用户名: 密码: 验证码:
高速铁路大型桥梁结构健康监测与状态评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对高速铁路桥梁结构,由于列车运行速度高,加之桥梁结构本身长期在环境侵蚀、材料老化和其上列车荷载的疲劳效应等因素的共同作用下,将不可避免地导致结构的损伤累积和抗力衰减,这必然影响结构的正常使用,从而导致抵抗自然灾害、甚至正常环境作用的能力下降,而且有的构件损伤可能扩展很快,极端情况下引发灾难性的突发事故。为保证高速铁路桥梁结构的安全性、适用性与耐久性,本文以满足高速铁路大型桥梁结构特点的健康监测系统及基于监测数据的高速铁路大型桥梁结构状态评估为中心展开研究工作,主要研究内容如下:
     1、收集国内外相关领域的研究成果,对健康监测发展过程、高速铁路的发展状况及现有的桥梁状态评估现状进行了系统阐述。
     2、对国内外高速铁路大跨度桥梁的建设情况进行了系统的总结,定义了高速铁路桥梁结构“健康指标”的概念,针对不同的桥型,其结构特点及健康指标体系存在一定差异,显示了不同桥型指标体系的差异性;其后阐述了今后高速铁路大型桥梁结构桥式发展趋势;最后在高速铁路大型桥梁健康监测中,必须对高速铁路大跨度桥梁易损特性作充分的了解,找出易损部位,故选取代表性的京沪高速铁路大跨度桥梁—南京大胜关长江大桥作为分析示例,在现有的研究方法与理论的基础上,对其进行详细的静动力分析,一方面找出桥梁结构在各种荷载组合作用下最容易发生损伤的部位,对其正常使用状态下的易损性进行分析;另一方面对高速铁路大跨度桥梁结构的健康指标,如自振频率、振幅、加速度及挠跨比等有量的认识。
     3、高速铁路桥梁结构健康监测系统应以动力监测为主,重点关注桥梁上部结构的下挠变形和下部结构基础的沉降。由于高速铁路桥梁结构本身自振频率低(一般在1Hz以下),需选择灵敏度高、低频响应好及动力性能量测范围宽的传感器类型以测试低频振动,一般要求低频响应达到0.1Hz甚至0.01Hz。且高速列车通过桥梁时,易引起高频振动,故传感器也应具有较高的采样频率。对比分析后提出了适合高速铁路桥梁结构健康监测系统的传感元件,并结合高速铁路桥梁的特点对各传感器的主要技术指标提出了具体要求。
     4、对传感器的布置问题进行了系统的研究。将以基于模态振型观测性(方法A)和基于损伤识别性(方法B)两种目的的传感器布置方法分开进行,并根据基于模态振型的Fisher信息阵Qφ和基于损伤灵敏度的Fisher信息阵QS两矩阵各自的特点和适用的准则,建立了同时适用的双控目标函数(信息阵迹值最大的同时,系数矩阵条件数最小);针对基于损伤可识别性与基于模态振型观测性的传感器布置的结果的不一致性,将两种方法赋予不同的权重系数(方法A赋予0.4,方法B赋予0.6)。并将剩余待选自由度对本布置方式的作用以百分比的形式表示出,这样所求得的结果是两类信息的叠加,既考虑了未损伤结构每个自由度包含的振型信息,又考虑了每个自由度对损伤的灵敏度信息。整个过程可称为“自由度加权信息法”。以南京大胜关长江大桥为工程实例,运用本文的自由度信息加权法对该桥加速度传感器进行布置,布置结果与该桥的数值分析结果比较吻合,验证了本文方法的正确性。同时,针对高速铁路桥梁结构健康监测的特点,选用符合精度要求的传感器,对该桥进行监测点的总体布置。
     5、结合我国《铁路桥涵设计基本规范》、《铁路桥梁检定规范》、《高速铁路设计规范(试行)》等,以及日本《铁道结构设计标准》、欧洲规范"EUROCODE"等,介绍国内外有关高速铁路桥梁动力指标的限值标准,并将我国普速与高速铁路桥梁结构各动力指标限值进行对比分析,对两者之间存在的差异进行了详细分析。同时也对国内外高速铁路桥梁结构动力指标进行对比,两者指标类型与对应限值量值均相近,体现了国内外规范的接轨。最后对已建成的高速铁路大跨度桥梁结构的动力参数进行总结,并对相应的横竖向刚度限值和车辆参数限值标准进行初探。
     6、对公路桥梁、普速铁路桥梁、高速铁路桥梁状态评估的内容进行了对比分析。根据高速铁路大跨度桥梁结构状态评估的特点,建立相应的评估指标体系。由于高速铁路大跨度桥梁结构某些指标的正常值/通常值或安全限值是未知的,导致直接用监测参数进行评定比较困难。基于此,以各监测参数的变化量为基准进行评定。在平稳随机过程和近似正态分布的假定下,依据置信度和置信区间的概念,将高速铁路大跨度桥梁的结构状态划分不同等级,各级以健康置信区间来定量控制,并定性地描述桥梁各等级的使用状态,做到了定性与定量的统一,对桥梁结构的状态等级的划分提供了一种参考方法。用不确定层次分析法、同时引入集值统计和重心决策理论求解各评估指标权重;采用区间可拓评价理论建立高速铁路大跨度桥梁结构状态评估模型,并给出了具体评估流程。最后以重庆菜园坝长江大桥为例,进行评估监测分析。
Due to the high-speed train running, and the interaction of the long-term environment corrosion, material aging, fatigue effect of vehicle loads and other factors, damage cumulation and resistance attenuation of high-speed railway bridge structures inevitably occurred, which necessarily affects the normal use of structures, and will lead the decline of capability of resisting nature disaster and the function of normal environment, furthermore some components'damnification perhaps expand fast, and in extreme cases, catastrophic accident will suddenly happen. In order to ensure structure security, suitability and durability, the research work is taken health monitoring system which met large-scale high-speed railway bridge characteristics, and condition elevation based on large-scale high-speed railway bridge monitoring data as center. The main research results are as below:
     1. The research results in related field at home and abroad have been collected; then the health monitoring process, the developing situation of high-speed railway, and the existed bridge status elevation theories are systemically expatiated.
