用户名: 密码: 验证码:
白细胞介素18对人舌鳞状细胞癌治疗作用的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舌鳞状细胞癌(tongue squamous cell carcinoma,TSCC)是口腔颌面部最常见的恶性肿瘤。它的发病率较高,且逐年上升,患病年龄趋向年轻化;因舌的血供及淋巴丰富,尤其舌肌频繁挤压使舌癌更易早期转移;舌癌预后较差,术后生活质量明显下降。因此,舌癌是严重威胁人类健康的疾病之一。
     白细胞介素18(Interleukin-18,IL-18)是一种多效性炎性细胞因子,于1995年被Okamura等人发现,因能显著刺激Thl细胞产生干扰素Υ(γ-interferon, IFN-γ),最初被命名为干扰素诱导因子,1996年正式命名为白细胞介素18。因与IL-1有相同特性,IL-18被列为IL-1家族。它可以由多种类型的细胞产生,包括巨噬细胞,树突状细胞,小神经胶质细胞,和角化细胞。IL-18最初是以前体IL-18的形式产生,分子量为24kDa,基因编码有193个氨基酸的无活性的前体蛋白,需经caspase-1/IL-1转化酶(ICE)的裂解,才能成为成熟形式的IL-18,分子量为18kDa。IL-18可以通过以下方面影响免疫系统:1、诱导由T,NK或者B细胞分泌IFN-Υ;2、促进抗CD3单克隆抗体,IL-2或者刀豆球蛋白A增殖,激活T细胞;3、提高Fas配基介导的NK细胞的细胞毒活性;4、抑制破骨细胞在体外形成;5、激活NK细胞,调节CD8~+T、CD4~+T细胞逐渐活化,使CTL发挥杀伤作用。而且,IL-18与IL-12有协同作用,诱导IFN-γ的产生,通过内源性血管生成抑制剂阻碍血管的发生。以上的生物学活性表明,IL-18可能正在成为一种特殊的有利于癌症免疫治疗的细胞因子,无论是在动物模型还是在晚期癌症病人身上,IL-18都发挥了显著的抗瘤活性。然而,IL-18对舌鳞的抗肿瘤作用还没有被阐述清楚。
     目前,许多的研究都集中在对舌癌的预防和治疗上,包括使用整合素靶定肿瘤细胞使得口腔鳞癌细胞更易于进行光学拍照;使用姜黄素,通过内质网应激和线粒体依赖性途径诱导细胞凋亡。另外,舌癌耐药相关蛋白1(TCRP1)可以通过Akt信号通路而涉及口腔鳞癌细胞的放射敏感性。然而,很少有关于对舌鳞癌使用免疫治疗的报道。
     本课题开展的假设:将细胞因子引入肿瘤细胞内已经成为癌症基因治疗的一种主要手段。我们用质粒载体pCDNA3.1携带IL-18基因,转染人舌鳞状细胞癌细胞系。由于IL-18具有免疫调节作用,激活机体的免疫系统,杀伤肿瘤细胞,因此推测IL-18可能会对舌鳞癌细胞系发挥抑制作用。发现并探讨新的抑瘤途径将是本课题的关键。
     本课题分为两个部分:第一部分为构建及鉴定人IL-18基因真核表达载体;第二部分为将pCDNA3.1/IL-18转染入CRL-1623中,分析细胞生长状况、细胞凋亡、测定caspase3/7活性,并对相关细胞因子进行实时定量检测。
     第一部分人IL-18基因真核表达载体的构建和鉴定
     目的:
     通过克隆人的Interleukin-18基因,构建Interleukin-18基因的哺乳动物细胞真核表达载体,为转染做好准备。
     方法:
     采用密度梯度法从健康志愿者的新鲜血液中分离白细胞;用Trizol法进行IL-18总RNA提取及鉴定。设计合成PCR引物,把人基因组cDNA通过PCR获得Interleukin-18,克隆至载体pMD18-T,然后转化到大肠杆菌里,最后进行重组真核表达载体pCDNA3.1/Interleukin-18(pIL-18)的构建,并对重组质粒pIL-18进行双酶切鉴定与测序。结果:
     以人cDNA为模板,扩增出580bp左右的特异性条带,测序结果与GeneBank测序结果相比,除两个碱基外,其余的完全一致,翻译成的氨基酸序列相同。对重组质粒pIL-18进行双酶切鉴定并测序,结果也完全一致。
     所以,重组质粒pIL-18由真核载体pCDNA3.1和Interleukin-18片段组成。且插入的Interleukin-18片段与已知序列完全相同。
     结论:
     成功构建了pIL-18重组质粒。
     第二部分IL-18基因转染人舌鳞癌及体外抗肿瘤作用的实验研究
     目的:
     研究IL-18在舌鳞状细胞癌系CRL623生长调控中的作用,探讨抑瘤机制。
     方法:
     1、构建pCDNA3.1/IL-18重组质粒载体;
     2、培养癌细胞系CRL1623;
     3、将人IL-18基因克隆至pcDNA3.1(+)并转染CRL1623细胞,进行总RNA提取并进行实时定量检测;
     4、随后用MTS法分析癌细胞的生长状况、使用锚定蛋白-异硫氰酸荧光素(FITC)凋亡试剂盒检测细胞凋亡;
     5、用Apo-ONE Homogeneous试剂盒检测Caspase3/7的活性;
     6、实时定量检测CCND1(cyclin D1), CCNA1(cyclin A1)和IFNG(interferon-γ);
     7、用SPSS16.0统计软件进行组别间t检验,p<0.05认为具有统计学意义。
     结果:
     1、成功构建了pCDNA3.1/IL-18载体。
     2、我们使用pRFP转染细胞,分别在24、48和72小时检测发光率,在CRL-1623转染pRFP48h时,达到了一个较高的转染效率。
     3、我们分别对转染后24、48和72小时的形态进行观察,细胞凋亡的数目从24h到72h逐渐上升。
     4、与未转染细胞相比,转染pIL-18后细胞的活力显著下降(48h,p=0.031;72h,p=0.007);凋亡细胞数目从0到72h之间显著上升(24h,p=0.046;48h,p=0.037;72h,p=0.016);caspase-3/7的活性显著增加(p<0.05,72h)。
     5、实时定量检测结果显示,与未转染细胞相比,pIL-18转染后,IL-18和IFN-γ mRNA的水平上调(p=0.009和p=0.014);在pIL-18转染细胞中,cyclin D1mRNA水平下降,而cyclin A1mRNA水平并未发生明显改变。
     结论:
     1、过表达外源IL-18基因,可以直接在体外干涉舌鳞癌细胞系的生长,引起细胞凋亡;
     2、肿瘤细胞凋亡的诱导可能是通过一种caspase依赖性通路发生的;
     3、IL-18诱导干扰素γ产生,在宿主对细胞内微生物的防御中扮演着重要角色;
     4、IL-18基因可能干涉了染色体在S期过程中的复制,减缓细胞增殖的速度。
     因此,IL-18在调控舌鳞状细胞癌中扮演着重要角色,并可能在该癌症的治疗中起着重要的作用。
Tongue squamous cell carcinoma(TSCC) is the most common malignanttumor in oral and maxillofacial region. A higher incidence of tongue cancer,and increased year by year, the prevalence of age is getting younger. Due torich blood supply and lymphatic of the tongue, particularly genioglossusfrequent extrusion tongue cancer more likely to early transfer. Tongue cancerwith poor prognosis, postoperative lifequality has declined markedly. Therefore,tongue cancer is a disease of a serious threating to human health.
