用户名: 密码: 验证码:
亚稳态中间体的研究:基于α-芳基酮醛的原位捕获构建多样化杂环的新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚稳态中间体是一类很重要的分子结构体,其拥有反应活性高、易于转化为多样化的新颖结构、以及储存困难等特点,我们设想以原位捕获亚稳态中间体作为反应设计的基点,利用它极容易产生新型的分子骨架和新颖的成键方式的特性,作为开拓新型反应的重要途经和设计策略。通过理性的逻辑设计,将多样化的基元反应有效的集成于一锅中,以串联反应作为媒介,对亚稳态中间体进行原位捕获,构建全面关联的有机分子网络,实现了微观分子的自序化合成,构建了2-酰基苯并噻唑、双吲哚桥联、二芳基甲烷衍生物、咪唑[1,2-a]并吡啶、2-氨基噻唑、α-甲/乙酰氧基芳甲酮、2-烯-1,4-二酮、茚酮骨架、p-咔啉、2-芳酰基喹唑啉等重要结构体。并利用原位捕获亚稳态中间体的策略,完成了天然产物eudistomin Y1-Y6, pityiacitrin以及luotonin F的首次一锅自序化全合成。该策略对一锅合成其他天然产物具有一定的借鉴意义。
     下面主要介绍我们在研究原位捕获亚稳态中间体α-芳基酮醛方面的工作:
     第一章,首先概述了近年来主要亚稳态中间体的相关进展,然后综述了亚稳态中间体α-芳基酮醛的合成方法及在有机合成中的应用进展,最后,提出了本论文的立题思想。
     第二章,近年来,过渡金属催化的C-H键活化及直接官能化得到了飞速地发展,然而,仍然需要进一步发展多样化的方法直接官能化C-H键。我们在研究芳甲基酮与邻氨基苯硫酚的反应中,发现分子碘能促使芳甲基酮sp3C-H键与邻氨基苯硫酚直接偶联生成2-芳酰基苯并噻唑,经过条件优化,发现反应以高达86%的收率得到2-苯甲酰基苯并噻唑。随后,我们仔细地研究了底物的适用范围(不同取代基的芳乙酮、杂芳乙酮、萘乙酮),并成功将芳甲基酮的范围扩展到a,p-不饱和甲基酮。最后,利用在线核磁跟踪和动力学实验有效的观察到反应过程经历的各种中间体。结果表明反应经历了α-碘代芳乙酮和α-芳基酮醛中间体,实现了将碘代、Kornblum氧化、杂环化等多个基元反应自序化集成于一锅中。
     第三章,利用多路径偶合串联反应策略,以多样化的底物芳乙烯、芳乙炔、α-羟基芳乙酮和甲原醇(1-芳基乙醇)出发,经历不同的路径生成共同的亚稳态中间体α-芳基酮醛,随后与2-氨基苯硫酚缩合生成2-芳酰基苯并噻唑。通过合理的投料方式,将多个基元反应偶合在一个反应器中。反应对底物芳乙烯、芳乙炔、α-羟基芳乙酮和甲原醇具有很好的广谱性,各种电中性、富电子、缺电子以及杂芳环底物都能很好的适用于该反应。
     第四章,吲哚作为一种优势结构受到了人们广泛的关注,双吲哚及多吲哚骨架作为“明星分子”更是人们追捧的对象。我们以芳甲基酮和吲哚及衍生物为原料,实现了分子碘促进的sp3C-H键直接双杂芳基化,合成双吲哚骨架及含杂环的双吲哚骨架。相比传统的金属催化C-H官能化,该方法不需要使用金属、碱和配体即可实现sp3C-H和sp2C-H的偶联。
     第五章,在第四章的基础上,进一步发展了碘-三氟甲烷磺酸协同促进的芳甲基酮sp3C-H键双芳基化,以芳甲基酮和N,N-二烷基苯胺等富电子芳环为底物,合成了二-(N,N-二烷基苯胺)-取代甲烷衍生物。通过在线核磁监控及控制实验证明了反应机理,揭示出反应经历了碘代、Kornblum氧化、两次傅克烷基化过程。
     第六章,发展了一种可调控的选择性合成2-芳基咪唑[1,2-a]并吡啶和2-芳基-3-(2-吡啶氨基)-咪唑[1,2-a]并吡啶。以相同的底物芳甲基酮和2-氨基吡啶山发,通过控制条件使反应经历不同的亚稳态中间体。当反应在MeOH中进行时,原位生成α-碘代芳乙酮,随后被2-氨基毗啶捕获,合成2-芳基咪唑[1,2-a]并毗啶:当反应在DMSO中进行时,首先原位生成亚稳态中间体α-芳基酮醛,随后两分子2-氨基吡啶捕获α-芳基酮醛,生成2-芳基-3-(2-吡啶氨基)-咪唑[1,2-a]并吡啶。实现了基于相同底物出发,通过路径的调控原位生成不同的亚稳态中间体,选择性合成不同的咪唑[1,2-a]并吡啶骨架。
     第七章,在第六章的基础上,我们以芳甲基酮和硫脲出发,在碘和氧化铜的促进下,原位生成亚稳态中间体α-碘代芳乙酮,随后,原位生成的α-碘代芳乙酮被硫脲捕获,生成2-氨基噻唑。接下来,我们进一步研究了底物的适用范围,发现α,β-不饱和甲基酮、1,3-二酮、p-酮酸酯和N-取代硫脲都能很好的适用于该反应。当使用α,β-不饱和甲基酮为底物时,反应能专一性的生成烯键为E-式的产物。
     第八章,发展了一种可持续的副产物催化的串联反应策略,实现了串联反应中上游Domino反应的副产物作为催化剂,可持续地催化下游的Domino反应。同时,溶剂作为底物参与了反应,大大提高了整个反应的原子经济性。以芳甲基酮或α,p-不饱和甲基酮为原料,首先,在碘和氧化铜的作用下,原位产生α-碘代芳乙酮,同时,碘和氧化铜转化为副产物碘化亚铜(CuI),随后,碘化亚铜(CuI)又催化了原位生成的α-碘代芳乙酮与溶剂N,N-二甲基甲酰胺(DMF)/N,N-二甲基乙酰胺(DMA)的亲核取代以及水解反应,生成α-甲/乙酰氧基芳甲酮。
     第九章,受到多样性导向合成和多路径合成策略的启示,我们发展了一种多样性底物聚焦导向的合成策略。以多样化的底物α-碘代芳乙酮、α-溴代芳乙酮、α-氯代芳乙酮、α-羟基芳乙酮和α-芳基乙醇为原料山发,各自经历不同的反应路径聚焦导向生成共同的中间体α-芳基酮醛,随后,α-芳基酮醛在碘化亚铜的催化下与1,3-二酮或p-酮酸酯发生偶联,合成2-烯-1,4-二酮。通过核磁监测、控制实验以及中间体单晶结构等证实了反应可能经历了Cu(Ⅰ)/Cu(Ⅱ)的催化过程。随后,以Cu(Ⅱ)配合物作为底物详细研究了反应底物的适用范围。最后,通过大量的筛选,发现将多样化的底物α-碘代芳乙酮、α-溴代芳乙酮、α-氯代芳乙酮、α-羟基芳乙酮、α-芳基乙醇和1,3-二酮及催化剂放在一锅中执行,反应能够以很好的收率生成目标产物,进一步证明多样性底物聚焦导向合成是可行的。
     第十章,以第九章中合成的2-烯-1,4-二酮为原料,实现了三氯化铝促进的2-烯-1,4-二酮发生Nazarov环化反应,合成了具有两个手性中心的2-酯基-3-芳酰基-1-茚酮,反应儿乎能以定量的收率生成目标产物,且产物的dr值高达99:1。我们详细的研究了原料2-烯-1,4-二酮中底物取代基对反应的影响,发现底物中取代基对反应有很明显的影响。同时,我们通过核磁研究了反应的机理,并观察到2-烯-1,4-二酮与三氯化铝在溶液相中有络合作用,随后,利用核磁研究了溶剂的作用,反应只有在硝基乙烷中才能进行。
     第十一章,咔啉是一类重要的杂环骨架,广泛的存在于天然产物和药物分子中,因此,发展简便高效的方法合成咔啉是非常有意义的。本章发展了一种分子碘促进的方法合成α-芳酰基-β-咔啉。以廉价易得的芳甲基酮和色胺及衍生物为原料,直接偶联C-H和N-H键,高收率的合成多样化的α-芳酰基-p-咔啉。当使用色氨酸为底物时,反应能实现C-C键的断裂,同样以高收率生成α-芳酰基-p-咔啉。随后,通过核磁监测和控制实验证实了反应经历α-碘代芳乙酮、α-芳基酮醛和二氢-p-咔啉中间体。最后,我们直接将该方法应用于天然产物eudistomin Y1-Y6和pityiacitrin的一锅合成,可以一锅高收率的合成多样化的目标天然产物。
     第十二章,在本论文发展的合成方法和建立的模型的基础上,将其进一步的升华,并应用于天然产物的自序化全合成中。通过理性的逻辑设计,将碘代反应、Kornblum氧化、缩合、加成、氧化芳构化等多步反应自序化的集成在一锅中执行,首次实现了天然产物luotonin F(骆驼宁生物碱)的一锅全合成。反应以廉价易得的2-乙酰基喹啉和2-氨基苯甲酰胺衍生物为原料,在分子碘的促进下,可以高收率的合成天然产物luotonin F及其衍生物。
     第十三章,对本篇博士论文的工作进行了总结,并对以后的研究进行了展望。
Metastable-state intermediate is one of the most important molecules, which has the characters of high reactivity, storage difficult and easily transforming to diverserse novel structures. Therefore, we paid our attention on the metastable-state intermediate. Because it was easy to construct novel molecular scaffold. Moreover, it also was an important approach to establish new reaction. Through rational logical design, multifundamental reactions were assembled in one-pot. We have constructed diverse heterocycles by capturing the in situ generated metastable-state intermediates, including2-acyl benzothiazoles, bisindoles,2,2-bis(4-(dimethylamino)phenyl)-1-aryl ethanones, imidazo[1,2-a]pyridines,2-aminothiozoles, a-formyloxy/acetoxy ketones,1,4-enediones,1-indanones, β-carbolines, quinazolin-4(3H)-one. We firstly accomplished the total synthesis of natural products eudistomin Y1-Y6, pityiacitrin, and luotonin F through capturing the metastable-state intermediates approach. This efficient strategy could have significance for directing further research into one-pot synthesis of many natural products.