     2. The construction situation of large-scale high-speed railway bridge at home and abroad has been summarized. Then "Health Index"of high-speed railway bridge structure had been defined; For different bridge types, there are some differences between structure characteristics and health index, which shows the difference of the index system of different bridge types. Afterwards, the developing trend of large-scale high-speed railway bridge structure has been predicted. Finally, in the health monitoring process, vulnerability of the large-scale high-speed railway bridge should be fully understood, and the vulnerable parts should be identified. Nanjing Da-sheng-guan Yangtze River Bridge (the representative large-scale bridge in Beijing-Shanghai High-speed Railway) was taken as an engineering analytic example to make static and dynamic force analysis on the basis of existed research methods&theories. On the one hand the vulnerable parts can be easily found, on the other the hand health indexes of high-speed railway bridge structure, such as natural frequency, amplitude, acceleration ratio of deflection to span and so on, can be understood quantitatively.
     3. Health monitoring system of high-speed railway bridge structure should be mainly focused on dynamic monitoring, especially superstructure's down deflection and substructure foundation's settlement. Due to the low natural frequency of high-speed railway bridge(usually less than1Hz), sensors with high sensitivity, low-frequency response and wide dynamic measurement range are chosen to test low-frequency vibration, whose low-frequency response can reach0.1Hz even0.01Hz. Otherwise, when high-speed trains pass through the bridge, high-frequency vibration may be caused, so the sensors should also have high sampling frequency. After making comparison, sensors suitable for health monitoring system of high-speed railway bridge structure are given, and the specific requirements of each sensor's main technical indexes are also proposed, combined with high-speed railway bridge characteristics.
     4. A systematic study has been carried out on the problem about optimal sensor placement. Firstly, the two optimal sensor placement methods, which based on modal observability (denoted by "Method A") and damage identification (denoted by "Method B"), are separately applied. And each fisher information matrix can be denoted as QΦ and Qs. Then the double criterions' objective function (fisher information matrix's trace value reaches max, simultaneously coefficient matrix' condition number reaches min) was established, according to the matrixes' own characteristics and suitable criterion. Finally, due to the inconsistent results of the two methods, in this paper "Method A" was given weight coefficient of0.4, and "Method B" was given weight coefficient of0.6. So the role of each method's degrees of freedom remaining to be selected is expressed as a percentage multiplied by corresponding weight coefficient. In this way, the final optimized result is the superposition of the two types of information, not only considering each degree of freedom's modal information in undamaged structure, but also considering each degree of freedom's damage sensitivity information. The whole optimization process can be called "Weighted Information of Degree of Freedom Method". Take Nanjing Da-sheng-guan Yangtze River Bridge as an engineering example, using "Weighted Information of Degree of Freedom Method" to optimize its acceleration sensor. The optimization result was agreed with the numerical results, so the proposed method in this paper was verified correct. At last, sensors satisfied the accuracy requirements were selected to conduct the overall layout of monitoring points.
     5. Combined with "Fundamental code for design on railway bridge and culvert"(TB10002.1-2005),"Railway Bridge Verification Standard"(2004),"Code for Design of High Speed Railway"(TB10621-2009) in China,"Railway Structure Design Standard" in Japan, and "EUROCODE" in Europe and so on, dynamic index limit standards at home and abroad about high-speed railway bridge were introduced firstly. Afterwards, this paper compared each dynamic index limit between normal-speed railway bridge and high-speed railway bridge, and analyzed the differences between them in detail. Certainly, dynamic index limits about high-speed railway bridge structure at home and abroad also have a comparison, and the result shows that the type and corresponding dimension of dynamic index are similar, which reflects the connection of the specifications at home and abroad. Finally, summarized the dynamic parameters of large-scale high-speed railway bridge structure which has been built, and done some preliminary study on bridge transverse&vertical stiffness and vehicle parameters'limit standards.