     Interleukin-18is a pleiotropic inflammatory cytokine. In the year of1995,Okamura et al purified a new protein. Because it could significantly stimulateThl cell to produce IFN-γ,it was named IGIF (IFN-γ-inducing factor). Due toIGIF possessing many kinds of biological function, it was formally namedIL-18in1996. IL-18, a member of the IL-1superfamily of cytokines and likeIL-1β, is produced by several cell types, including macrophages, dendritic cells,microglial cells, and keratinocytes. IL-18is initially produced as pro-IL-18(24kDa), which encodes a193–amino acid biologically inactive precursorprotein. It is then processed by caspase-1, which is an IL-1β-converting enzyme(ICE), to a mature form with a molecular weight of18kDa. IL-18affects theimmune system through:1.inducing IFN-γ secretion by T, NK, or B cells;2.enhancing proliferation of anti-CD3monoclonal antibody, IL-2, orconcanavalin A-stimulated T cells;3.augmenting Fas ligand-mediated NK cellcytotoxic activity;4. inhibiting osteoclast formation in vitro;5. reinforceing theactivity of NK cell, regulating the activation of CD8~+T and CD4~+T cell, andCTL giving free rein of cytolytic function. Moreover, IL-18has a synergisticeffect with IL-12for IFN-γ production. Markedly retarded blood vessel growth are likely the result of more effective inhibition of angiogenesis by thecombination of the two cell types. Because of the above biologic activity,IL-18is probably becoming an antineoplastic cytokine. It has exhibited significantantitumor activities in multiple animal models and patients with advancedcancer. However, an antitumor property of IL-18on tongues quamous cellcarcinoma has not been directly shown.
     At present, a large volume of research has been performed regarding theprevention and treatment of TSCC, including targeting tumour cell-basedintegrins to enable optical imaging of oral SCC, and the use of curcumin toinduce apoptosis via endoplasmic reticulum stress and mitochondria-dependentpathways. In addition, tongue cancer resistance-associated protein1(TCRP1)has been implicated in the radiation sensitivity of oral squamous cell carcinomacells through the Akt signaling pathway. There is, however, limited dataregarding immunotherapy in TSCC.Hypothesis of the research:
     The introduction of cytokine genes into tumor cells has become one of themain techniques in cancer gene therapy. We transfected into human tonguesquamous cell carcinoma cell line CRL-1623with pcDNA3.1(+) vectorcontaining the human interleukin18gene. Because of the immunoregulationand antitumor property of IL-18, we presume that IL-18probably inhibitgrowth of CRL1623. It may be a critical problem of approaching a newantineoplastic pathway in our study.
     Our research is divided into two parts. In the first part we construct andidentify the eukaryotic expression vector of human Interleukin-18. In thesecond part, we use pcDNA3.1(+) vector containing the human interleukin18gene and transfected into human tongues quamous cell carcinoma cell lineCRL-1623. Analysis of cell growth, detection of apoptosis, assessment ofcaspase3/7activity, and real-time reverse transcription–polymerase chain reaction were performed to assess the related genes expression of correlatedcytokine.
     Part one Construction and Identification of Eukaryotic
     Expression Vector of Human Interleukin-18
     Object
     The eukaryotic expression vector of Interleukin-18was constructedaccording to the Interleukin-18gene of human.
     Method
     We isolated leukocyte from fresh blood of one healthy donor withdensity gradient centrifugation,then extracted and assessed IL-18total RNAusing TRIzol reagent according to manufacturer’s instruction. Aftersynthetized primer for PCR, interleukin-18gene was obtained from humangenome DNA by PCR. Vector pMD18-T/Interleukin-18was cloned andtransformed into Escherichia coli,and the recombinant pCDNA3.1/Interleukin-18was constructed and identified.
     Result
     The result of agarose gel electrophoresis showed that an expected580bpband was amplified. The result of enzyme-disgetion identification indicated aband was in accordance with the expected length. Sequencing result ofpCDNA3.1/Interleukin-18showed that the reading frame was not changedexcept two base compared with the GeneBank, and amino acid sequence wasthe same.