     In this dissertation, we described our works about the metastable-state intermeddiate a-arylglyoxal. At first, we have developed some novel methods for the synthesis of diverse heterocycles by capturing the in situ generated metastable-state intermediate a-arylglyoxal. Furthermore, we have established multipathway coupled domino strategy, focus-oriented domino strategy and sustainable byproduct catalyzed domino strategy. Finally, we have applied the developed methods and strategies to natural products total synthesis. The key discoveries are listed below.
     In chapter1, we first summarized the relevant progress about metastable-state intermediates in recent years, and then overviewed of the major synthetic methods to access intermediate a-arylglyoxal and its application in organic synthesis. Subsequently, we proposed the design idea of this dissertation.
     In chapter2, transition-metal-catalyzed C-H activation and functionalization has drawn considerable interest in recent years. To further develop diverse methods for direct C-H bond functionalization are still both desirable and valuable. During studying the reaction of aromatic ketones with2-aminothiophenols, we found that molecular iodide could promote sp3C-H of aromatic ketones directly coupling with2-aminothiophenols to afford2-acyl benzothiazoles. After several experimental iterations, the desired product2-benzoyl benzothiazole was furnished in86%yield. Subsequently, the scope of the substrates was investigated in detail, different substituted aromatic ketones, hetero aryl ketones and naphthyl methyl ketones all well suitable in the reaction. We further expanded the scope of the substrates to a,p-unsaturated methyl ketones. We also monitored the reaction process and intermediates via on-line NMR and kinetic experiments. The results disclosed that the reaction underwent a-iodo aryl methyl ketones and a-arylglyoxal intermediates, in which multiple fundamental reactions (iodination, Kornblum oxidation and annulation) were self-sequentially assembled in a single reactor.
     In chapter3, based on the multipathway coupled domino strategy, multiform substrates arylethenes, arylacetylenes,2-hydroxy-aromatic ketones, and carbinols were firstly converted into the same intermediates a-arylglyoxals via four distinct pathways. Then, a-arylglyoxals were captured by2-aminothiophenol to afford2-acyl benzothiazoles. Through a logical charging manner, diverse fundamental reactions were integrated in one-pot. The reaction has well tolerant to the multiform substrates (arylethenes, arylacetylenes,2-hydroxy-aromatic ketones, and carbinols), both electron-donating and-withdrawing groups attached to the aryl of substrates were all suitable for this protocol.
     In chapter4, indole as privileged scaffold has attracted considerable attention. Moreover, bisindoles as molecular stars were pursued by many synthetic chemists and pharmacologists. We selected aromatic ketones and indole derivatives as starting materials, developed I2-promoted sp3C-H bond dual-(het)arylation protocol for the synthesis of2,2-bisindolyl-l-arylethanones. Compared with the classical metal-catalyzed C-H functionalization, this protocol could directly coupling sp3C-H bond with sp2C-G bond without metal, base, and ligand.
     In chapter5, An I2-CF3SO3H synergistic promoted sp3C-H bond diarylation protocol was developed for the synthesis of2,2-bis(4-(dimethylamino)phenyl)-1-aryl ethanones from simple and readily available aryl methyl ketones and N,N-dialkylanilines. We investigated the mechanism and reaction process via on-line NMR and control experiments. The mechanism revealed that the reaction underwent iodination, Kornblum oxidation and hydroarylation three fundamental reactions.
     In chapter6, A tunable synthetic protocol was proposed for selective synthesis of2-aryl-imidazo[1,2-a]pyridines and2-aryl-3-(pyridine-2-ylamino)imidazo[1,2-a]pyridines from the same starting materials:aromatic ketones and2-aminopyridines. The reaction performed through different reaction pathways in MeOH and DMSO. When the reaction was carried out in MeOH, aromatic ketones underwent a-halogenation to afford intermediate a-iodo ketones in situ, which were captured by2-aminopyrimidines to obtain2-aryl-imidazo[1,2-a]pyridines. While the reaction performed in DMSO, aromatic ketones were first converted to a-arylglyoxals intermediates. This step was likely followed by condensation with two molecules of2-aminopyrimidines to yield2-aryl-3-(pyridine-2-ylamino)imidazo[1,2-a]pyridines. This protocol could afford different imidazo[1,2-a]pyridines from the same substrates via tunable intermediates in MeOH and DMSO.
     In chapter7, we developed a direct protocol for the synthesis of2-aminothiozoles from aromatic ketones and thioureas in the mediate of I2-CuO. First, I2-CuO promoted aromatic ketones to afford a-iodo ketones intermediates, which were captured by thiourea to furnish2-aminothiozoles. Next, we examined the scope of the substrates, and found that α,β-unsaturated methyl ketones, P-keto esters,1,3-diketones and N-methyl thiourea were all suitable for this protocol. When α,β-unsaturated methyl ketones were selected as substrates, the reaction could high selectively obtain the E-conformation products.
     In chapter8, we developed a suitable byproduct catalyzed domino strategy, in which the byproducts generated from upstream domino reactions could be utilized to catalyze the downstream domino reactions. Moreover, the solvent also as a substrate took part in the reaction. This strategy can greatly increase the atom-economic of the whole reaction. First,I2-CuO promoted aromatic ketones to afford a-iodo ketones and byproduct CuI. Subsequently, byproduct CuI catalyzed a-iodo ketones reacting with solvent DMF or DMA to afford a-formyloxy and acetoxy ketones. The protocol could highly efficient synthesis of a-formyloxy and acetoxy ketones from aromatic ketones and solvent DMF or DMA.
     In chapter9, inspired by the diversity-oriented synthesis and multipathway synthesis strategy, we proposed a multisubstrate focus-oriented synthetic strategy. In the process, different substrates a-halo aromatic ketones,2-hydroxy-aromatic ketones and methyl carbinols were converted into the same intermediate arylglyoxal in situ through different reaction pathways, which was captured by1,3-dicarbonyl compounds to afford1,4-enediones. The on-line NMR monitoring, control experiments and the X-ray structure of intermediate disclosed that the reaction may undergo Cu(I)/Cu(II) catalytic cyclization process. Moreover, we examined the efficiency of Cu(II)-complex with different a-halo aromatic ketones without additional catalyst. After several experimental iterations, we found that diverse substrates a-halo aromatic ketones,2-hydroxy-aromatic ketones and methyl carbinols could self-organized react with1,3-dicarbonyl compounds to afford1,4-enediones through different pathways in one-pot. The result demonstrated that multisubstrate focus-oriented synthetic strategy is feasible under suitable conditions.
     In chapter10, we proposed an AlCl3promoted Nazarov cyclization protocol from1,4-enediones to afford1-indanones, in which there were two chiral center. Moreover, the reaction could furnish the product in quantitative yields with high dr (99:1). We observed that the substituent groups of substrates have strong influence on the reaction efficiency. We also investigated the reaction mechanism by NMR spectrum and observed the complexing action between substrate and AlCl3in solution. Furthermore, we studied the influence of solvents and found the reaction only took place in EtNO2.
     In chapter11,β-carboline is an important class of heterocycle, which exists widely in natural products and drug molecules. Therefore, the development of a practical and efficient protocol to access β-carboline is both desirable and valuable. We developed a molecular iodide promoted C-H and N-H coupling protocol to access P-carbolines from easy available aromatic ketones and tryptamine derivatives. This method could efficiently obtain diverse β-carbolines. When tryptophan was selected as substrate, the reaction also underwent to furnish P-carbolines in high yields via decarboxylation. We also monitored the reaction process and intermediates via on-line NMR and control experiments. The results disclosed that the reaction underwent a-iodo aryl methyl ketones, a-arylglyoxal and4,9-dihydro-3H-pyrido[3,4-b]indole intermediates. Finally, we directly applied this method to total synthesis of natural product eudistomin Y1-Y6and pityiacitrin. This method could efficiently furnish the desired natural products in one-pot.
     In chapter12, based on the previous developed protocols and reaction models, we further applied them to one-pot synthesis of natural products. Through a rational logical design, we assembled multifundamental reactions (iodination, Kornblum oxidation, and annulation) in one-pot and realized the total synthesis of natural product luotonin F in one-pot. The protocol could efficiently synthesize the natural product luotonin F and derivatives from simple and readily available aromatic ketones and2-aminobenzamides.
     In chapter13, the summary and outlook of this dissertation was given.
引文
[1]吴毓林,麻生明,戴立信,现代有机合成化学进展,北京:化学工业出版社,2005,pp1-26.
    [2](a)陆熙炎,绿色化学与有机合成及有机合成中的原子经济性,化学进展,1998,10,14-21.(b)杜灿屏,21世纪有机化学发展战略,北京:化学工业出版社,2002.(c)麻生明,魏晓芳,原子经济性反应,北京:中国石化出版社,2006.(d)Tietze, L. F.; Brasche, G. and Gericke, K. Domino Reactions in Organic Synthesis, Wiley-VCH:Weinheim, Germany,2006. (e) Tietze, L.F.; Domino Reactions in Organic Synthesis. Chem. Rev.1996,96,115-136. (f) List, B. Proline-catalyzed asymmetric reactions. Tetrahedron Lett.2002,58,5573-5590. (g) List, B.; Lerner, R. A.; Barbas III, C. F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. J. Am. Chem. Soc.2000,122,2395-2396. (h) Mukherjee, S.; Yang, J. W.; Hoffman, S.; List, B. Chem. Rev.2007,107,5471-5569. (i) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc.2000,122,4243-4244.(j) G. Lelais, D. W. C. MacMillan, Alrichim. Acta 2006,39,79-87. (k) MacMillan, D. W. C. Nature 2008,455,304-308. (1) Zhong, C. Shi, X. D. Eur. J. Org. Chem.2010, 2999-3025. (m) Jia, C. G.; Kitamura, T.; Fujiwara, Y. Catalytic Functionalization of Arenes and Alkanes via C-H Bond Activation. Acc. Chem. Res.2001,34,633-639. (n) Kakiuchi, F.; Murai, S. Catalytic C-H/Olefin Coupling. Acc. Chem. Res.2002,34,826-834. (o) Godula, K.; Sames, D. C-H Bond Functionalization in Complex Organic Synthesis. Science 2006,312,67-72. (p) Ramirez, T. A.; Zhao, B. G.; Shi, Y. Recent Advances in Transition Metal-catalyzed sp3 C-H Amination Adjacent to Double Bonds and Carbonyl Groups. Chem. Soc. Rev.2012,41,931-942.