     6. The condition assessment contents of highway bridge, normal-speed and high-speed railway bridge had a comparative analysis. Then the index system of condition assessment was established on the basis of large-scale high-speed railway bridge characteristics. Since some indexes'normal/ordinary value or safety limit are unknown, it's difficult to evaluate structure condition by using dynamic parameters directly. So dynamic parameters change was chosen as a benchmark to evaluate structure condition. Supposed on stationary random process and approximate a normal distribution, and according to this statistical regularity and the concept of confidence level and confidence interval, status levels of large-scale high-speed railway bridge can be divided into different parts. Each level was quantitatively controlled by confidence interval, and qualitatively described the usage of various levels, which unify the qualitative and quantitative methods. The weight of each evaluation index was solved by using the Uncertain AHP (analytical hierarchy process), Set-valued Statistics and Barycenter Decision Theory. Evaluation model of large-scale high-speed railway bridge was established by Internal Extension Evaluation Theory, and specific evaluation process was given followed by. Finally, take Caiyuanba Yangtze River Bridge as an engineering example to assess its operating conditions.
引文
[1]郑健.中国高速铁路桥梁[M].北京:高等教育出版社,2008
    [2]帅宗义.高速铁路桥梁健康监测系统中传感器优化布置的研究[D].成都:西南交通大学,2011
    [3]孙九春.大型桥梁综合评估系统研究[D].上海:同济大学,2002.
    [4]李爱群,缪长青.桥梁结构健康监测[M].北京:人民交通出版社,2009
    [5]T.D. Sloan, J. Kirkpatrick, J.W. Boyd and A. Thompson. Monitoring the in-service Behavior of the Foyle Bridge[J]. Structural Engineering,1992,70(7):130-134.
    [6]Mohsen A. Shahawy, and M. Arockiasamy. Field Instrumentation to Study the Time-Dependent Behavior in Sunshine Skyway Bridge[J]. Journal of Bridge Engineering,1996,1(2):76-86
    [7]Muria Vila D, Gomez R, and KingC. Dynamic structural properties of cable stayed Tampico Bridge. Journal of Structural Engineering, ASCE,1991,117(11):3396-3416.
    [8]Myroll F, and Dibiagio E. Instrumentation for monitoring the Skarnsunder Cable-stayed Bridge. In: Jon Krokeborg, ed. Proceedings of the Third Symposiumon Strait Crossing. Rotterdam:Balkema, 1994.207-215.
    [9]Andersen E.Y., and Pedersen. Structural monitoring of the Great Belt East Bridge. In: Jon Krokeborg, ed. Proceedings of the Third Symposium on Strait Crossing. Rotterdam:Balkema,1994.54-62.
    [10]赵虎.基于动力参数的高速铁路桥梁多层次损伤识别与性能评定[D].成都:西南交通大学,2010
    [11]LI Yadong, Research on Reliability-based Assessment of Existing Bridge Structures, Research Report, Imperial College, London,1995
    [12]周江.高等级公路桥梁健康状况评估方法的研究[D].长安大学硕士学位论文,2003
    [13]王有志,王广洋等.桥梁的可靠性评估与加固[M].北京:中国水利水电出版社,2002.
    [14]李有丰,林安彦.桥梁检测评估与补强[M].北京:机械工业出版社,2003.
    [15]常大民,江克斌.桥梁结构可靠性分析与设计[M].北京:中国铁道出版社,1995.
    [16]P.D. Thompson et al. The PONTIS Bridge Management System[J]. Structural Engineering International,1998,8(4):303-308.
    [17]季云峰,张启伟.新一代桥梁管理系统的研究与发展[J].世界桥梁,2004,(1):61-65.
    [18]H. Hawk, and E.P. Small. The BRIDGIT Bridge Management System[J]. Structural Engineering International,1998,8(4):309-314.
    [19]DOT. The Assessment of Highway Bridges and Structures [J], Department of Transport, London, 1993.
    [20]P. Hitoshi Furuta. The Points Bridge Management System [J].Structural Engineering Review,1995, 7(3):151-163.
    [21]张新占.桥梁管理系统研究[D].西安:长安大学,2004
    [22]Lauridsen J. et al. Creating a Bridge Management System[J]. Structural Engineering International, 1998,8(3):216-220
    [23]M.K. Soderqvist, and M. Veijola. The Finnish Bridge Management System[J]. Structural Engineering International,1998,8(4):315-319.
    [24]A. Miyamoto, K Kawamura, and H. Nakamura. Bridge Management System and Maintenance Optimization for Exiting Bridges [J]. Computer-Aided Civil and Infrastructure Engineering,2000, (5):45-55.
    [25]Sun-Kon, Kim, Kyung-Sik CHO, Jong-Hwa Kim. Development of Computerized Management System for Cable-Supported Bridge [C]. IABSE Conference, Seoul,2001.
    [26]Sang-Ho Lee, and Yeon-Suk Jeong. A System Integration Framework through Development of ISO 10303-Based Product Model for steel Bridges [J]. Automation in Construction,2006,15(2): 212-228.
    [27]宋雨.文晖大桥健康监测与评估管理系统主要问题研究[D].杭州:浙江大学,2003.
    [28]李昌铸.公路桥梁管理系统(CBMS2000)的开发与应用[J].公路交通科技,2003,20(3):84-90.
    [29]唐继舜,强士中,郑凯锋.桥梁工程设计数据库管理系统的研究[J].桥梁建设,1996(2):72-76.
    [30]张佩旭.双曲拱旧桥的多级模糊综合评定方法[J].交通科技,2005,(5):50-54.