     Conclusion
     The eukaryotic expression vector pCDNA3.1/IL-18was constructedsuccessfully.
     Part two Construction of human tongue squamous cell
     carcinoma cells transducted by IL-18and study of its
     antitumor effect in vitro
     Objective
     This study investigated the role of interleukin-18(IL-18) in regulating thegrowth of the human tongue squamous cell carcinoma cell line CRL-1623.
     Methods:
     1Constructing the eukaryotic expression vector pCDNA3.1/IL-18;
     2Culturing of tongue carcinoma cell line CRL1623;
     3The human IL18gene was cloned and transfected into CRL-1623cellsusing the transfection vector pcDNA3.1(+), then real-time reversetranscription–polymerase chain reaction was performed;
     4Analysis of cell growth using MTS method, detection of apoptosis usingannexin V–fluorescein isothiocyanate,
     5Assessment of caspase3/7activity using Apo-ONE Homogeneous Kit
     6Real-time reverse transcription–polymerase chain reaction to assessexpression of the IL18, CCND1(cyclin D1), CCNA1(cyclin A1) and IFNG(interferon-γ) genes.
     7Statistical analyses were carried out using the SPSS statistical package,version16.0for Windows. The Student’s t-test was used to compare thedifferences between groups. A P-value <0.05was considered to be statisticallysignificant.
     Result
     1Constructing the eukaryotic expression vector successfully.
     2Transfection of CRL-1623cells with pRFP appeared qualitatively toresult in high transfection efficiency at48h after transfection, as determined by fluorescence microscopy.
     3The number of apoptosis and dead cells increased from24to72h,following transfection with pIL18.
     4.Transfection with pIL18reduced cell viability compared withuntransfected cells and this difference was statistically significant at48h (P=0.031) and72h (P=0.007); Cell viability was also reduced slightly bytransfection with empty vector pcDNA3.1(+) from24h to72h compared withuntransfected cells, although this difference was not statistically significant.The number of apoptotic cells in the pIL18transfected group also increasedsignificantly between0and72h compared with untransfected cells (P=0.046at24h; P=0.037at48h; P=0.016at72h). Transfection with pIL18but notpcDNA3.1(+) resulted in increased caspase-3/7activity between0and72h.although this difference was only statistically significant at72h.
     5.The levels of both IL18and IFNγ mRNA were increased in cellstransfected with pIL18compared with untransfected cells (P=0.009and P=0.014, respectively). Cyclin D1mRNA was reduced in pIL18-transfected cellscompared with untransfected cells (P=0.024). Transfection with pIL18did notinduce any change in the level of cyclin A1mRNA.
     Conclusion
     1Over-expression of an exogenous IL18gene directly inhibited thegrowth of, and induced apoptosis in the human tongue squamous cell carcin-oma cell line CRL1623;
     2The induction of apoptosis might occurr via a caspase-dependentpathway;
     3IL-18stimulates Th1-mediated immune responses, which play a criticalrole in host defence against intracellular microbes through the induction ofIFN-γ;
     4IL-18signal transduction may result in interference with the regulation of the cyclin proteins and/or the replication of chromosome during S phase,leading to a slow proliferative rate。
     These findings suggest that IL-18plays a role in the regulation of tonguesquamous cell carcinoma and may represent a potential therapeutic target inthis cancer.
引文
[1] Perez-Diez A, Marincola FM. Immunotherapy against antigenic tumors: agame with a lot of players. Cell Mol Life Sci2002;59:230-40.
    [2] Renno T, Lebecque S, Renard N, Saeland S, Vicari A. What’s new in thefield of cancer vaccines? Cell Mol Life Sci2003;60:1296-310.
    [3] Finn OJ. Cancer vaccines: between the idea and the reality. Nat RevImmunol2003;3:630-41。
    [4] Hu YC, Lam KY, Law S, Wong J, Srivastava G. Identification ofdifferentially expressed genes in esophageal squamous cell carcinoma(ESCC) by cDNA expression array: overexpression of Fra-1, Neogenin, Id1,and CDC25B genes in ESCC. Clin Cancer Res.2001;7:2213–21.
    [5] Roy D, Calaf G, Hei TK. Profiling of differentially expressed genes inducedby high linear energy transfer radiation in breast epithelial cells. MolCarcinog2001;31:192–203.
    [6] Zajchowski DA, Bartholdi MF, Gong Y, et al. Identification of geneexpression profiles that predict the aggressive behavior of breast cancercells. Cancer Res2001;61:5168-78.
    [7] Luo Y, Zhou H, Mizutani M, et al. Transcription factor Fos-related antigen1is an effective target for a breast cancer vaccine. Proc Natl Acad Sci U SA.2003;100:8850-5.
    [8] Lefrancois L, Masopust D. T cell immunity in lymphoid and non-lymphoidtissues. Curr Opin Immunol.2002;14:503-8.
    [9] Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization ofeffector memory cells in nonlymphoid tissue. Science2001;291:2413-7.
    [10] Okamura H, Tsutsui H, Komatsu T,et al. Cloning of a new cytokine thatinduces IFN-gamma production by T cells. Nature1995;378(6552):88-91.
    [11] Ghayur T, Banerjee S, Hugunin M, et al.Caspase-1processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production.Nature.1997;386(6625):619–23.
    [12] Sims JE. IL-1and IL-18receptors, and their extended family. CurrentOpinion in Immunology.2002;14(1):117-22.
    [13] Kalina U, Kauschat D, Koyama N, et al. IL-18activates STAT3in thenatural killer cell line92, augments cytotoxic activity, and mediatesIFN-gamma production by the stress kinase p38and by the extracellularregulated kinases p44erk-1and p42erk-21. Journal of Immunology.2000;165(3):1307-13.