    [3]Tjotil Vlaar, T.; Ruijter, E.; Orru, R. V. A. Recent Advances in Palladium-Catalyzed Cascade Cyclizations. Adv. Synth. Catal.2011,353,809-841.
    [4](a) Cheng, S. Z. D.; Zhu, L.; Li, C. Y.亚稳态的相尺寸对部分结晶聚合物结构与形态的影响.高分子通报,1999,3,28-33.(b)朱兴国,张明,徐敏,董国胜,金晓峰.一种新的亚稳态Mn的制备和结构研究.半导体学报,1993,14,718-722.
    [5](a)郝冬梅,软晓钢,脑电事件相关去同步化和同步化的神经元群模型.生物学报,2005,21,39-45. (b) Jain, A.; Stock, G, Identifying Metastable States of Folding Proteins. Journal of Chemical Theory and Computation 2012,8,3810-3819.
    [6](a)数字电路设计中的亚稳态及其解决方法http://blog.csdn.net/zhongrg/article/details/1836854. (b) FPGA中亚稳态-让你无处可逃.http://www.cnblogs.com/linjie-swust/archive/2012/01/07/YWT.html.
    [7]Setten, V.; Wijs, U. d.; Groot, d. J. Am. Chem. Soc.2007,129,2458-2465.
    [8](a) Nemirowski, A.; Schreiner, P. Electronic Stabilization of Ground State Triplet Carbenes Adelina Nemirowski. J. Org. Chem.2007,72,9533-9540. (b) Grasse, P. B.; Brauer, B. E.; Zupancic, J. J.; Kaufmann, K. J.; Schuster, G. B. Chemical and Physical Properties of Fluorenylidene:Equilibrium of the Singlet and Triplet Carbenes. J. Am. Chem. Soc.1983,105, 6833-6845. (c) Skell, P. S.; Woodworth. R. C. Structure of Carbene CH2. J. Am. Chem. Soc.1956,
    78,4496-4497.(d)邢其毅等,《基础有机化学》第三版(上册).北京:高等教育出版社,2005年.
    [9]Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry,2nd Edition.
    [10](a) Maas, G. New Syntheses of Diazo Compounds. Angew. Chem. Int. Ed.2009,48,8186-8195. (b) Myers, E. D.; Raines, R. T. A. Phosphine-Mediated Conversion of Azides into Diazo Compounds. Angew. Chem. Int. Ed.2009,48,2359-2363.
    [11](a) Ye, T.; McKervey, M. A. Organic Synthesis with a-Diazo Carbonyl Compounds. Chem. Rev.1994,94,1091-1160. (b) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley:New York,1998. (c) Zhang, Z.; Wang, J. Recent Studies on the Reactions of a-Diazocarbonyl Compounds. Tetrahedron 2008,64, 6577-6605. (f) Xiao, Q.; Zhang, Y; Wang, J., Diazo Compounds and N-Tosylhydrazones:Novel Cross-Coupling Partners in Transition-Metal-Catalyzed Reactions. Acc. Chem. Res.2012,46, 236-247. (g) Park, E. J.; Kim, S. H.; Chang, S. Copper-Catalyzed Reaction of a-Aryldiazoesters with Terminal Alkynes:A Formal [3+2] Cycloaddition Route Leading to Indene Derivatives. J. Am. Chem. Soc.2008,130,17268-17269.
    [12]Greenman, K. L.; Carter, D. S.; Van Vranken, D. L. Palladium-Catalyzed Insertion Reactions of Trimethylsilyldiazomethane. Tetrahedron 2001,57,5219-5225.
    [13]Peng, C.; Wang, Y.; Wang, J. Palladium-Catalyzed Cross-Coupling of R-Diazocarbonyl Compounds with Arylboronic Acids. J. Am. Chem. Soc.2008,130,1566-1567.
    [14]Zhou, L.; Ye, F.; Ma, J.; Zhang, Y; Wang, J. Pd-Catalyzed Oxidative Cross-Coupling of N-Tosylhydrazones or Diazoesters with Terminal Alkynes:A New Route to Conjugated Enynes. Angew. Chem. Int. Ed.2011,50,3510-3514.
    [15]Chen, Z.-S.; Duan, X.-H.; Zhou, P.-X.; Ali, S.; Luo, J.-Y; Liang, Y.-M. Palladium-Catalyzed Divergent Reactions of a-Diazocarbonyl Compounds with Allylic Esters:Construction of Quaternary Carbon Centers. Angew. Chem. Int. Ed.2012,51,1370-1374.
    [16]Tsoi. Y.-K.; Zhou, Z.; Yu, W.-Y. Rhodium-Catalyzed Cross-Coupling Reaction of Arylboronates and Diazoesters and Tandem Alkylation Reaction for the Synthesis of Quaternary a, a-Heterodiaryl Carboxylic Esters. Org. Lett.2011,13,5370-5373.
    [17](a) Barluenga, J.; Moriel, P.; Valdes, C.; Aznar, F. N-Tosylhydrazones as Reagents for Cross-Coupling Reactions:A Route to Polysubstituted Olefins. Angew. Chem., Int. Ed.2007,46, 5587-5590. (b) Barluenga, J.; Toma-Gamasa, M.; Moriel, P.; Aznar, F.; Valdes, C. Pd-Catalyzed Cross-Coupling Reactions with Carbonyls:Application in a Very Efficient Synthesis of 4-Aryltetrahydropyridines. Chem.-Eur. J.2008,14,4792-4795. (c) Barluenga, J.; Escribano, M.;Moriel, P.; Aznar, F.; Valdes, C. Synthesis of Enol Ethers and Enamines by Pd-Catalyzed Tosylhydrazide-Promoted Cross-Coupling Reactions. Chem.-Eur. J.2009,15,13291-13294. (d) Barluenga, J.; Escribano, M.; Aznar, F.; Valdes, C. Arylation of a-Chiral Ketones by Palladium-Catalyzed Cross-Coupling Reactions of Tosylhydrazones with Aryl Halides. Angew. Chem., Int. Ed.2010,49,6856-6859. (e) Barluenga, J.; Tomas-Gamasa, M.; Aznar, F. Synthesis of Dienes by Palladium-Catalyzed Couplings of Tosylhydrazones with Aryl and Alkenyl Halides. Adv. Synth. Catal.2010,352,3235-3240. (f) Barluenga, J.; Tomas-Gamasa, M.; Aznar, F.; Valdes, C. Synthesis of 2-Arylacrylates from Pyruvate by Tosylhydrazide-Promoted Pd-Catalyzed Coupling with Aryl Halides. Chem.-Eur. J.2010,16,12801-12803. (g) Barluenga, J.; Florentino, L.; Aznar, F.; Valdes, C. Synthesis of Polysubstituted Olefins by Pd-Catalyzed Cross-Coupling Reaction of Tosylhydrazones and Aryl Nonaflates. Org. Lett.2011,13,510-513.
    [18](a) Treguier, B.; Hamze, A.; Provot, O.; Brion, J.-D.; Alami, M. Expeditious Synthesis of 1,1-Diarylethylenes Related to isoCombretastatin A-4 (iso CA-4) via Palladium-Catalyzed Arylation of N-Tosylhydrazones with Aryl Triflates. Tetrahedron Lett.2009,50,6549-6552. (b) Messaoudi, S.; Treguier, B.; Hamze, A.; Provot, O.; Peyrat, J. F.; De Losada, J. R.; Liu, J.-M.; Bignon, J.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J.-D.; Alami,M. Isocombretastatins A versus Combretastatins A:The Forgotten isoCA-4 Isomer as a Highly Promising Cytotoxic and Antitubulin Agent. J. Med. Chem.2009,52,4538-4542. (c) Brachet, E.; Hamze, A.; Peyrat, J.-F.; Brion, J.-D.; Alami, M. Pd-Catalyzed Reaction of Sterically Hindered Hydrazones with Aryl Halides:Synthesis of Tetra-Substituted Olefins Related to iso-Combretastatin A4. Org. Lett.2010,12,4042-4045. (d) Rasolofonjatovo, E.; Treguier, B.; Provot, O.; Hamze, A.; Morvan, E.; Brion, J.-D.; Alami, M. Palladium-Catalyzed Coupling of N-Tosylhydrazones with ortho Substituted Aryl Halides:Synthesis of 4-Arylchromenes and Related Heterocycles. Tetrahedron Lett.2011,52,1036-1040.
    [19](a) Zhao, X.; Jing, J.; Lu, K.; Zhang, Y.; Wang, J. Pd-Catalyzed Oxidative Cross-Coupling of N-Tosylhydrazones with Arylboronic Acids. Chem. Commun.2010,46,1724-1726. (b) Xiao, Q.; Ma, J.; Yang, Y.; Zhang, Y.; Wang, J. Pd-Catalyzed C=C Double Bond Formation by Coupling of N-Tosylhydrazones with Benzyl Halides. Org. Lett.2009,11,4732-4735. (c) Zhou, L.; Ye, F.; Zhang, Y.; Wang, J. Pd-Catalyzed Three-Component Coupling of N-Tosylhydrazone, Terminal Alkyne, and Aryl Halide. J. Am. Chem. Soc.2010,132,13590-23591. (d) Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. Coupling of N-Tosylhydrazones with Terminal Alkynes:Synthesis of Trisubstituted Allenes. Angew. Chem. Int. Ed.2011, 50,1114-1117. (e) Ye, F.; Shi, Y.; Zhou, L.; Xiao, Q.; Zhang, Y.; Wang, J. Expeditious Synthesis of Phenanthrenes via CuBr2-Catalyzed Coupling of Terminal Alkynes and N-Tosylhydrazones derived from O-Formyl Biphenyls. Org. Lett.2011,13,5020-5023,
    [20](a) Barluenga, J.; Valdes, C. Tosylhydrazones:New Uses for Classic Reagents in Palladium-Catalyzed Cross-Coupling and Metal-Free Reactions. Angew. Chem. Int. Ed.2011,50, 7486-7500. (b) Shao, Z.; Zhang, H. N-Tosylhydrazones:Versatile Reagents for Metal-Catalyzed and Metal-Free Cross-Coupling Reactions. Chem. Soc. Rev.2012,41,560-572.