    [31]宋大炜.混凝土拱桥综合评估研究及软件初步开发[D].西南交通大学,2005.
    [32]史敏,史家均.公路中小桥梁承载能力评定方法研究[J].上海公路,2001,(1):23-26
    [33]李亚东.既有桥梁评估方法研究[J].铁道学报,1997,19(3):109-115.
    [34]中华人民共和国交通部.公路桥梁的定期检查技术[S].2002.
    [35]李亚东.基于设计规范的桥梁承载能力评定[J].桥梁建设,1996,(2):18-22.
    [36]中华人民共和国交通部.公路旧桥承载能力鉴定方法(试行)[S].北京:人民交通出版社,1988.
    [37]中华人民共和国交通部.公路桥梁承载力检测评定规程(征求意见稿)[S].北京:人民交通出版社,2003.
    [38]Stewart M.G. Raliability-based assessment of ageing bridge using risk ranking and life cycle cost decision analyses. Reliability Engineering & System Safety2001;74:263-273
    [39]索清辉,钱永久,张方.对公路桥梁剩余寿命评估时可变荷载取值的研究[J].中国工程科学.2004,6(5):52-55.
    [40]王春生,陈艾荣,陈惟珍.基于断裂力学的老龄钢桥剩余寿命与使用安全评估[J].中国公路学报,2006,19(2):42-48
    [41]葛占钊.既有中小跨径拱桥检测与评估方法的研究[D].哈尔滨:哈尔滨工业大学,2007
    [42]汤怀胜.桥梁技术状况评估、预测及管理系统开发研究[D].长沙:湖南大学,2008
    [43]韩劲龙.基于NDT的桥梁性能检测与评价研究[D].武汉:武汉理工大学,2007
    [44]中华人民共和国交通部.JTGH11-2004公路桥涵养护规范[S].北京:人民交通出版社,2004.
    [45]T. L. Saaty. The Analytic Hierarchy Process[M]. New York:Mograw-Hill Inc,1980
    [46]张永清,冯忠居.用层次分析法评价桥梁的安全性[J].西安公路交通大学学报,2001,21(3):52-56
    [47]叶培伦,俞亚南.应用层次分析法评判混凝土桥梁综合性能[J].华东公路,2000,(5):18-20
    [48]孙昭文,杨俊行,李莉.层次分析法的判断矩阵一致性及其应用[J].天津大学学报,1994,27(4):487-493
    [49]Y.M. WANG, J. LIU, and Taha M.S. Elhag. An Integrated AHP-DEA Methodology for Bridge Risk Assessment[J].Computers & Industrial Engineering,2008,54(3):513-525.
    [50]M.A. Musta, and J.F. Al-Bahar. Project risk assessment using the analytic hierarchy process[J]. Engineering Management,1991,38(1):46-52
    [51]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990
    [52]赵焕臣,许树柏,和金生.层次分析法[M].北京:科学出版社,1986
    [53]许树柏.实用决策方法一层次分析法原理[M].天津:天津大学出版社,1988
    [54]谢季坚,刘承平.模糊数学方法及其应用(第3版)[M].武汉:华中科技大学出版社,2006
    [55]Z.L. Wei, Q.H. Pu, and X.J. Huo. The Application of the Improved Interval Number Fuzzy Comprehensive Method in Bridge Evaluation[C]. ICSBM 2011, AMR. Vol. (163-167),2011, p.3285-3291
    [56]马继兵,蒲黔辉,宋大炜,杨光强.既有中(下)承式混凝土拱桥耐久性模糊贴近度的综合评价 [J].公路交通科技,2008,25(2):79-84
    [57]马亚丽,王东炜,张爱林.在役桥梁结构健康等级的多级模糊综合评判[J].北京工业大学学报,2005,31(1):36-40
    [58]黄侨,唐海红,任远.基于模糊理论的大跨度桥梁评估理论研究[J].公路交通科技,2010,27(1):62-66
    [59]Abdel Razig Y.A.,Chang L.M. Intelligent Model for Constructed Facilities Surface Assessment [J]. Construction Engineering and Management, ASCE,Vol.126,No.6,2000,pp.422-432
    [60]刘沐宇,袁卫国.基于模糊神经网络的大跨度钢管混凝土拱桥安全性评价方法研究[J].中国公路学报.2004,17(2):55-58
    [61]李昌铸,王立云,谢经纬等.特尔斐专家评估法在公路桥梁评价中的应用[J].中国公路学报,1993,6(2):46-52
    [62]帅长斌,吕任东,冯晓平.公路桥梁结构可靠性自动评估系统的研究[J].交通与计算机,2000,96(18):7-10
    [63]王学智.桥梁损伤评估及对策专家系统BEES [D]上海:同济大学,2000
    [64]Mohsen A. Issa, Shumin Tsui, Alfred Yousif. Application of Knowledge-based Expert System for Rating Highway Bridge [J]. Engineering Fracture Mechanices,1995,50:923-934
    [65]Kusida M, Miyamoto A, Kinoshita K. Development of Concrete Bridge Rating Prototype Expert System with Machine Learning [J]. Computing Civil Engineering,1997,11(4):38-47
    [66]Miyamoto A, Morikawa H, Kusida M, Tokuyama T. A Knowledge-based Expert System Application in Structural Safety Assessment of Concrete Bridges [J]. Bridge Manage,1993,2:96-109
    [67]Ayaho Miyamoto, Kei Kawamura, Hieaki Nakamuta. Bridge Management System and Maintenance Optimization for Existing Bridges [J]. Computer-aided Civil and Infrastructure Engineering,2000, (15):45-55
    [68]陆亚兴,殷建军等.桥梁缺损状况评价方法[J].中国公路学报,1996,9(3):55-61.
