses of this dissertation is to describe the emission optical spectroscopy of low pressure discharge plasmas and presents the laws observed by the corresponding processes in the plasmas. Some diagnostic methods based on plasma static-electricity and spectroscopy are theoretically outlined at first, and then some investigations are theoretically made on the applicability of the diagnostic methods. As results of the investigations, some improvements of the
    
    
    
    Abstracts
    principles of diagnostics have been achieved and some new analytical methods are derived for the design of diagnostic tools and the extraction of more accurate information. Experimental measurements have also made on some novel and typical phenomena occurred in low pressure discharges to diagnose the mechanisms of these phenomena with help of some different methods and the newly developed analytical algorithms.
    Plasma system contains a very large amount of charged partials and hence static-electrical field always exists with plasma .The static-electricity of a plasma system is the most basic property and also the base of the other plasma processes. Because the charged particles in plasma move all the time and the plasma also contains a large mount of energetic species, such as excited states and radicals, radiation and optical emission is another principal property of plasma. Therefore, the diagnostics of electrical and optical characteristic of plasma form the basic respects of plasma diagnostics.
    The author reports in detail in the dissertation the experimental investigation on the phenomena of some common discharge systems at typical operation status such as DC glow; RF (Radio Frequency) glow and microwave ECR (Electron Cyclotron Resonance) discharge. The influences of discharge pressure and voltage on the discharge mode are studied in N2 DC and RF glow discharge. RF discharge under low pressure takes the similar breakdown mechanism with DC glow discharge, but the spatial distribution of optical emission spectra from RF glow is very different from that of DC glow discharge. It is contributed to the different optical emission kinetics between RF glow and DC glow systems. Numerical simulations on the both glow scheme are done using collision radiation kinetic model together with Prof. Bogearts of Belgium. Microwave ECR
引文
[1] 马腾才、胡希伟和陈银华,《等离子体物理原理》,中国科技大学出版社,安徽,合肥,1988,Chap 1;3;4.and 7.
    [2] 朱士尧,《等离子体物理基础》,科学出版社,北京,1983,p79
    [3] 徐学基,诸定昌,《气体放电物理》,复旦大学出版社,上海,1999,p236
    [4] Orlando.A and Daniel. L.F, 《Plasma diagnostics》,Academic.Press. Inc, New York, 1989, Chap. 1;3;4;6.
    [5] Akihiro.k, J.phys D: Appl.phys, VOL32, P1357, 1999
    [6] Selwyn. G.S, Heidenreich. J.E. and Haller. K.L, Appl.phys. Lett. VOL57, P1876, 1990
    [7] Tsuji.k,Sato.and Wagatsuma. T, Spectrochim.Acta, VOLB53, P417,1998
    [8] Sato. E,Kimura. S and Isobe.H, ReVOLSci, Instrum, VOL61 (9), P2343, 1990
    [9] Eliasson. B and Kogelschatz. U, IEEE Trans Plasma, VOL19, P309, 1991
    [10] Raul .M.C, and Patrick .V etal, IEEE Trans Plasma, VOL28 (3), P1043, 2000
    [11] Jorge. J.R and Mario.c.M etal, IEEE J. Quan. Elec, VOL29, P182, 1993
    [12] Pealat. M, Taran. J.P.E and Taillet.J,J. Appl.phys. VOL52 (4), P2687, 1981
    [13] Langmiur. I and Motf-smith. H.M, Phys. Rev, VOL28, P727, 1926
    [14] Godyak. VOLA and Herry. R.S, IEEE. Trans. Plasma. VOL23, P728, 1995
    [15] Rubinstein,J, phys. Fluids, VOL26, P3624,1983
    [16] Godyak. VOLA.and IvanoVOLA.I,SoVOLPhys. Tech. Phys. VOL 12, P766, 1967
    [17] Kemp. R.E and Sellen. J.M. ReVOLSci, Instrum. VOL37, P455, 1966
    [18] Wang. E.Y, Hershkowitz.N and Intrator. T, ReVOL Sci. Instrum, VOL56, P519, 1985
    [19] Nam,C.H, Hershkowitz. N and Cho.M.H, J. Appl. Phys.VOL63, P5674,1988
    [20] Cho. M.H, Chan. C, and Hershkowitz. N, Rev, Sci. Instrum, VOL55, P631, 1984
    