    [21](a) Hurd, C. D., "Ketene". Org. Synth.1941,1,330. (b) Hermann Staudinger. Ketene, eine neue Korperklasse. Berichte der deutschen chemischen Gesellschaft.1905,38, 1735-1739.
    [22](a) Liang, Y.; Jiao, L.; Zhang, S. W.; Xu, J. X. Microwave- and Photoirradiation-Induced Staudinger Reactions of Cyclic Imines and Ketenes Generated from a-Diazoketones. A Further Investigation into the Stereochemical Process. J. Org. Chem.2005,70,334-337. (b) Ibrahim, A. A.; Nalla, D.; Raaphorst, M. V.; Kerrigan, N. J. Catalytic Asymmetric Heterodimerization of Ketenes. J. Am. Chem. Soc.2012,134,2942-2945.
    [23]Li, B. N.; Wang, Y. K.; Du, D. M.; Xu, J. X. Notable and Obvious Ketene Substituent-Dependent Effect of Temperature on the Stereoselectivity in the Staudinger Reaction. J. Org. Chem.2007,72,990-997.
    [24]Elaine C. Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. Catalytic Asymmetric Staudinger Reactions to Form P-Lactams:An Unanticipated Dependence of Diastereoselectivity on the Choice of the Nitrogen Substituent. J. Am. Chem. Soc.2005,127,11586-11587.
    [25]Xu, X.; Wang, K.; Nelson, S. G. Catalytic Asymmetric [4+2] Cycloadditions of Ketenes and N-Thioacyl Imines:Alternatives for Direct Mannich Reactions of Enolizable Imines. J. Am. Chem. Soc.2007,129,11690-11691.
    [26]Lage, M. L.; Fernandez, I.; Sierra, M. A.; Torres, M. R. Trapping Intermediates in an [8+2] Cycloaddition Reaction with the Help of DFT Calculations. Org. Lett.2011,13,2892-2895.
    [27]Pemberton, N.; Jakobsson, L.; Almqvist, F. Synthesis of Multi Ring-Fused 2-Pyridones via an Acyl-Ketene Imine Cyclocondensation. Org. Lett.2006,8,935-938.
    [28]Khlebnikov, A. F.; Novikov, M. S,; Pakalnis, V. V.; Yufit, D. S. Nonconcerted Cycloaddition of 2H-Azirines to Acylketenes:A Route to N-Bridgehead Heterocycles. J. Org. Chem.2011,76, 9344-9352.
    [29]Liang, Y; Jiao, L.; Zhang, S. W.; Yu, Z. X.;Xu, J. X. New Insights into the Torquoselectivity of the Staudinger Reaction. J. Am. Chem. Soc.2009,131,1542-1549.
    [30]Wang, X. N.; Shao, P. L.; Lv, H.; Ye, S. Enantioselective Synthesis of P-Trifluoromethyl-β-lactones via NHC-Catalyzed Ketene-Ketone Cycloaddition Reactions. Org. Lett.2009,11, 4029-4031.
    [31]Lv, H.; Chen, X. Y; Sun, L. H.; Ye, S. Enantioselective Synthesis of Indole-Fused Dihydropyranones via Catalytic Cycloaddition of Ketenes and 3-Alkylenyloxindoles. J. Org. Chem.2010,75,6973-6976.
    [32]Ogata, K.; Ohashi, I.; Fukuzawa, S.-i. Rhodium-Catalyzed Three-Component Reaction between Silylacetylene and Two Ketenes Leading to 1,3-Enynes Bearing a Carboxylic Ester Group via Double Insertion of Ketenes. Org. Lett.2012,14,4214-4217.
    [33]Austin, W. F.; Zhang, Y. J.; Danheiser, R. L. Reactions of (Trialkylsilyl)vinylketenes with Lithium Ynolates:A New Benzannulation Strategy. Org. Lett.2005,7,3905-3908.
    [34]Kumar, P.; Troast, D. M.; Cella, R.; Louie, J. Ni-Catalyzed Ketene Cycloaddition:A System That Resists the Formation of Decarbonylation Side Products. J. Am. Chem. Soc.2011,133, 7719-7721.
    [35](a) Hachiya, I.; Yoshitomi, T.; Yamaguchi, Y; Shimizu, M. Stereodivergent Synthesis of β-Lactams Using Thermal Rearrangement of Aminocyclobutenones. Org. Lett.2009,11, 3266-3268. (b) Wang, X.-N.; Shen, L.-T.; Ye, S. NHC-Catalyzed Enantioselective [2+2] and [2+ 2+2] Cycloadditions of Ketenes with Isothiocyanates. Org. Lett.2011,13,6382-6385. (c) Duguet, N.; Slawin, A. M. Z.; Smith, A. D. An Asymmetric Hetero-Claisen Approach to 3-Alkyl-3-aryloxindoles. Org. Lett.2009,11,3858-3861. (d) Rigby, J. H.; Wang, Z. Q. Synthesis of Highly Substituted Cyclopentenones via the [4+1] Cycloaddition of Nucleophilic Carbenes and Vinyl Ketenes. Org. Lett.2009,11,3858-3861.
    [36]Krow, G. R. Synthesis and Reactions of Ketenimines. Angew. Chem. Int. Ed. Eng.1971,10, 435-449; (b) Perst, H.; Three Carbon-Heteroatom Bonds:Ketenes and Derivatives. Science of Sythesis,2006,23,781-898. (c) Kollenz, G. Three Carbon-Heteroatom Bonds:Ketenes and Derivatives. Science of Sythesis,2006,23,351-380. (d) Yoo, E. J. Chang, S. Copper-Catalyzed Multicomponent Reactions:Securing a Catalytic Route to Ketenimine Intermediates and their Reactivities. Curr. Org. Chem.2009,13,1766-1776. (e) Lu, P.; Wang, Y. G Strategies for Heterocyclic Synthesis via Cascade Reactions Based on Ketenimines. Synlett.2010,165-173. (f) Kim, S. H.; Park, S. H.; Choi, J. H.; Chang, S. Sulfonyl and Phosphoryl Azides:Going Further Beyond the Click Realm of Alkyl and Aryl Azides. Chem.-Asian. J.2011,6,2618-2634. (g) Lu, P.; Wang, Y. The thriving chemistry of ketenimines. Chem. Soc. Rev.2012,41,5687-5705.
    [37](a) Sung, K. Substituent effects on stability of ketenimines. J. Chem. Soc. Perkin Trans.1999, 2,1169-1174. (b) Sung, K. N-Substituent Effects on the Stability of Ketenimines. J. Chem. Soc. Perkin Trans.2000,2,847-852.
    [38](a) Fernandez, I.; Cossio, F. P.; Sierra, M. A. Double Group Transfer Reactions as Indicators of Aromatic Stabilization. Organometallics 2007,26,3010-3017. (b) Merlic, C. A.; Burns, E. E.; Xu, D.; Chen, S. Y. Aminobenzannulation via Metathesis of Isonitriles Using Chromium Carbene Complexes. J. Am. Chem. Soc.1992,114,8722-8724.
    [39]Bendikov, M.; Duong, H. M.; Bolanos, E.; Wudl, F. An Unexpected Two-Group Migration Involving a Sulfonynamide to Nitrile Rearrangement. Mechanistic Studies of a Thermal N→C Tosyl Rearrangement. Org. Lett.2005,7,783-786.
    [40](a) Zhang, Y.; DeKorver, K. A.; Lohse, A. G.; Zhang, Y.; Huang, J.; Hsung, R. P. Synthesis of Amidines Using N-Allyl Ynamides. A Palladium-Catalyzed Allyl Transfer through an Ynamido-π-Allyl Complex. Org. Lett.2009,11,899-902. (b) DeKorver, K. A.; Hsung, R. P.; Lohse, A. G.; Zhang, Y. A Divergent Mechanistic Course of Pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of N-Allyl Ynamides. Org. Lett.2010, 12,1840-1843. (c) DeKorver, K. A.; North, T. D.; Hsung, R. P. An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides. Synlett.2010,2397-2402. (d) DeKorver, K. A.; Johnson, W. L.; Zhang, Y; Hsung, R. P.; Dai, H.; Deng, J.; Lohse, A. G; Zhang, Y. N-Allyl-N-Sulfonyl Ynamides as Synthetic Precursors to Amidines and Vinylogous Amidines. An Unexpected 1,3-Sulfonyl Shift in Nitrile Synthesis. J. Org. Chem.2011,76,5092-5103. (e) DeKorver, K. A.; Wang, X. N.; Walton, M. C.; Hsung, R. P. Carbocyclization Cascades of Allyl Ketenimines via Aza-Claisen Rearrangements of N-Phosphoryl-N-allyl-ynamides. Org. Lett.2012, 14,1768-1711.
    [41]Bae, I.; Han, H.; Chang, S. Highly Efficient One-Pot Synthesis of N-Sulfonylamidines by Cu-Catalyzed Three-Component Coupling of Sulfonyl Azide, Alkyne, and Amine. J. Am. Chem. Soc.2005,127,2038-2039.
    [42]Coffinier, D.; Kaim, L. El.; Grimaud, L. Isocyanide-Based Two-Step Three-Component Keteneimine Formation. Org. Lett.2009,11,1825-1827.
    [43]Cheng, Y; Ma, Y; Wang, X.; Mo, J. An Unprecedented Chemospecific and Stereoselective Tandem Nucleophilic Addition/Cycloaddition Reaction of Nucleophilic Carbenes with Ketenimines. J. Org. Chem.2009,74,850-855.