    [69]陈少文,袁海金,许均良.公路桥梁损伤等级评价与处治对策系统研究[J].中南公路工程,1997,83(4):42-45.
    [70]兰海,史家钧.灰色关联分析与变权综合法在桥梁评估中的应用[J].同济大学学报,2001,29(1):50-54
    [71]张绍良,张国良.灰色关联度计算方法比较及其存在问题分析[J].系统工程,1996,14(3):45-49.
    [72]N.C. LIND. A Measure of Vulnerability and Damage Tolerance [J]. Reliability Engineering and System Safety,1995,48:1-6.
    [73]A.W. BEEBY. Safety of Structures and a New Approach to Robustness[J]. The Structural Engineer, 1999,77(4):16-21.
    [74]K. ZIHA. Event Oriented Analysis of Series Structural Systems[J]. Structural Safety,2001,23(1): 1-29.
    [75]吕大刚,王光远.基于可靠度和灵敏度的结构局部地震易损性分析[J].自然灾害学报,2006,15(4):157-162.
    [76]邹伟.大跨度连续刚构桥易损性研究[D].成都:西南交通大学,2009
    [77]姜绍飞,杨博,党永勤.易损性分析在结构抗震及健康监测中的应用[J].建筑科学与工程学报,2008,25(2):15-22
    [78]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.
    [79]蒲黔辉,魏召兰,李晓斌.大跨连续钢桁拱动力系数影响因素研究[J].地震工程与工程振动,2011,31(6),8-13
    [80]孙树礼.高速铁路桥梁设计与实践[M].北京:中国铁道出版社,2011
    [81]夏禾.车辆与结构动力相互作用(第二版)[M].北京:科学出版社,2005.
    [82]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [83]葛玉梅.斜拉桥在考虑风效应时的车一桥耦合振动[D],成都:西南交通大学,2001.
    [84]李小珍.高速铁路列车-桥梁系统耦合振动理论及应用研究[D].成都:西南交通大学,2000.
    [85]李小珍,马文彬,强士中.车桥系统耦合振动分析的数值解法[J].振动与冲击,2002,21(3):21-25.
    [86]中华人民共和国交通部.JTG D60-2004公路桥涵设计通用规范[S].北京:人民交通出版社,2004
    [87]黄新艺,卓卫东,盛洪飞等.车桥耦合振动系统模型下桥梁冲击效应研究[J].公路交通科技,2010,27(3):59-63
    [88]高芒芒.高速铁路列车-线路-桥梁耦合振动及列车走行性研究[J].中国铁道科学,2002,23(2):135-138.
    [89]中华人民共和国铁道部.TB 10621-2009.高速铁路设计规范(试行)[S].北京:中国标准出版社,2009.
    [90]高宗余,李龙安,方秦汉等.钢桁拱桥吊杆风致振动研究[J].武汉理工大学学报(交通科学与工程版),2007,31(2):281-284
    [91]星谷胜著.随机振动分析[M].常宝琦译.北京:地震出版社,1977.
    [92]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005.
    [93]吴定俊,王小松,项海帆.高速铁路尼尔森拱桥车桥动力特性[J].铁道学报,2003,25(3):96-100.
    [94]马继兵,蒲黔辉,夏招广.铁路尼尔森体系提篮拱桥动载试验与车桥耦合振动分析[J].振动与冲击,2008,27(7):174-177.
    [95]熊海贝,张俊杰.超高层结构健康监测系统概述[J].结构工程师,2010,26(1):144-150
    [96]何浩祥,闫维明,马华,王卓.结构健康监测系统设计标准化评述与展望[J].地震工程与工程振动,2008,28(4):154-160
    [97]李宏男,高东伟,伊廷华.土木工程结构健康监测系统的研究状况与进展[J].力学进展,2008,38(2):154-160
    [98]孙鸿敏,李宏男.土木工程结构健康监测研究进展[J].防灾减灾工程学报,2003,22(3):92-98.
    [99]陈保平,苏木标,樊可清.大型桥梁健康监测远程数据采集系统设计[J].石家庄铁道学院学报,2001,14(4):14-17.
    [100]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断评述[J].地震工程与工程振动,2002,22(3):82-89.