    
    [21]Hershkowitz,N and Nelson.B, ReVOLSci, Instrum, VOL54, P29,1983
    [22]Eser. E, Ogilvie.R.E and Taylor. K.A, J. Vac. Sci. Tech. VOL15, P199, 1978
    [23]Ajit. P.P. James. P.M and Sidneg .A.S, J. Appl. Phys. VOL67, P6718, 1990
    [24]Karen. F, and Svoboda. V, Appl.Spectroscopy, VOL25, P347, 1971
    [25]Kornblum. G.R and Galan. L, spectrochim. Acta, VOL32B, P71,1977
    [26]Furuta,N, Nojiri. Y and Fuwa, K, Spectrochim. Acta, VOL40B, P987, 1985
    [27]Alder. J.F and Mermet. J.M, Spectrochim.Acta, VOL28B, P421, 1973
    [28]Coburn. J.W and Chen. M, J. Appl.phys, VOL51, P3134, 1980
    [29]Richard.A.G and Vincent. M.D, J, Appl.phys, VOL56,P245,1984
    [30]Richard.A.D, and Allen. K.D, J. Appl, phys. VOL62, P792, 1987
    [31]Sarfaty. M, Maron. Y and Alexiou. S, Phys. Plamas VOL2, P2122, 1995
    [32]Vanderelde. T, Nesladek. M and Stals. L, Thin solid Films, VOL290, P143, 1996
    [33]Moore. C.A, Davis. G.P and Gottscho.R.A, Phys. ReVOLLett.,VOL52, P538, 1984
    [34]Dinescu. G, Aldea. E and Zocco. A, Appl. Surf. Sci, VOL127, P697, 1998
    [35]dAgostin.R, and Gramarossa. F, Plasma. Chem. Plasma. Proc, VOL4, p163,1984
    [36]Vriens.J and Adriaansz. M, J. Appl. Phys, VOL45, P4422, 1974
    [37]Muraoka. K, Uchino. K and Tanaka. K, ReVOL Sci. Instrum, VOL63, P4113, 1992
    [38]Doughty. D.K and Lawler. J.E, Appl. Phys. Lett. VOL45, P611, 1984
    [39]Stormberg. H.P, J. Appl. Phys, VOL51, P 1963, 1980
    [40]Andrew. C.R, and Robert. E.H, ReVOL Sci. Znstrum., VOL68, P2978, 1997
    [41]Uchino. K and Akaraki,M, Jpn. J. Appl. Phys., VOL21, L696, 1982
    [42]Uchino.K and Kato. M, J. Appl, Phys, VOL70, P41, 1991
    [43]Van.deweijer, and Gramers. R.M, J. Appl. Phys, VOL53, P1401, 1982
    [44]Ennenr. G and Ottinger. C. Chem. Phys. Lett., VOL36, P16, 1975
    [45]Becker, K.H, and Haaks.P, Zeite. Naturf.,VOL29A, P829,1974
    [46]Honda. C. Maeda. M and Akazaki,M, Jpn. J. Appl. Phys.,. VOL24, L402, 1985
    [47]Kosiover. R and Macwilliams. R, ReVOLSci. Intrum, VOL57, P2441, 1986
    [48]Ramsay. D.A, Spectroscopy, University Park Press, London, 1972, Chap.3; 4.
    [49IVan den Hoek.J.W, J, Appl. Phys, VOL51, P174,1980
    [50]Rodford. H.E, Phys. Rev, VOL126, P114, 1962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700