    [14] Kito T, Kuroda E, Yokota A, et al. Cytotoxicity in glioma cells due tointerleukin-12and interleukin-18-stimulated macrophages mediated byinterferon-gamma-regulated nitric oxide. J Neurosurg.2003;98(2):385-92.
    [15] Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-g: an overview ofsignals, mechanisms, and functions. J Leukoc Biol.2004;75:163-89.
    [16] Rosenzweig SD, Holland SM. Defects in the interferong and interleukin12pathways. Immunol Rev.2005;203:38-47.
    [17] Blankenstein T, Qin Z. The role of IFN-g in tumor transplantationimmunity and nhibition of chemical carcinogenesis. Curr Opin Immunol.2003;15:148-54.
    [18] Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O’Keeffe M.Differential production of IL-12, IFN-a, and IFN-g by mouse dendritic cellsubsets. J Immunol.2001;166:5448–55.
    [19] Ikeda H, Old LJ, Schreiber RD. The roles of IFN g in protection againsttumor development and cancer immunoediting. Cytokine Growth FactorRev.2002;13:95–109.
    [20] Kohno K, Kataoka J, Ohtsuki T, et al. IFN-r-inducing factor(IGIF) is acostimulatory factor on the activation of Th1but not Th2cells and exertsits effect independently of IL-12[J]. J.Immunology.1997;158:1541.
    [21] Bail, Feuerer M, Beckhove P, et al. Generation of dendritic cells fromhuman bone marrow mononuclear cells; advantages for clinical applica-tion in comparision to peripheral blood monocyte deprived cells[J]. J intoOncol.2002;20(2):247-53.
    [22] Pillarisetty VG, Katz SC, Bleier JI, et al. Natural killer dendritic cells haveboth antigen presenting and lytic function and in response to CpG produceIFN-g via autocrine IL-12. J Immunol.2005;174:2612–8.
    [23] Chaudhry UI, Katz SC, Kingham TP, et al. In vivo overexpression of Flt3ligand expands and activates murine spleen natural killer dendritic cells.FASEB J2006;20:982–4.
    [24] Iwasaki T, Yamashita K, Tsujimura T, et al. Interleukin-18inhibitsosteolytic bone metastasis by human lung cancer cells possibly throughsuppression of osteoclastic bone-resorption in nude mice. J Immunother.2002;25Suppl1: S52-60.
    [25] Kawase Y, Hoshino T, Yokota K, et al. Bone malformations ininterleukin-18transgenic mice. J Bone Miner Res.2003;18:975-83.
    [26] Makiishi-Shimobayashi C, Tsujimura T, Iwasaki T, et al. Interleukin-18up-regulates osteoprotegerin expression in stromal/osteoblastic cells.Biochem Biophys Res Commun.2001;281:361-6.
    [27] Trinchieri G. Interleukin-12and the regulation of innate resistance andadaptive immunity. Nat Rev Iimunol.2003;3:133-46.
    [28] Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptiveimmunity. Curr Top Microbiol Immunol.2006;311:17-58.
    [29] Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol.2003;21:335–76.
    [30] Kodama K, Higashiyama T, Takami S, Imaoka S. BCG-CWS immune-otherapy: a five year survival report. Jpn J Clin Oncol.2007;(in press).
    [31] Scarim AL, Arnush M, Blair LA,et al. Mechanisms of beta-cell death inresponse to double-stranded (ds) RNA and interferon-gamma: dsRNAde-pendent protein kinase apoptosis and nitric oxide-dependent necrosis. AmJ Pathol.2001;159:273–83.
    [32] Lissoni P, Brivio F, Rovelli F, et al. Serum concentration of interleukin-18in early and advanced cancer patients: enhanced secretion in metastaticdisease [J]. J.Biol Regul Homeost Agents.2000;14(4):275-7.
    [33] Jablonska E, Puzewska W, Grabowska Z, et al. VEGF, IL-18and NOproduction by neutrophils and their serum levels in patients with oralcavity cancer. Cytokine.2005;30(3):93-9.
    [34]刘炜炜,张茹慧,韩艳非。IL-18在口腔鳞状细胞癌中的表达。实用口腔医学杂志。2008;24(1);107-10。
    [35] Gunel N, Coskun V, Sancak B, et al. Clinical importance of seruminterleukin-18and nitric oxide activities in breast carcinoma patients.Cancer.2002;95(3):663-7.
    [36] Kawabata T, Lehikura T, Mahima T, et al. Preopratative serum IL-18levelas a postoperative prognostic marker in patients with gastric carcinoma.Cancer.2001;92(8):2050-5.
    [37] Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol2003;73(2):213-24.
    [38] Jablonska E, Piecuch J, Piotrowski L, et al. GM-CSF in the culturesupernatants of neutrophils and serum levels in patients with inflammationand squamous cell carcinoma of oral cavity. Pol Merkur Lekarski.2001;11(65):394-7.
    [39] Martone T, Bellone G,Pagano M,et al. Constitutive expression ofinterleukin-18in head and neck squamous carcinoma cells. Head neck.2004;26(6):494-503.
    [40] Tsuboi K, Miyazaki T, Nakajima M, et al. Serum interleukin-12andinterleukin-18levels as a tumor marker in patients with esophagealcarcinoma. Cancer Letters.2004;205(2):207-14.
    [41] Kishida T, Asada H, Satoh E, et al. In vivo electroporation-mediatedtransfer of interleukin-12and interleukin-18genes induces significantantitumor efects against melanoma in mice. Gene Ther2001;8(16):1234-40.
    [42] Agarwal A, Rani M, Saha GK, et al. Disregulated expression of the Th2cytokine gene in patients with intraoral squamous cell carcinoma.Immunological Investigations.2003;32(1-2):17-30.
    [43] Moore MB, Kurago ZB, Fullenkamp CA, Lutz CT. Squamous cellcarcinoma cells differentially stimulate NK cell effector functions: the roleof IL-18. Cancer Immunology, Immunotherapy.2003;52(2):107-15.