    [44](a) Oakes, T. R.; David, H. G; Nagel, F. J. Small ring systems from isocyanides. I. Reaction of isocyanides with hexafluorobutyne-2. J. Am. Chem. Soc.1969,91,4761-4765. (b) Oakes, T. R.; Donovan, D. J. Reactions of isocyanides with activated acetylenes in protic solvents. J. Org. Chem. 1973,38,1319-1325.
    [45](a) Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S. A Facile Access to N-Sulfonylimidates and Their Synthetic Utility for the Transformation to Amidines and Amides. Org. Lett.2006,8, 1347-1350. (b) Cho, S. H.; Yoo, E. J.; Bae, I.; Chang, S. Copper-Catalyzed Hydrative Amide Synthesis with Terminal Alkyne, Sulfonyl Azide, and Water. J. Am. Chem. Soc.2005,127, 16046-16047. (c) Cassidy, M. P.; Raushel, J.; Fokin, V. V. Practical Synthesis of Amides from In Situ Generated Copper(I) Acetylides and Sulfonyl Azides. Angew. Chem. Int. Ed.2006,45,3154-3157. (d) Cho, S. H.; Chang, S. High-Yield Synthesis of Single-Crystalline Gold Nano-octahedra. Angew. Chem. Int. Ed.2007,46,1897-1900.
    [46](a) Cui, S.; Lin, X.; Wang, Y. Novel and Efficient Synthesis of Iminocoumarins via Copper-Catalyzed Multicomponent Reaction. Org. Lett.2006,8,4517-4520. (b) Cui, S.; Wang, J.; Wang, Y. Efficient Synthesis of 2-Imino-1,2-dihydroquinolines and 2-Imino-thiochromenes via Copper-catalyzed Domino Reaction. Tetrahedron 2008,64,487-492. (c) Shen, Y.; Cui, S.; Wang, J.; Chen, X.; Lu, P.; Wang, Y. Copper-Catalyzed Three-Component Synthesis of 2-Iminodihydrocoumarins and 2-Iminocoumarins. Adv. Synth. Catal.2010,352,1139-1144. (d) Cui, S.; Wang, J.; Wang, Y. Copper-Catalyzed Multicomponent Reaction:Facile Access to Functionalized 5-Arylidene-2-imino-3-pyrrolines. Org. Lett.2007,9,5023-5025. (e) Li, Y.; Hong, D.; Zhu, Y.; Lu, P.; Wang, Y One-pot Synthesis of 5-Sulfonamidopyrazole from Terminal Alkynes, Sulfonyl Azides and Hydrozines. Tetrahedron 2011,67,8086-8090.
    [47](a) Chen, Z.; Ye, C.; Gao, L.; Wu, J. Diversity-oriented Approach to 1,2-Dihydroisoquinolin-3(4H)-imines via Copper(I)-catalyzed Reaction of (E)-2-Ethynylphenylchalcone, Sulfonyl Azide and Amine. Chem. Commun.2011,47,5623-5625. (b) Chen, Z.; Zheng, D.; Wu, J. A Facile Route to Polysubstituted Indoles via Three-Component Reaction of 2-Ethynylaniline, Sulfonyl Azide, and Nitroolefin. Org. Lett.2011,13,848-851.
    [48]Yoo, E. J.; Chang, S. A New Route to Indolines by the Cu-Catalyzed Cyclization Reaction of 2-Ethynylanilines with Sulfonyl Azides. Org. Lett.2008,10,1163-1166.
    [49]Cho, S. H.; Chang, S. Room Temperature Copper-Catalyzed 2-Functionalization of Pyrrole Rings by a Three-Component Coupling Reaction. Angew. Chem. Int. Ed.2008,47,2836-2839.
    [50]Wang, J.; Wang, J.; Zhu, Y; Lu, P.; Wang, Y. Copper-cascade Catalysis:Synthesis of 3-Functionalized Indoles. Chem. Commun.2011,47,3275-3277.
    [51]Shang, Y.; Ju, K.; He, X.; Hu, J.; Yu, S.; Zhang, M.; Liao, K.; Wang, L.; Zhang, P. Copper-Catalyzed Multicomponent Reaction:Synthesis of 4-Arylsulfonylimino-4,5-dihydrofuran Derivatives. J. Org. Chem.2010,75,5743-5745.
    [52]Cheng, Y; Ma, Y.; Wang, X.; Mo, J. An Unprecedented Chemospecific and Stereoselective Tandem Nucleophilic Addition/Cycloaddition Reaction of Nucleophilic Carbenes with Ketenimines. J. Org. Chem.2009,74,850-855.
    [53]Mo, J.; Ma, Y; Cheng, Y. Synthesis of Novel and Versatile Synthetic Intermediates from the Reaction of Benzoimidazole and Triazole Carbenes with Ketenimines and their Application in the Construction of Spiro-pyrroles. Org. Biomol. Chem.2009,7,5010-5019.
    [54]Chen, Z. B.; Hong, D.; Wang, Y G. A Cascade Approach to Pyridines from 2-Azido-2,4-dienoates and a-Diazocarbonyl Compounds. J. Org. Chem.2009,74,903-905.
    [55]Li, S.; Luo, Y.; Wu, J. An Efficient Approach to Fused Indolines via a Copper(Ⅰ)-Catalyzed Reaction of Sulfonyl Azide with 2-Ethynylaryl Methylenecyclopropane. Org. Lett.2011,13, 3190-3193.
    [56](a) Ruiz, J.; Gonzalo, M. P.; Vivanco, M.; Daz, M. R.; Garca-Granda, S. A Three-component Reaction Involving Isocyanide, Phosphine and Ketenimine Functionalities. Chem. Commun.2011, 47,4270-4272. (b) Yao, W.; Pan, L.; Zhang, Y.; Wang, G.; Wang, X.; Ma, C. Three-Component Assembly of Functionalized 2-Iminooxetanes and their Divergent Ring Expansion Cascades. Angew. Chem. Int. Ed.2010,49,9210-9214. (c) Namitharan, K.; Pitchumani, K. Copper(I)-Catalyzed Three Component Reaction of Sulfonyl Azide, Alkyne, and Nitrone Cycloaddition/Rearrangement Cascades:A Novel One-Step Synthesis of Imidazolidin-4-ones. Org. Lett.2011,13,5728-5731. (d) Yoo, E. J.; Ahlquist, M.; Bae, I.; Sharpless, K. B.; Fokin, V. V.; Chang, S. Mechanistic Studies on the Cu-Catalyzed Three-Component Reactions of Sulfonyl Azides,1-Alkynes and Amines, Alcohols, or Water:Dichotomy via a Common Pathway. J. Org. Chem.2008,73,5520-5528.
    [57](a) Zoghbi, M.; Warkentin, J. beta.-Lactam-4-ylidenes. J. Org. Chem.1991,56,3214-3215. (b) Zoghbi, M.; Warkentin, J. Spiro-fused β-Lactam Oxadiazolines by Formal [2+2] Cycloaddition of 2-Imino-83-1,3,4-oxadiazolines to Ketenes. Can. J. Chem.1993,71,912-918.
    [58](a) Cheng, Y.; Wang, B.; Cheng, L. Q. High Nucleophilicity of Cyclic Amidocarbene toward Aryl Isocyanates, New Approach to Spiro[azetidinone-4,3'-indolinone] Derivatives.J. Org. Chem. 2006,71,4418-4427. (b) Xing, J.; Wang, X. R.; Yan, C. X.; Cheng, Y. Interaction of β-Lactam Carbenes with 3,6-Diphenyltetrazines:A Five-Step Cascade Reaction for the Direct Construction of Indeno[2,1-b]pyrrol-2-ones. J. Org. Chem.2011,76,4746-4752. (c) Shao, N.; Pang, G. X.; Yan, C. X.; Shi, G. F.; Cheng, Y. Reaction of β-Lactam Carbenes with 2-Pyridyl Isonitriles:A One-Pot Synthesis of 2-Carbonyl-3-(pyridylamino)imidazo[1,2-a]pyridines Useful as Fluorescent Probes for Mercury Ion.J. Org. Chem.2011,76,7458-7465. (d) Cheng, Y; Cheng L. Q. Interaction of β-Lactam Carbenes with Aryl Isonitriles:An Unprecedented Rearrangement of 2-Azetidinonylidene Indoles to δ-Carbolinones. J. Org. Chem.2007,72,2625-2630.
    [59]Lindstrom, U. M.; Somfai, P. Aminolysis of Vinyl Epoxides as an Efficient Entry to N-H Vinylaziridines. Synthesis 1998,109-117. (b) Zwanenburg, B.; ten Holte, P. The Synthetic Potential of Three-Membered Ring Aza-Heterocycles. Top. Curr. Chem.2001,216,93-124. (c) Watson, I. D. G.; Yu, L.; Yudin, A. K. Advances in Nitrogen Transfer Reactions Involving Aziridines. Acc. Chem. Res.2006,39,194-206.
    [60](a) Singh, G. S.; D'hooghe, M.; De Kimpe, N. Synthesis and Reactivity of C-Heteroatom-Substituted Aziridines. Chem. Rev.2007,107,2080-2135. (b) Sim, T. B.; Kang, S. H.; Lee, K. S.; Lee, W. K.; Yun, H.; Dong, Y; Ha, H.-J. A Novel Synthesis of 5-Functionalized Oxozolidin-2-ones from Enantiomerically Pure 2-Substitute N-[(R)-(+)-a-Methylbenzyl]aziridines. J. Org. Chem.2003,68,104-108. (c) Kim, Y; Ha, H.-J.; Yun, S. Y.; Lee, W. K. The Preparation of Stable Aziridinium Ions and their Ring-openings. Chem. Commun.2008,4363-4365. (d) Lee, B. K.; Kim, M. S.; Hahm, H. S.; Kim, D. S.; Lee, W. K.; Ha, H.-J. An Efficient Synthesis of Chiral Terminal 1,2-Diamines Using an Enantiomerically Pure [1-(1'R)-Methylbenzyl]aziridine-2-yl]methanol. Tetrahedron 2006,62,8393-8397. (e) D'hooghe, M.; Mollet, K.; Dekeukeleire, S.; De Kimpe, N. Stereoselective Synthesis of Trans- and Cis-2-aryl-3-(hydroxymethyl)aziridinesthrough Transformation of 4-Aryl-3-chloro-b-lactams and Study of their Ring Opening. Org. Biomol. Chem.2010,8,607-615. (f) Kim, Y.; Ha, H.-J.; Yun, H.; Lee, B. K.; Lee, W. K. Ring Opening of 2-Acylaziridines by Acid Chlorides. Tetrahedron 2006,62, 8844-8849. (g) D'hooghe, M.; Catak, S.; Stankovic, S.; Waroquier, M.; Kim, Y.; Ha, H.-J.; Van Speybroeck, V.; De Kimpe, N. Eur. Systematic Study of Halide-Induced Ring Opening of 2-Substituted Aziridinium Salts and Theoretical Rationalization of the Reaction Pathways. Eur. J. Org. Chem.2010,4920-4931. (h) Stankovic, S.; D'hooghe, M.; Catak, S.; Eum, H.; Waroquier, M.; Van Speybroeck, V.; De Kimpe, N.; Ha, H.-J. Regioselectivity in the Ring Opening of Non-activated Aziridines. Chem. Soc. Rev.2012,41,643-665.