    [101]M.R.Banan, K.D.Hjelmstad. Parameter estimation of structures from static response. Ⅰ: computational aspects[J]. Journal of Structural Engineering, ASCE,1994,120(11):3243-3258
    [102]M.R.Banan, K.D.Hjelmstad. Parameter estimation of structures from static response. Ⅱ: computational aspects[J]. Journal of Structural Engineering, ASCE,1994,120(11):3259-3283
    [103]M.Sanayei, Michael J. Saletnik. Parameter estimation of structure from static strain measurements I. Formulation[J]. Journal of Structural Engneering,1996,122(5):555-562
    [104]M.Sanayei, Michael J. Saletnik. Parameter estimation of structure from static strain measurements Ⅱ. Error sensitivity [J]. Journal of Structural Engneering,1996,122(5):563-572
    [105]付春雨,李乔,单德山.基于位移连续的静力损伤识别[J].桥梁建设,2010(2):18-20
    [106]Cawley P and Adams R D. The Location of Defects in Structures from Measurements of Natural Frequencies[J]. Journal of Strain Analysis,1979,14(2):49-57
    [107]Hearn G and Testa R B. Modal Analysis for Damage Detection in Structures[J]. Journal of Structural Engineering,1991,117(10):3042-3063
    [108]Norris Stubbs, Broome T H, Roberto Osegueda. Nondestructive construction error detection in large space structures[J]. AIAA,1990,28(11):146-152.
    [109]谢峻,韩大建.一种改进的基于频率测量的结构损伤识别方法[J].工程力学,2004,21(1):22-25
    [110]杜思义,殷学纲,陈淮.基于频率变化识别结构损伤的摄动有限元方法[J].工程力学,2007,24(4):66-70.
    [111]Pandey A K, Biswas M. Damage diagnosis of truss structures byestimation of flexibility change[J]. The international Journal of Analytical and Experimental Modal Analysis,1995,10(2):104-117
    [112]Zhao J, DeWolf J T. Sensitivity study for vibration parameters used in damage detection. Journal of structural engineering,1999,125(4):410-416
    [113]杨光正,吴眠,张晓莉.模式识别[M].中国科学技术大学出版社,2001.
    [114]舒宁,马洪超,孙和利.模式识别的理论与方法[M].武汉大学出版社,2004.
    [115]Garcia,G., Stubbs, N. Application and evaluation of classification algorithms to a finite element model of a three-dimensional truss structure for nondestructive damage detection[J]. Smart Systems for Bridges, Structures, and Highways, Proceedings of SPIE,1997,3,043:205-216.
    [116]Shie Qian, Dapang Chen. Joint time-frequency analysis[J]. IEEE Signal Processing Magazine,1999, 16 (2):53-67.
    [117]Norden E, HUANG Zheng Shen, Steven R Long, etal. The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis [J]. Proc Royal Society of London Series,1998,454:903-995.
    [118]K.M. Liew, Q. Wang. Application of theory for crack indentifica-tion in structures[J]. Journal of Engineering Mechanics,1998,124 (2):152-157.
    [119]Z. Sun, C. C. Chang. Structural damage assessment based on wavelet packet transform [J]. Journal of Structural Engineering,2002,128(10):1354-1361
    [120]张启伟.大型桥梁结构安全监测概念与监测系统设计[J].同济大学学报,2000,29(1):65-69
    [121]Chueng M S, Tadors G S, Borwn T G, et al. Field monitoring and research on the Confederation Bridge. Canadian Journal of Civil Engineering,1997,24(6):951-962
    [122]朱子.基于振动特性的结构损伤识别理论与方法研究[D].北京:清华大学,2006.
    [123]刘西拉,杨国兴.桥梁健康监测系统的发展与趋势[J].工程力学(增刊),1996:20-29
    [124]吴小平.复杂桥梁结构综合监测系统开发研究[D].杭州:浙江大学,2005.
    [125]刘永前.大型桥梁结构健康监测技术研究与应用[D].北京:北京交通大学,2007.
    [126]史家钧,项海帆,许俊.确保大型桥梁安全性与耐久性的综合监测系统[J].同济大学学报(增刊),1997,25:71-75
    [127]兰海,史家钧.大跨斜拉桥结构的综合监测[J].结构工程师,2002,(2):5-11
    [128]秦权.桥梁结构的健康监测[J].中国公路学报,2000,13(2):37-42
    [129]Zong Zhou-Hong, Wang T L, Huang D Z. State-of -the art report of bridge health monitoring. Journal of Fu zhou University (Natural Science),2002,30(2):127-152.
    [130]吴小平.桥梁健康监测中的传感器选型与设计[J].山西建筑,2007,33(25):319-320
    [131]何旭辉.南京长江大桥结构健康监测及其关键技术研究[D].长沙:中南大学,2004.
    [132]Housner G W, Bergmna L A, Caughey T K, et al. Structural Control:Past, Persent, and Futuer[J]. Jounral of Engineering mechanics,1997,123(9):897-971
    [133]周智,欧进萍.用于土木工程的智能监测传感材料性能及比较研究[J].建筑技术,2002,33(4): 270-272.
    [134]王清.分布式温度监测及管理系统[D].南京:东南大学,2004.
    [135]孙汝蛟.光纤光栅传感技术在桥梁健康监测中的应用研究[D].上海:同济大学,2007.
    [136]侯立群.大型斜拉桥基于健康监测的模型修正、损伤诊断与预警方法[D].哈尔滨:哈尔滨工业大学,2009
    [137]郭艳芬.涪陵乌江二桥健康监测传感器优化布置研究[D].重庆:重庆交通大学,2009.