    [44] Okamoto M, Ohe G, Furuichi S, et al. Enhancement of antitumorimmunity by lipoteichoic acid-related molecule isolated from OK-432, astreptococcal agent, in athymic nude mice bearing human salivaryadenocarcinoma: role of natural killer cells. Anticancer Research.2002;22(6A):3229–39.
    [45] Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18regulates both Th1and Th2responses. Annual Review of Immunology.2001;19:423–74.
    [46] Kitasato Y, Hoshino T, Okamoto M, et al. Enhanced expression ofinterleukin-18and its receptor in idiopathic pulmonary fibrosis. Am JRespir Cell Mol Biol.2004;31:619-625.
    [47] Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and newmember of the IL-1family. J Allergy Clin Immunol.1999;103:11-24.
    [48] Kanai T, Watanabe M, Okazawa A, et al. Interleukin18is a potentproliferative actor for intestinal mucosal lymphocytes in Crohn’s disease.Gastroenterology.2000;119:1514-23,.
    [49] Okamoto M, Kato S, Oizumi K, et al. Interleukin18(IL-18) in synergywith IL-2induces lethal lung injury in mice: a potential role for cytokines,chemokines, and natural killer cells in the pathogenesis of interstitialpneumonia. Blood.2002;99:1289-98.
    [50] Kawase Y, Hoshino T, Yokota K, et al. Exacerbated and prolongedallergic and non-allergic inflammatory cutaneous reaction in mice withtargeted interleukin-18expression in the skin. J Invest Dermatol.2003;121:502-9.
    [51] Hoshino T, Kato S, Oka N, et al. Pulmonary inflammation andemphysema: Role of the cytokines IL-18and IL-13. Am J Respir CritCare Med.2007;176:49-62.
    [52] Imaoka H, Hoshino T, Takei S, et al. Interleukin-18production andpulmonary function in COPD. Eur Respir J.2008;31:287-97.
    [53] Wigginton JM, Lee J-K, Wiltrout TA, et al. Syngergistic enhancement ofineffective endogenous antitumor immune response and induction ofIFN-g and Fasligand dependent tumor eradication by combined admin-istration administration of IL-18and IL-2. J Immunol.2002;169:4467-74.
    [54] Zheng JN, Pei DS, Sun FH, et al. Potent antitumor efficacy of interleukin-18delivered by conditionally replicative adenovirus vector in renal cellcarcinoma-bearing nude mice via inhibition of angiogenesis[j]. CancerBiol Ther.2009;8(7):599-606.
    [55] Chang CY, Lee J, Kim EY, et al. Intratumoral delivery of IL-18nakedDNA induces T-cell activation and Th1response in a mouse hepaticcancer model. BMC Cancer.2007;7:87.
    [56] Tasaki K, Yoshida Y, Maeda T, et al. Protective immunity is induced inmurine colon carcinoma cells by the expression of interleukin-12orinterleukin-18, which activate type1helper T-cells. Cancer Gene Ther.2000;7:247-54.
    [57] Heise C, Kirn DH. Replication-selective adenoviruses as oncolytic agents.J Clin Invest.2000;105:847-51.
    [58] Donnelly J, Berry K, Ulmer JB. Technical and regulatory hurdles for DNAvaccine[J]. Int J Parasitol.2003;33(5-6):457-67.
    [59] Kawase A, Nomura T, Yasuda K, et al. Disposition and gene expressioncharacteristics in solid tumors and skeletal muscle after direct injection ofnaked plasmid DNA in mice[J].J Pharm Sci.2003;92(6):1295-1304.
    [60] Sutherland RM, Mckenzie BS, Corbett AJ, et al. Overcoming the poorimmunogenicity of a protein by DNA immunization as a fusion construct[J]. Immunol Cell Biol.2001;79(1):49-53.
    [61] Hara I, Naqai H, Miyake H, et al. Effectiveness of cancer vaccine therapyusing cells transduced with the interleukin-12gene combined with syste-mic interleukin-18administration. Cancer Gene Ther.2000;7(1):83-90.
    [62] Shiratori I, Suzuki Y, Oshiumi H, et al. Recombinant interleukin-12andnterleukin-18antitumor therapy in a guinea-pig hepatoma cell implantmodel[j]. Cancer Sci.2007;98(12):1936-42.
    [63] Robertson MJ, Mier JW, Loqan T,et al. Clinical and Biological Effects ofRecombinant Human Interleukin-18Administered by IntravenousInfusion to Patients with Advanced Cancer[J].Clin Cancer Res.2006;12(14Pt1):4265-73.
    [64] Robertson MJ, Kirkwood JM, Logan, et al. A Dose-Escalation Study ofRecombinant Human Interleukin18Using Two Different Schedules ofAdministration in Patients with Cancer[J].Clin Cancer Res.2008;14(11):3462-9.
    [65] Heuer JG, Tucker-McClung C, Hock RA. Neuroblastoma cells expressingmature IL-18, but not pro-IL-18, induce a strong and immediate antitumorimmune response[j]. J Immunother.1999;22(4):324-35.
    [66] Nagai H, Hara L, Horikawa T, et al. Gene Transfer of Secreted-TypeModified Interleukin-18Gene to B16F10Melanoma Cells Suppresses InVivo Tumor Growth through Inhibition of Tumor Vessel Formation[J]. Jinvest Dermatol.2002;119(3):541-8.
    [67] Yoshimura K, Hazama S, Lizuka N, et al. Successful immunogene therapyusing colon cancer cells(colon26) transfected with plasmid vectorcontaining mature interleukin-18cDNA and the Igκ leader sequence[J].Cancer Gene Ther.2001;8(1):9-16.
    [68] Osaki T, Hashimoto W, Gambotto A, et al. Potent antitumor effectsmediated by local expression of the mature form of the interferon-Υinducing, factor, interleukin-18(IL-18). Gene Ther.1999;6:808-15.