    [61]The selected references for surfur ylides, see:(a) Corey, E. J.; Chaykocsky, M. Dimethyloxosulfonium Methylide ((CH3)2SOCH2) and Dimethylsulfonium Methylide ((CH3)2SCH2). Formation and Application to Organic Synthesis. J. Am. Chem. Soc.1965,87, 1353-1364. (b) Trost, B. M.; LaRochelle, R. The Photolysis of Sulfur Ylides. Diphenylsulfonium Allylide. J. Am. Chem. Soc.1970,92,5804. (c) Trost, B. M.; Melvin, L. S. Surfur Ylides, Academic Press:New York,1975. (d) Li, A. H.; Da, L.-X.; Aggarwal, V. K. Asymmetric Ylide Reactions:Epoxidation, Cyclopropanation, Aziridination, Olefination, and Rearrangement. Chem. Rev.1997,97,2341-2372. (e) 黄文芳,叶立德化学.武汉:华中师范大学出版社,1997. (f) Lakeev, S. N.; Maydanova, I. O.; Galin, F. Z.; Tolstikov, G. A. Sulfur Ylides in the Synthesis of Heterocyclic and Carbocyclic Compounds. Russ. Chem. Rev.2001,70,655-672. (g) Sun, X.-L.; Tang, Y. Ylide-initiated Michael Addition-Cyclization Reactions Beyond Cyclopropanes. Acc. Chem. Res.2008,41,937-948. (h) Lu, L.Q.; Chen, J. R.; Xiao, W. J. Development of Cascade Reactions for the Concise Construction of Diverse Heterocyclic Architectures. Acc. Chem. Res. 2012,45,1278-1293.
    [62]The selected references for pyridinium ylides, see:(a) Ratts, K. W.; Howe, R. K.; Phillips, W. G Formation of Pyridiium Ylides and Condensation with Aldehydes. J. Am. Chem. Soc.1969, 6115-6121. (b) Katrizky, A. R.; Chermprapai, A.; Pater, R. C.; Tarraga-Tomas, A. Pyridinium Ylides Derived from Pyryliums and Amines and a Novel Rearrangement of 1-Vinyl-1,2-dihydropyridines. J. Org. Chem.1981,47,492-497. (c) LaVilla, J. A.; Goodman, J. L., The thermodynamics of the formation of pyridinium ylides from carbienes. Tetrahedron Lett.1990, 31,6287-6290. (d) Jaung, J.-Y.; Jung, Y.-S.1,3-Dipolar Cycloaddition Reactions of Pyridinium Azomethine Ylides Containing 5,6-Dicyanopyrazines. Bull. Korean Chem. Soc.2003,24, 1565-1566. (e) S. Xue, L. He, Y.-K. Liu, K.-Z. Han, Q.-X. Guo, Pyridinium Ylides in the Synthesis of 2,3-Dihydrofurans. Synthesis 2006,666-674.
    [63]The selected references for dipolar cycloaddition, see:(a) Hiberty, P. C.; Ohanessian, G.; Schlegel, H. B., Theoretical ab initio Study of 1,3-Dipolar Cycloaddition of Fulminic Acid to Acetylene. Support for Firestone's Mechanism. J. Am. Chem. Soc.1983,105,719-723. (b) Huisgen, R. Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angew. Chem. Int. Ed.1963, 2,633-645. (c) Houk, K. N.; Sims, J.; Watts, C. R.; Luskus, L. J. Origin of Reactivity, Regioselectivity, and Periselectivity in 1,3-Dipolar Cycloadditions. J. Am. Chem. Soc.1973,95, 7301-7315. (d) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed.2002,41,2596-2599. (e) D. Amantini, F. Fringuelli, O. Piermatti, F. Pizzo, E. Zunino, L. Vaccaro, J. Org. Chem.2005,70,6526-6529. (f) Ess, D. H.; Houk, K. N. Distortion/Interaction Energy Control of 1,3-Dipolar Cycloaddition Reactivity. J. Am. Chem. Soc.2007,129, 10646-10647. (g) Ess, D. H.; Houk, K. N. Theory of 1,3-Dipolar Dycloadditions: Distortion/Interaction and Frontier Molecular Orbital Models. J. Am. Chem. Soc.2008,130, 10187-10198. (h) Schoenebeck, F,; Ess, D. H.; Jones, G. O.; Houk, K. N. Reactivity and Regioselectivity in 1,3-Dipolar Cycloadditions of Azides to Strained Alkynes and Alkenes:a Computational Study. J. Am. Chem. Soc.2009,131,8121-8131. (i) Xu, L.; Doubledar, C. E.; Houk, K. N. Dynamics of 1,3-Dipolar Cycloadditions:Energy Partitioning of Reactants and Quantitation of Synchronicity. J. Am. Chem. Soc.2010,132,3029-3037. (j) Huisgen, Rolf. Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angew. Chem. Int. Ed.1963,2,633-645.
    [64]The selected references for cumulative diene, see:(a) Zhang, C.; Lu, X. Phosphine-Catalyzed Cycloaddition of 2,3-Butadienoates or 2-Butynoates with Electron-Deficient Olefins. A Novel [3+ 2] Annulation Approach to Cyclopentenes. J. Org. Chem.1995,60,2906-2908. (b) Lu, X.; Zhang, C.; Xu, Z., Reactions of Electron-Deficient Alkynes and Allenes under Phosphine Catalysis. Acc. Chem. Res.2001,34,535-544. (c) Zhang, Q.; Yang, L.; Tong, X., 2-(Acetoxymethyl)buta-2,3-dienoate, a Versatile 1,4-Biselectrophile for Phosphine-Catalyzed (4+ n) Annulations with l,n-Bisnucleophiles (n=1,2). J. Am. Chem. Soc.2010,132,2550-2551 (d) Chen, X.-Y.; Wen, M.-W.; Ye, S.; Wang, Z.-X., Unusual Formal [4+2] Cycloaddition of Ethyl Allenoate with Arylidenoxindoles:Synthesis of Dihydropyran-Fused Indoles. Org. Lett.2011,13, 1138-1141. (e) Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M., Phosphine-and Nitrogen-Containing Lewis Base Catalyzed Highly Regioselective and Geometric Selective Cyclization of Isatin Derived Electron-Deficient Alkenes with Ethyl 2,3-Butadienoate. Org. Lett.2011,13,1142-1145. (f) Wallace, D. J.; Sidda, R. L.; Reamer, R. A. Phosphine-Catalyzed Cycloadditions of Allenic Ketones:New Substrates for Nucleophilic Catalysis. J. Org. Chem.2007,72,1051-1054. (g) Wurz, R. P.; Fu, G. C., Catalytic Asymmetric Synthesis of Piperidine Derivatives through the [4+ 2] Annulation of Imines with Allenes. J. Am. Chem. Soc.2005,127,12234-12235. (h) Fujiwara, Y; Sun, J.; Fu, G. C. Enantioselective Carbon-Sulfur Bond Formation:γ-Additions of Aryl Thiols to Allenoates Catalyzed by a Chiral Phosphepine. Chem. Sci.2011,2,2196-2198.
    [65](a) Young, R. M.; Davies-Coleman, M. T. Microwave-assisted Selenium Dioxide Oxidation of Aryl Methyl Ketones to Aryl Glyoxals. Tetrahedron Lett.2011,52,4036-4038. (b) Matthias, A.; Gerlach, M.; Gunther, E.; Schuster, T.; Czech, M.; Seipelt, I.; Marchand, P. A Convenient Synthesis of Novel 2,8-Disubstituted Pyrido[3,4-b]pyrazines Possessing Biological Activity. Synthesis 2012,69-82. (c) Tafelska-Kaczmarek, A., Prewysz-Kwinto, A., Skowerski, K., Pietrasiak, K., Kozakiewicz, A., & Zaidlewicz, M. Asymmetric Synthesis of β-Amino Alcohols by the Transfer Hydrogenation of a-Keto Imines. Tetrahedron Asymmetry 2009,21,2244-2248.
    [66]Liu, Liangxian. Selective Oxidation of Active Carbon-hydrogen Bonds with Ammonium Chloride-chromic Anhydride Complex. Gaodeng Xuexiao Huaxue Xuebao,1993,4,809-811.
    [67](a) Tanaka, Y.; Kawao, T.; Islam. S. M.; Nishioka, H.; Hatanaka, M.; Ueda, I. Synthesis and Reactions of Ethyl 6-Aryl-3-ethoxy-6-oxo-2,4-hexadienoates. Chem. Pharm. Bull.1996,44, 885-891. (b) Floyd, M. B.; Du, M. T.; Fabio, P. F.; Jacob, L. A.; Johnson, B. D. The Oxidation of Acetophenones to Arylglyoxals with Aqueous Hydrobromic Acid in Dimethyl Sulfoxide J. Org. Chem.1985,50,5022-5027.
    [68]Yan, G. S. Method for Producing Dicarbonyl Compounds. Faming Zhuanli Shenqing,1995, 1099741.