    [138]潘妍.结构健康监测的数据采集系统的研究与实现[D].成都:西南交通大学,2008.
    [139]刘胜春.光纤光栅智能材料与桥梁健康监测系统研究[D].武汉:武汉理工大学,2006.
    [140]孙全胜.智能桥梁结构健康监测的研究[D].哈尔滨:东北林业大学,2005.
    [141]何天宝.重庆涪陵石板沟长江大桥健康监测系统的研究与开发[D].重庆:重庆交通大学,2009.
    [142]胡卫军.重庆大佛寺长江大桥连通管式光电挠度测量系统的实用化研究[D].重庆大学,2003.
    [143]胡江,苏怀智,张跃东.光纤传感技术在大坝裂缝预测和监测中的可行性探讨[J].水电自动化与大坝监测,2008,32(5):52-57
    [144]Wan K T, Leung C K Y. Applications of a distributed fiber optic crack sensor for concrete structures. [J]. Sensors and Actuators, A: Physical,2007,135(2):458-464.
    [145]Olson N, Leung C K Y, Meng A. Crack sensing with a multimode fiber: experimental and theoretical studies[J]. Sensors and Actuators, A: Physical,2005,118(2):268-277.
    [146]左云.茅草街大桥健康监测方案以及传感器优化布置的研究[D].长沙:湖南大学,2005.
    [147]Fu-Kuo Chang.The International Workshop on Structural Health Monitoring (4nd) Held in Stanford, California on September 15-17,2003
    [148]Thomas G Carne, Clark R Dohmann. A modal test design strategy for model correlation. In: Bathel, ed. Proc 13th Intl Modal Analysis Conference. New York: Union College, Schenectady,1995. 927-933
    [149]Udwadia F E. Methodolody for optimum sensor locations for parameter identification in dynamic systems[J]. Journal of Engineering Mechanics, ASCE,1994,120(2):368-390.
    [150]谭冬莲,肖汝诚.桥梁监测系统中梁桥静力应变传感器的优化配置[J].长安大学学报(自然科学版),2007,27(5):66-69
    [151]刘福强,张令弥.作动器/传感器优化配置的研究进展[J].力学进展,2000,30(4):506-516
    [152]Basseville M, Benveniste A, et al. Optimal sensor location for detecting changes in dynamic behavior[J]. IEEE Transactions on Aromatic Control,1987,AC-32(12):1067-1075
    [153]Basseville M, Benveniste A, et al. Detecion and diagnosis of changes in the eigenstructure of non-stationary multivariable system[J]. Automatical,1987,vol.23:479-489
    [154]Staszewski W J, Worden K. An Overview of Optimal Sensor Location Methods for Damage Detection Smart. Structures and Materials,2001:179-187
    [155]Meo M, Zumpano G. On the Optimal Sensor Placement Techniques for a Bridge Structure. Engineering Structures,2005,27:1488-1497
    [156]De Clerk J P, Avitabile P. Development of several new tools for modal pretest evaluation [C]// Proceedings of the 10th International Modal Analysis Conference. Schenectady, NY: Union College Press,1996:1272-1277.
    [157]李东升,张莹,任亮,李宏男.结构健康监测中的传感器布置方法及评价准则[J].力学进展,2011,41(1):39-50
    [158]刘文涛.斜拉桥振动模态测试中的传感器优化布设[D].武汉:武汉理工大学,2006
    [159]Penny J E T, Friswell M I,Garvey S D. Automatic choice of measurement location for dynamic testing[J]. AIAA Journal,1994,32(2):407-414.
    [160]杨雅勋.基于动力测试的桥梁结构损伤识别与综合评估理论研究[D].西安:长安大学,2008.
    [161]崔飞,袁万诚,史家均.传感器优化布设在桥梁健康监测中的应用[J].同济大学学报,1999,27(2):165-169.
    [162]宗周红,孙建林,徐立群,李嘉维.大跨度连续刚构桥健康监测加速度传感器优化布置研究[J].地震工程与工程振动,2009,29(2):150-158
    [163]Kammer D C. Effect of model error on sensor placement for on-orbit modal identification of large space structures[J]. Journal of Guidance, control, and Dynamic,1992,15(2):334-341
    [164]Kammer D C. Sensor placement for on-orbit modal identification and correlation of lagre space structures[J]. Journal of Guidance, Control and Dynamics,1991,14(9):251-259.
    [165]Shi Z Y, Law S and Zhang L M. Optimizing sensor placement for structural damage detection[J], Joumal of Energy Machines, ASCE,2000,126(11):1173-1179
    [166]段鸿杰.桥梁健康监测中的传感器优化布置研究[D].大连:大连理工大学,2006
    [167]李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社,2002.
    [168]黄民水,朱宏平.桥梁结构模态测试中传感器优化布置的序列法及应用[J].桥梁建设,2007(5):80-83.
    [169]刘娟,黄维平.传感器优化配置的修正逐步累积法[J].青岛海洋大学学报,2003,33(3):476-482.
    [170]秦仙蓉,张令弥.一种基于QR分解的逐步累积法传感器配置[J].振动、测试与诊断,2001,21(3):168-173
    [171]戴华.矩阵论[M].北京:科学出版社,2001.