    [69] Tang ZH, Qiu WH, Wu GS, et al. The immunotherapeutic effect ofdendritic cells vaccine modified with interleukin-18gene and tumor celllysate on mice with pancreatic carcinoma [J]. World J Gastroenterol.2002;8(5):908-12.
    [70] Sink J, Kademani D. Maxillofacial oncology at the University ofMinnesota: treating the epidemic of oral cancer. Northwest Dent.2011;90(3):13–6.
    [71] Heath S, Willis V, Allan K, et al. Clinically significant human papillomavirus in squamous cell carcinoma of the head and neck in UK practice.Clin Oncol (R Coll Radiol).2012;24(1) e18-23.
    [72] Keereweer S, Mol lM, Kerrebijn JD, et al. Targeting integrins andenhanced permeability and retention (EPR) effect for optical imaging oforal cancer. J Surg Oncol.2011; doi:10.1002/jso.22102.[epub ahead ofprint].
    [73] Gu Y, Fan S, Liu B, et al. TCRP1promotes radioresistance of oralsquamous cell carcinoma cells via Akt signal pathway. Mol Cell Biochem.2011;357(1-2):107-13.
    [74] Ip SW, Wu SY, Yu CC, et al. Induction of apoptotic death by curcumin inhuman tongue squamous cell carcinoma SCC-4cells is mediated throughendoplasmic reticulum stress and mitochondria-dependent pathways. CellBiochem Funct.2011;29(8):641-50.
    [75] Okamoto M, Azuma K, Hoshino T, et al. Correlation of DecreasedSurvival and IL-18in Bone Metastasis. Inter Med.2009;48(10);763-73.
    [76] Nilkaeo A, Bhuvanath S. Role of Interleukin-18in modulation of oralcarcinoma cell proliferation.Mediators inflamm.2006;2006(3):67120.
    [77] Carroll RG, Carpenito C, Shan X, et al. Distinct effects of IL-18on theengraftment and function of human effector CD8T cells and regulatory Tcells. PLoS One.2008;3(9):e3289.
    [78] Zhang B, Wu KF, Cao ZY, et al. IL-18increases invasiveness of HL-60myeloid leukemia cells: upregulation of matrix metalloproteinases-9(MMP-9) expression. Leuk Res.2004;28:91-95.
    [79] Palmieri RT, Wilson MA, Iversen ES, et al. Polymorphism in the IL18gene and epithelial ovarian cancer in non-Hispanic white women. CancerEpidemiol Biomarkers Prev.2008;17:3567-72.
    [80] Le Page C, Ouellet V, Madore J, et al. From gene profiling to diagnosticmarkers: IL-18and FGF-2complement CA125as serum-based markers inepithelial ovarian cancer. Int J Cancer.2006;118:1750-8.
    [81] Coughlin CM, Salhany KE, Wysocka M, et al. Interleukin-12andinterleukin-18synergistically induce murine tumor regression whichinvolves inhibition of angiogenesis. J Clin Invest.1998;101:1441-52.
    [82]刘炜炜,张茹慧。口腔鳞状细胞癌血清中IL-18的检测及其病理、临床意义[J]。现代口腔医学杂志。2007,21(2);116-8。
    [83] Gaitan-Cepeda LA, Peniche-Becerra AG, Quezada-Rivera D. Trends infrequency and prevalence of oral cancer and oral squamous cell carcinomain Mexicans. A20years retrospective study. Med Oral Patol Oral CirBucal.2011;16(1): e1-5.
    [84] Chen SF, Chen HY, Liu XB, et al. Apoptotic effect of MG-132on humantongue squamous cell carcinoma. Biomed Pharmacother.2011;65(5):322-7.
    [85] Li J, Huang H, Sun L, et al. MiR-21indicates poor prognosis in tonguesquamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res.2009;15(12):3998-4008.
    [86] Cho D, Song H, Kim YM, et al. Endogenous Interleukin-18ModulatesImmune Escape of Murine Melanoma Cells by Regulating the Expressionof Fas Ligand and Reactive Oxygen Intermediates. Cancer Res.2000;60(10):2703-9.
    [87] HashimotoW, OsakiT, Okamura H, et al. Differential antitumor effects ofadministration of recombinantIL-18or recombinant IL-12are mediatedprimarily by Fas-Fas ligand and perforin-induced tumor apoptosis,respectively. J Immunol1999;163:583-9.
    [88] Takahashi HK, Weitz-Schmidt G, Iwaqaki H, et al. Hypothesis: theantitumor activities of statins may be mediated by IL-18.J leukoc Biol.2006;80(2):215-6.
    [89] Poynter JN, Gruber SB, Higgins PD, et al. Statins and the risk ofcolorectal cancer. N Engl J Med.2005;352(21):2184-92.
    [90] Yanae M, Tsubaki M, Satou T, et al. Statin-induced apoptosis via thesupperss-ion of ERK1/2and Akt activation by inhibition of thegeranylgeranyl-pyroph-osphate biosynthesis in glioblastoma. J Exp ClinCancer Res.2011;30:74.
    [91] Papadopoulos G, Delakas D, Nakopoulou L,et al. Statins and prostatecancer: molecular and clinical aspects. Eur J Cancer.2011;47(6):819-30.
    [92] Notarnicola M, Altomare DF, Correale M, et al. Serum lipid profile incolorectal cancer patients with and without synchronous distant metastases.Oncology.2005;68:371-4.
    [93] Takahashi HK, Mori S, Iwagaki H, et al. Differential effect of LFA703pravastatin and fluvastatin on production of IL-18and expression ofICAM-1and CD40in human monocytes. J Leukoc Biol.2005;77:400-7.