    [69]Carre, M. C.; Caubere, P. A Very Efficient Preparation of 1,2-Diketones. Tetrahedron Lett. 1985,26,3103-3106.
    [70]Alexander, M.; Lester, S. M. Phase-transfer Catalyzed Permanganate Oxidations using Tris[2-(2-methoxyethoxy)ethyl]amine(TDA-1).Synth. Commun.1987,17,647-655.
    [71]Liu, Z.; Chen, Z.; Zheng, Q. Mild Oxidation of Alcohols with o-Iodoxybenzoic Acid (IBX) in Ionic Liquid 1-Butyl-3-methyl-imidazolium Chloride and Water. Org. Lett.2003,5,3321-3323.
    [72]Christian. A.; Chama. C.; Anny. J.; Ecole.N. S. Palladium/benzoquinone-catalyzed Electrochemical Oxidation of Alcohols under Anaerobic Conditions. Synlett.2007,2173-2178.
    [73]Shirini, F. Efficient Oxidation of Alcohols with KBrO3 in the Presence of Silica Chloride and Wet SiO2. Phosphorus, Sulfur Silicon Relat. Elem.2003,178,2107-2110.
    [74]Shirini, F.; Zolfigol, M. A.; Khaleghi, M.; Oxidation of Alcohols Using (NH4)2Cr2O7 in the Presence of Silica Chloride/Wet SiO2 in Solution and under Solvent Free Conditions. Bull. Korean Chem. Soc.2003,24,1021-1022.
    [75]Bahman, T.; Hamid, Y Preparation and Applications of a Polymer Supported Peroxotungstate Complex as a Novel Polymeric Oxidizing Agent. React. Funct. Polym.2002,50,101-106.
    [76]Iranpoor, N.; Firouzabadi, H.; Pourali, A. R.; Selective Oxidation of Benzylic Alcohols and Ethers and Oxidative Cleavage of Benzylic Tetrahydropyranyl and Trimethylsilyl Ethers to Their Carbonyl Compounds by Dinitrogen Tetroxide-Impregnated Activated Charcoal (N2O4/Charcoal). Synth. Commun.2005,35,1527-1533.
    [77]K. Surendra, N. Srilakshmi Krishnaveni, M. Arjun Reddy, Y. V. D. Nageswar, K. Rama Rao, Mild Oxidation of Alcohols with o-Iodoxybenzoic Acid (IBX) in Water/Acetone Mixture in the Presence of β-Cyclodextrin. J. Org. Chem.2003,68,2058-2059.
    [78](a) Yadav, J. S.; Reddy, B. V. S.; Srinivas, C. Indium Trichloride-catalyzed Chemoselective Conversion of Aldehydes to Gem-diacetates. Synth. Commun.2002,32,2169-2174; (b) Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P.; Kondaji, G.; Nagaiah, K. Mild and Efficient Conversion of Aldehydes to Gem-diacetates using 2nd Generation Ionic Liquids. Catal. Commun.2008,9, 590-593.
    [79]Amatore, C.; Cammou, C.; Jutand, A. Palladium/Benzoquinone-Catalyzed Electrochemical Oxidation of Alcohols under Anaerobic Conditions. Synlett.2007,2173-2178.
    [80]Hoover, J. M.; Stahl, S. S. Highly Practical Copper(Ⅰ)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols. J. Am. Chem. Soc.2011,133, 16901-16910.
    [81]Ballistreri, F. P.; Failla, S.; Tomaselli, G. A.; Curci, R. A New Facile Synthesis of a-Dicarbonyl Compounds by Oxidation of Alkynes with Mo(VI) Peroxocomplex Promoted by Mercuric acetate. Tetrahedron Lett.1986,27,5139-5142.
    [82]Ballistreri, F. P.; Failla, S.; Tomaselli, G. A. Phase-transfer Catalytic Oxidation of Terminal Alkynes to Keto Aldehydes by Dilute Hydrogen Peroxide.J. Org. Chem.1988,53,830-831.
    [83]Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Bartili, D. Selenium-Mediated Conversion of Alkynes into a-Dicarbonyl Compounds. J. Org. Chem.1991,56,4529-4534.
    [84]Wan, Z.-H.; Jones, C. D.; Mitchell, D.; Pu, J. Y.; Zhang, T. Y. Practical Method for Transforming Alkynes into a-Diketones. J. Org. Chem.2006,71,826-828.
    [85]Chandrasekhar, S.; Sridhar, M. A Bifunctional Approach Towards the Mild Oxidation of Organic Halides:2-Dimethylamino-N,N-dimethylaniline N-Oxide. Tetrahedron Lett.2010,41, 5423-5425.
    [86]Wang, S.-M.; Miller, W.; Milton, J.; Vicker, N.; Stewart, A.; Charlton, P.; Mistry, P.; Hardick, D.; Denny, W. A. Structure-Activity Relationships for Analogues of the Phenazine-Based Dual Topoisomerase Ⅰ/Ⅱ Inhibitor XR11576. Bioorg. Med. Chem. Lett.2002,12, 415-418.
    [87]Li, W.; Li, J.-C.; DeVincentis, D.; Mansour, T. S. Oxygen Transfer from Sulfoxide: Formation of Aromatic Aldehydes from Dihalomethylarenes. Tetrahedron Lett.2004,45, 1071-1074.
    [88]Floyd, M. B.; Du, M. T.; Fabio, P. F.; Jacob, L. A.; Johnson, B. D. The Oxidation of Acetophenones to Arylglyoxals with Aqueous Hydrobromic Acid in Dimethyl Sulfoxide. J. Org. Chem.1985,50,5022-5027.
    [89]Bulman Page, P. C.; Rosenthal, S. A Short and General Synthesis of a-Ketoacylsilanes. Tetrahedron Lett.1986,27,2527-2528.
    [90](a) Chaudhari, S. S.; Skamanchi, K. G. A Mild, Chemoselective, Oxidative Method for Deoximation using Dess-Martin Periodinane. Synthesis 1999,760-764. (b) Marziano, N. C.; Ronchin, L.; Tortato, C.; Zingales, A.; Scantamburlo, L. Selective Oxidations by Nitrosating Agents Part 1:Oxidations of Ketones in Concentrated Sulfuric Acid. J. Mol. Catal. A:Chem.2005, 235,17-25.
    [91]Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in Synthesis of Heterocyclic Compounds. Chem. Rev.2013, DOI:10.1021/cr300176g.
    [92]Zuliani, V.; Cocconcelli, G.; Fantini, M.; Ghiron, C.; Rivara, M. A Practical Synthesis of 2,4(5)-Diarylimidazoles from Simple Building Blocks. J. Org. Chem.2007,72,4551-4553.
    [93](a) Khalili, B.; Tondro, T.; Hashemi, M. M. Novel One-pot Synthesis of (4 or 5)-Aryl-2-aryloyl-(1H)-imidazoles in Water and Tauto-isomerization Study using NMR. Tetrahedron 2009,65,6882-6887; (b) Fantini, M.; Zuliani, V.; Spotti, M. A.; Rivara, M. Microwave Assisted Efficient Synthesis of Imidazole-Based Privileged Structures. J. Comb. Chem. 2010,12,181-185.
    [94](a) Khalili, B.; Jajarmi, P.; Eftekhari-Sis, B.; Hashemi, M. M. Novel One-Pot, Three-Component Synthesis of New 2-Alkyl-5-aryl-(1H)-pyrrole-4-ol in Water. J. Org. Chem. 2008,73,2090-2095; (b) Jiang, B.; Li, Y.; Tu, M. S.; Wang, S. L.; Tu, S. J.; Li, G. G. Allylic Amination and N-Arylation-Based Domino Reactions Providing Rapid Three-Component Strategies to Fused Pyrroles with Different Substituted Patterns. J. Org. Chem.2012,77, 7497-7505.
    [95]Bandyopadhyay, D.; Mukherjee, S.; Rodriguez, R. R.; Banik, B. K. An Effective Microwave-Induced Iodine-Catalyzed Method for the Synthesis of Quinoxalines via Condensation of 1,2-Diamines with 1,2-Dicarbonyl Compounds. Molecules 2010,15,4207-4212.
    [96]Yadav, J. S.; Subba Reddy, B. V.; Premalatha, K.; Shankar, K. S. Bismuth(Ⅲ)-Catalyzed Rapid Synthesis of 2,3-Disubstituted Quinoxalines in Water. Synthesis 2008,3787-3792.
    [97]Kulkarni, A.; Abid, M.; Torok, B.; Huang, X. D. A Direct Synthesis of β-Carbolines via a Three-step One-pot Domino Approach with a Bifunctional Pd/C/K-10 Catalyst. Tetrahedron Lett. 2009,50,1791-1794.
    [98]Yang, M. L.; Kuo, P. C.; Damu, A. G.; Chang, R. J.; Chiou, W. F.; Wu, T. S. A Versatile Route to the Synthesis of 1-Substituted β-Carbolines by a Single Step Pictet-Spengler Cyclization. Tetrahedron 2006,62,10900-10906.
    [99]Rimaz, M.; Khalafy, J. A Novel One-pot, Three-component Synthesis of Alkyl 6-Aryl-3-methylpyridazine-4-carboxylates in Water. Arkiov 2010,2,110-117.
    [100]Garia-Valverde, M.; Macho, S.; Marcaccini, S.; rodriguez, T.; Rojo, J.; Torroba, T. A One-Pot, Ugi Four-Component Synthesis of 2(3H)-Oxazolone 4-Carboxamides. Synlett.2008, 33-36.
    [101]Sanudo, M.; Garia-Valverde, M.; Marcaccini, S.; Delgado, J. J.; Rojo, J.; Torroba, T. Synthesis of Benzodiazepine β-Turn Mimetics by an Ugi 4CC/Staudinger/Aza-Wittig Sequence. Solving the Conformational Behavior of the Ugi 4CC Adducts. J. Org. Chem.2009,74, 2189-2192.
    [102]Lecinska, P.; Corres, N.; Moreno, D.; Garia-Valverde, M.; Marcaccini, S.; Torroba, T. Synthesis of Pseudopeptidic (S)-6-Amino-5-oxo-1,4-diazepines and (S)-3-Benzyl-2-oxo-1,4-benzodiazepines by an Ugi 4CC Staudinger/aza-Wittig Sequence. Tetrahedron 2010,66,6783-6788.