    [172]Iwaki H.et al. Structural Health Monitoring System Using FBG-Based Sensors for Damage Tolerant Building[R]. Smart Structures and Materials, San Diego,2002,4696-4709
    [173]PL. Phur, et al. Embedded Sensors Results from the Winooski one Hydroelectric Dam.SPIE,1994, (2191):446-456
    [174]Bemhard V, et al. Leakage Detection Systems by Using Distributed Fiber Optical Temperature Measurement. SPIE 2001,4328,23-24
    [175]Mendoza E A, et al. Distributed Fiber Optic Chemical Sensors for Detection of Corrosion in Pipelines and Structural Components. SPIE 1998,3398,136-143
    [176]孙小猛.基于模态观测的结构健康监测的传感器优化布置方法研究[D].大连:大连理工大学,2008.
    [177]叶宗裕.关于多指标综合评价中指标正向化和无量纲化方法的选择[J].浙江统计,2003,(4):24-25
    [178]何浩祥,闫维明,张爱林.面向结构健康监测的传感器数量及位置优化研究[J].振动与冲击,2008,27(9):131-134
    [179]中华人民共和国铁道部.铁路桥涵设计基本规范(TB 10002.1-2005)[S].北京:中国铁道出版社,2005.
    [180]中华人民共和国铁道部.铁路桥梁检定规范(2004)[S].北京:中国铁道出版社,2004.
    [181]项海帆,吴定俊.我国铁路桥梁的现状和展望[J].铁道建筑技术,2001,(2):1-5.
    [182]李星新,田启贤,郑平伟,徐海鹰.大跨度高速铁路桥梁测试与分析中的技术问题[J].桥梁建设,2009,增刊2,89-92.
    [183]Wei Zhao-lan, Pu Qian-hui, Wang Bin-li. Study on Condition Assessment of Highway Bridge, Normal-Speed and High-Speed Railway Bridge[C]. Advanced Materials Research,2011, Vols. 328-330:1026-1030.
    [184]许烈平.桥梁养护管理系统的研究与开发[D].重庆:重庆交通大学,2008
    [185]王永平,张宝银,张树仁.桥梁使用性能模糊评估专家系统[J].中国公路学报,1996,9(2),62-67
    [186]单德山,李乔,付春雨等.智能桥梁健康监测与损伤评估[M].北京:人民交通出版社,2010.
    [187]盛骤谢式干.概率论与数理统计及其应用[M].北京:高等教育出版社,2004
    [188]马军海,陈艾荣,张文学.公路桥梁技术状况评定体系及其应用[J].石家庄铁道学院学报,2006,19(4):77-87
    [189]张沈阳.基于神经网络的连续刚构桥状态评估研究[D].成都:西南交通大学,2009
    [190]姚洪春,颜全胜,韩大建.桥梁管理软件中桥梁状况的评价分级[J].职能建筑与城市信息,2003,(1):63-64.
    [191]Recording and coding guide for the structure inventory and appraisal of the nation's bridges[C]. Federal Highway Administration, Washington D C.1988
    [192]Federal Highway Administration.U.S. Department of Transportation-Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges.1989
    [193]Woodward R J. Transport Research Laboratory (TRL)[A].Deliverable D2 Review of current practice for assessment of structural condition and classification of defects.1999
    [194]胡宝清.区域水环境质量的区间可拓评价方法及应用[J].中国工程科学,2001,3(6):53-56
    [195]原国红,陈剑平,马琳.可拓评判方法在岩体质量分类中的应用[J].岩石力学与工程学报,2005,24(9):1539-1544.
    [196]蔡文.可拓工程方法[M].北京:科学出版社,1997.
    [197]徐威.既有铁路混凝土桥状态评定方法研究[D].成都:西南交通大学,2005
    [198]刘沐宇,何祖亮.不确定层次分析的钢管混凝土拱桥安全性评价[J].武汉理工大学学报,2004,26(6):25-28
    [199]许先云,杨永清.不确定型AHP判断矩阵的一致性逼近与排序方法[J].系统工程理论与实践.1998(2):19-22
    [200]秦学志,王雪华,杨德礼.AHP中群组判断的可信度法(Ⅱ)[J].系统工程理论与实践.2000,(5):76-79
    [201]孙九春,史家钧.加权集值统计理论和重心决策理论在桥梁评估中的应用[J].上海公路,2001,(4):20-22
    [202]汪培庄,刘锡芸.集值统计[J].工程数学学报,1984,(5):43-54.
    [203]席酉民,汪应洛,陶谦坎.决策指标的评价方法及权的探讨[J].系统工程理论与实践[J].1986(3):12-16.
    [204]单德山,李乔,徐威.不确定层次分析法在砼桥梁性能评价中的应用[J].重庆交通学院学报.2007,26(1):20-26.
    [205]任远,黄侨,林阳子.大跨度斜拉桥综合评估系统的研制与开发[J].南京航空航天大学学报,2007,39(4):535-539
    [206]张海霞.基于不确定型层次分析法的混凝土斜拉桥状态评估[D].成都:西南交通大学,2008
    [207]韦兰用.区间数判断矩阵的一致性及其判别法[J].广西师范大学学报(自然科学版),2001,19(4):40-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700