    [94] Takahashi HK, Mori S, Iwagaki H, et al. Simvastatin induces interle-ukin18production in human peripheral blood mononuclear cells. Clin.Immunol.2005;116:211-6.
    [95] Cho ML, Jung YO, Moon YM, et al. Interleukin-18induces theproduction of vascular endothelial growth factor (VEGF) in rheumatoidarthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett.2006;103:159-66.
    [96] Carbone A, Rodeck U, Mauri FA, et al. Human pancreatic carcinoma cellssecrete bioactive Interleukin-18after treatment with5-fluorouracil:implications for anti-tumor immune response. Cancer Biology and Thera-py.2005;4(2):231-41.
    [97] Wang J, Kobayashi Y, Sato A, et al. Synergistic antitumor effect bycombinatorial gene-gun therapyusing IL-23and IL-18cDNA. Journal ofDermatological Science.2004;36(1):66-8.
    [98] Hegardt P, Widegren B, Li L, et al. Nitric oxide synthase inhibitor andIL-18enhance the anti-tumor immune response of rats carrying anintrahepatic colon carcinoma. Cancer Immunology, Immunotherapy.2001;50(9):491–501.
    [99] Zhang B, Ma XT, Zheng GG, et al. Expression of IL-18and its receptor inhuman leukemia cells. Leukemia Research.2003;27(9):813-22.
    [100]Guegan C, Vila M, Teissman P, et al. Instrumentalactivation of bid bycaspase-1in a transgenic mouse model of ALS. Mol Cell Neurosci.2002;20(4):553-62
    [101] Menon R, Lombardi SJ, Fortunato SJ. IL-18, a product of choriodecidualcells, increases during premature rupture of membranes but fails to turnon the Fas-FasL-mediated apoptosis pathway. Journal of AssistedReproduction and Genetics.2001;18(5):276–84.
    [102] Smith DE: The biological paths of IL-1family members IL-18andIL-33. J Leukoc Biol2011;89:383-92.
    [103] Alaqkiozidis I, Facciabene A, Carpenito C, et al. Increased immune-ogenicity of surviving tumor cells enables cooperation betweenliposomal doxorubicin and IL-18. J Transl Med.2009;7:104.
    [104] Loeffler M, LeNeqrate G, Krajewska M, et al. IL-18-producing Salmo-nella inhibit tumor growth. Cancer Gene Ther.2008;15(12):787-94.
    [105] Schoenborn JR, Wilson CB. Regulation of interferon-gamma duringinnate and adaptive immune responses. Adv Immunol.2007;96:41-101.
    [106] Lange F, Rateitschak K, Fitzner B, et al. Studies on mechanisms ofinterferon-gamma action in pancreatic cancer using a data-driven andmodel-based approach. Mol Cancer.2011;10:13.
    [107] Chaudhry UI, Kingham TP, Plitas G, et al.Combined Stimulation withInterleukin-18and CpG Induces Murine Natural Killer Dendritic Cells toProduce IFN-g and Inhibit Tumor Growth. Cancer Res.2006;66(21):10479-504.
    [108] Steinman RM, Hemmi H. Dendritic cells translating innate to adaptiveimmunity. Curr Top Microbiol Immunol.2006;311:17–58.
    [109] Scarim AL, Arnush M, Blair LA, et al. Mechanisms of beta-cell death inresponse to double-stranded (ds) RNA and interferon-gamma: dsRNAde-pendent protein kinase apoptosis and nitric oxide-dependent necrosis.Am J Pathol.2001;159:273-83.
    [110] Fu M, Wang C, Li Z, et al. Minireview: cyclin D1: normal and abnormalfunctions. Endocrinology2004;145:5439-47.
    [111] Diehl JA. Cycling to cancer with cyclin D1. Cancer Biol Ther.2002;1:226–31.
    [112] Paulukat J, Bosmann M, Nold M, et al. Expression and release of IL-18binding protein in response to IFN-g. J Immunol.2001;167:7038-43.
    [113] d'Erfurth I, Cromer L, Jolivet S, et al. The cyclin-A CYCA1;2/TAM isrequired for the meiosis I to meiosis II transition and cooperates withOSD1for the prophase to first meiotic division transition. PLoS Genet2010;6: e1000989.
    [1] Okamura H, Tsutsui H, Komatsu T, et al. Cloning of a new cytokine thatinduces IFN-gamma production by T cells. Nature1995;378(6552):88–91.
    [2] Bazan JF, Timans JC, Kastelein RA. A newly defined interleukin-1? Nature1996;379(6566):591.
    [3] Ghayur T, Banerjee S, Hugunin M, et al.Caspase-1processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production.Nature1997;386(6625):619–23.
    [4] Kohno K, Kataoka J, Ohtsuki T, et al. IFN-r-inducing factor(IGIF) is acostimulatory factor on the activation of Th1but not Th2cells and exerts itseffect independently of IL-12[J].J.Immunology,1997,158:1541.
    [5].Robinson D, Shibuya K, Mui A, et al. IGIF does not drive Th1developmentbut synergizes with IL-12for interferon-r production and activates IRAKand NF-κΒ[J]. Immunity,1997,7:571.
    [6] Tsutsui H, Nakanishi K, Matsui K, et al.IFN-r-inducing factor upregulatesFas ligand-mediated cytotoxic activity of murine nature killer cell clones[J].J Immunology.1996;157:3967.
    [7] Tomura M, Zhou XY, Maruo S, et al.A critical role for IL-18in theproliferation and activation of NK1.1+CD32cells [J].J Immunol,1998,160(10):4738-4746.
    [8] Takeda K,Tsutsui H,Yoshimoto T,et al.Defective NK cell activity and Th1response in IL-18-deficient mice[J]. Immunity.1998;8:383.
    [9] Hyodo Y, Matsui K, Hayashi N, et al. IL-18upregulates perforin-mediatedNK activity without increasing perforin messenger RNA expression bybinding to constitutively expressed IL-18receptor [J]. J Immunol,1999,162:1662.
    [10] Takahashi HK,Iwagaki H,Hamano R,et al.Effects of adenosine onadhesion molecule expression and cytokine production in human PBMCdepend on the receptor subtype activated.Br J Pharmacol,2007,150(6):816-22.
    [11] Kitaura H,TatamiyaM,Nagata N,et al.IL-18induces apoptosis of adherentbone marrow cells in TNF-alpha mediated osteoclast formation in synergywith IL-12.Immunol Lett,2006,107(1):22-31.
    [12].Lauwery BR, Renauld JC, Houssiau FA.Synergistic proliferation andactivation of natural killer cellsby interleukin12and interleukin18. JCytokine,1999,11(11):822-830.
    [13] Tanaka F, Hashimoto W, Okamura H,et al. Rapid generation of potent andtumor-specific cytotoxic T lymphocytes by interleukin18using dendriticcells and natural killer cells. Cancer Res2000;60(17):4838-44.
    [14] Boehm T, Folkman J, Browder T,et al. Antiangiogenic therapy ofexperimental cancer does not induce aquired drug resistance. Nature1997;390(6658):404–7.
    [15] Kim JB, Li B, Winer J,et al. Inhibition of vascular endothelial growthfactor-induced angiogenesis suppresses tumor growth in vivo. Nature1993;362(6423):841–4.
    [16] Brooks PC,Montgomery AM,Rosenfeld M,et al.Integrin alpha v beta3antagonists promote tumor regression by inducing apoptosis of angiogenicblood vessels.Cell1994;79(7):1157–64.
    [17] Millauer B, Shawver LK, Plate KH, et al. Glioblastoma growth inhibitedin vitro by a dominant-negative Flk-1mutant. Nature1994;367(6463):576–9.
    [18] Kandel J,Bossy-Wetzel E,Radvanyi F,et al.Neovascularization is asso-ciated with a switch to the export of bFGF in the mutistep develop-pmentof fibrosarcoma.Cell1991;66(6):1095–104.
    [19] O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: A novelangiogenesis inhibitor that mediates the suppression of metastases by aLewis lung carcinoma. Cell1994;79(2):315–28.
    [20] O’Reilly MS, Holmgren L, Chen C, et al. Angiostatin induces and sustainsdormancy of human primary tumors in mice. Nat Med1996;2(6):689–92.
    [21] O’Reilly MS, Boehm T, Shing Y, et al. Endostatin:an endogenousinhibitor of angiogenesis and tumor growth.Cell1997;88(2):277–85.
    [22] Cao,Y. Endogenous angiogenesis inhibitors:angiostatin, endostatin, andother proteolytic fragments. Prog Mol Subcell Biol1998;20:161-76.
    [23] Strieter RM, Polverini PJ, Arenberg DA, et al. The role of CXCchemokines as regulators of angiogenesis. Shock1995;4(3):155–60.
    [24] Coughlin CM,Salhany KE,Wysocka M,et al.Interleukin-12and interle-ukin18synergistically induce murine tumor regression which involvesinhibition of angiogenesis. J Clin Invest1998;101(6):1441–52.
    [25] Pages F,Berger A,Henglein B, et al. Modulation of interleukin-18expression in human colon carcinoma:consequences for tumor immunesurveillance. Int J Cancer1999;84(3):326–30.
    [26] Hashimoto W, Osaki T, Okamura H,et al. Differential antitumor effects ofadministration of recombinant IL-18or recombinant IL-12are mediatedprimarily by Fas-Fas ligand-and perforin-induced tumor apoptosis,respectively. J Immunol1999;163(2):583-9.
    [27] Kishida T,Asada H,Satoh E,et al.In vivo electroporation-mediated transferof interleukin-12and interleukin-18genes induces significant antitumorefects against melanoma in mice. Gene Ther2001;8(16):1234-40.
    [28] Lissoni P,Brivio F,Rovelli F,et al.Serum concentration of interl eukin-18in early and advanced cancer patients: enhanced secretion in metastaticdisease [J].J.Biol Regul Homeost Agents,2000,14(4):275-277.
    [29]刘炜炜,张茹慧,韩艳非。IL-18在口腔鳞状细胞癌中的表达。实用口腔医学杂志。2008,(01)。
    [30] Gunel N, Coskun V, Sancak B, et al. Clinical importance of seruminterleukin-18and nitric oxide activities in breast carcinoma patients.Cancer2002;95(3):663-7.
    [31] Yoshimura K,Hazama S,Lizuka N,et al.Successful immunogene therapyusing colon cancer cells(colon26)transfected with plasmid vector conta-ining mature interleukin-18cDNA and the Igkappa leader sequence [J].Cancer Gene Ther,2001,8(1):9-16.
    [32] Son YI, Dallal RM, Mailliard RB, et al. Interleukin-18(IL-18) synergizeswith IL-2to enhance cytotoxicity interferon-gamma production,andexpansion of natural killer cells[J].Cancer Res,2001,61(3):884-888.
    [33] Ju DW,Yang Y,Tao Q, et al.Interleukin-18gene transfer increasesantitumor effects of suicide gene therapy through efficient induction ofantitumor immunity[J].Gene Ther,2000,7(19):1672-1679.
    [34] Hegardt P,Widegren B,Li L,et al.Nitric oxide synthase inhibitor and IL-18enhance the anti-tumor immune response of rats carrying an intrahepaticcolon carcinoma[J].Cancer Immunol Immunother,2001,50(9):491-501.
    [35] Okamoto M,Kato S,Oizumi K,et al.Interleukin-18(IL-18) in synergywith IL-12induces lethal lung injury in mice:apotential role forcytokines,chemokines,and natural killer cells in the pathogenesis ofinterstitial pneumonia[J].Blood,2002,99(4):1289-1298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700