    [103]Beck, B.; Magnin-Lachaux, M.; Herdtweck, E.; Domling, A. A Novel Three-Component Butenolide Synthesis. Org. Lett.2001,3,2875-2878.
    [104]Paul, S.; Gupta, M.; Gupta, R.; Loupy, A. Microwave Assisted Synthesis of 1,5-Disubstituted Hydantoins and Thiohydantoins in Solvent-Free Conditions. Synthesis 2002, 75-78.
    [105]Konno, S.; Osawa, N.; Yamanaka, H. Synthesis of 6-Substituted 3,5-Diaryl-1,2,4-triazineass Potential Herbicidal Agents. J. Agric. Food. Chem.1995,43, 838-842.
    [106]Pitts, W.; Guo, J. Q.; Dhar, T. G. M.; Shen, Z. Q.; Gu, H. H.; Watterson, S. H.; Bednarz, M. S.; Chen, B. C.; Barrish, J. C.; Bassolino, D.; Cheney, D.; Fleener, C. A.; Rouleau, K. A.; Houllenbaugh, D. L.; Iwanowicz, E. J. Rapid Synthesis of Triazine Inhibitors of Inosine Monophosphate Dehydrogenase. Bioorg. Med. Chem. Lett.2002,12,2137-2140.
    [107]Choi, I. Y.; Lee, H. G.; Chung, K. H.; Efficient Stereoselective Synthesis of a-Hydroxy Aldehydes with (R)-Piperidin-3-ol as a New Chiral Auxiliary.J. Org. Chem.2001,66,2484-2486.
    [108]Tonoi, T.; Mikami, K. Chiral Bis-trifluoromethanesulfonylamide as a Chiral Br0nsted Acid Catalyst for the Asymmetric Hetero Diels-Alder Reaction with Danishefsky's Diene. Tetrahedron Lett.2005,46,6355-6358.
    [109]Hyvl, J.; Srogl, J. Copper-Catalyzed Activation of Disulfides as a Key Step in the Synthesis of Benzothiazole Moieties. Eur. J. Org. Chem.2010,2849-2859.
    [110](a) Onitsuka, S.; Nishino, H.; Kurosawa, K. Acid-catalyzed Convenient Transformation of 1-Aryl-2-pentene-1,4-diones into Polyfunctionalized Furans. Tetrahedron Lett.2000,41, 3149-3152; (b) Onitsuka, S.; Nishino, H. Synthesis of Polyfunctionalized Furans from 3-Acetyl-1-aryl-2-pentene-1,4-diones. Tetrahedron 2003,59,755-765; (c) Cecere, M.; Gozzo, F.; Malandra, A.; Mirenna, L.; Triazol Anti-fungal Acents. Ger. Offen 3,319,990,1983; Chem. Abstr. 1984,100, p.139119x.
    [111]Diring, S.; Retailleau, P.;Ziessal, R. Synthesis of 6-Phenyl-2,20-bipyridine Ligands Bearing Polyaromatic Substituents. Tetrahedron Lett.2007,48,8069-8073.
    [112](a) Huddleston, R. R.; Jang, H.-Y.; Krische, M. J. First Catalytic Reductive Coupling of 1,3-Diynes to Carbonyl Partners:A New Regio- and Enantioselective C-C Bond Forming Hydrogenation. J. Am. Chem. Soc.2003,125,11488-11489; (b) Marriner, G. A.; Garner, S. A.; Jang, H.-Y.; Krische, M. J. Metallo-Aldehyde Enolates via Enal Hydrogenation:Catalytic Cross Aldolization with Glyoxal Partners As Applied to the Synthesis of 3,5-Disubstituted Pyridazines. J. Org. Chem.2004,69,1380-1382; (c) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. Hydrogen-Mediated C-C Bond Formation:Catalytic Regioand Stereoselective Reductive Condensation of a-Keto Aldehydes and 1,3-Enynes. J. Am. Chem. Soc.2004,126,4664-4668.
    [113]Russell, A. E.; Miller, S. P.; Morken, J. P. Efficient Lewis Acid Catalyzed Intramolecular Cannizzaro Reaction. J. Org. Chem.2000,65,8381-8383.
    [114]Curini, M.; Epifano, F.; Genovese, S.; Marcotullio, M. C.; Rosati, O. Ytterbium Triflate-Promoted Tandem One-Pot Oxidation-Cannizzaro Reaction of Aryl Methyl Ketones. Org. Lett.2005,7,1331-1333.
    [115]Gozalishvili, L. L.; Beryozkina, T. V.; Omelchenko, I. V.; Zubatyuk, R. I.; Shishkin, O. V.; Kolos, N. N. A Rapid and Facile Synthesis of New Spiropyrimidines from 5-(2-Arylethylidene-2-oxo)-1,3-dimethylpyrimidine-2,4,6-triones. Tetrahedron 2008,64, 8759-8765.
    [116]Shen, K.; Liu, X. H.; Zheng, K.; Li, W.; Hu, X. L.; Lin, L. L; Feng, X. M. Catalytic Asymmetric Synthesis of 3-(a-Hydroxy-β-carbonyl) Oxindoles by a ScⅢ-Catalyzed Direct Aldol-Type Reaction. Chem. Eur. J.2010,16,9969-9972.
    [117]Singh, R. P.; Leitch, J. M.; Twamley, B.; Shreeve, J. M.; Diketo Compounds with (Trifluoromethyl)trimethylsilane:Double Nucleophilic Trifluoromethylation Reactions. J. Org. Chem.2001,66,1436-1440.
    [118]Zhang, C.; Zong, X. L.; Zhang, L. R.; Jiao, N. Copper-Catalyzed Aerobic Oxidative Cross-Dehydrogenative Coupling of Amine and alpha-Carbonyl Aldehyde:A Practical and Efficient Approach to alpha-Ketoamides with Wide Substrate Scope. Org. Lett.2012,14, 3280-3283.
    [119](a) Wu A. X.; Isaacs L. Self-sorting:The Exception or the Rule? J. Am. Chem. Soc.2003, 125,4831-4835; (b) Wu A. X.; Chakraborty A.; Fettinger J. C.; Flowers R. A.; Isaacs L. Molecular Clips That Undergo Heterochiral Aggregation and Self-sorting. Angew. Chem. Int. Ed.2002,41, 4028-4031.
    [120]Mukhopadhyay P.; Wu A. X.; Isaacs L. Social Self-sorting in Aqueous Solution. J. Org. Chem.2004,69,6157-6164.
    [121]Yin, G; Zhou, B.; Meng, X.; Wu, A.; Pan, Y. Efficient C-C Double-Bond Formation Reaction via a New Synthetic Strategy:A Self-Sorting Tandem Reaction. Org. Lett.2006,8, 2245-2248.
    [1](a) Jia, C. G.; Kitamura, T.; Fujiwara, Y. Catalytic Functionalization of Arenes and Alkanes via C-H Bond Activation. Acc. Chem. Res.2001,34,633-639; (b) Kakiuchi, F.; Murai, S. Catalytic C-H/Olefin Coupling. Acc. Chem. Res.2002,34,826-834; (c) Godula, K.; Sames, D. C-H Bond Functionalization in Complex Organic Synthesis. Science 2006,312,67-72; (d) Ramirez, T. A.; Zhao, B. G Shi, Y. Recent Advances in Transition Metal-catalyzed sp3 C-H Amination Adjacent to Double Bonds and Carbonyl Groups. Chem. Soc. Rev.2012,41,931-942.
    [2](a) Uyanik, M.; Okamoto, H.; Yasui, T; Ishihara, K. Quaternary Ammonium (Hypo)iodite Catalysis for Enantioselective Oxidative Cycloetherification. Science 2010,328,1376-1379; (b) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. In Situ Generated (Hypo)Iodite Catalysts for the Direct α-Oxyacylation of Carbonyl Compounds with Carboxylic Acids. Angew. Chem. Int. Ed. 2011,50,5331-5334; (c) Uyanik, M.; Ishihara, K. In situ-generated Chiral Quaternary Ammonium (Hypo)iodite Catalysis for Enantioselective Oxidative Cyclisations. Chim. Oggi.2011,29,18; (d) Uyanik, M.; Ishihara, K. Catalysis with In Situ-Generated (Hypo)iodite Ions for Oxidative Coupling Reactions. ChemCatChem.2011,4,177-185.
    [3](a) Froehr, T.; Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.; Nachtsheim, B. J. A Metal-Free Amination of Benzoxazoles-The First Example of an Iodide-Catalyzed Oxidative Amination of Heteroarenes. Org. Lett.2011,13,3754-3757; (b) Kloeckner, U.; Weckenmann N. M.; Nachtsheim B. J. A Metal-free Oxidative Amination of Benzoxazoles with Primary Amines and Ammonia. Synlett.2012,97-100.
    [4]Ma, L. J.; Wang, X. P.; Yu, W.; Han, B. TBAI-Catalyzed Oxidative Coupling of Aminopyridines with β-Keto Esters and 1,3-Diones-synthesis of Imidazo[1,2-a]pyridines. Chem. Comm.2011,47,11333-11335.
    [5](a) Wei, W.; Zhang, C.; Xu, Y; Wan, X. B. Synthesis of Tert-butyl Peresters from Aldehydes by Bu4NI-catalyzed Metal-free Oxidation and its Combination with the Kharasch-Sosnovsky reaction. Chem. Comm.2011,47,10827-10829; (b) Chen, L.; Shi, E. B.; Liu,Z. J.; S. L. Chen, W. Wei, H. Li, K. Xu and X. B. Wan, Bu4NI-Catalyzed C-O Bond Formation by Using a Cross-Dehydrogenative Coupling (CDC) Reaction. Chem.-Eur. J.2011,17,4085-4089; (c) Liu, Z. J.; Zhang, J.; Chen, S. L.; Shi, E. B.; Xu, Y; Wan, X. B. Cross Coupling of Acyl and Aminyl Radicals:Direct Synthesis of Amides Catalyzed by Bu4NI with TBHP as an Oxidant. Angew. Chem. Int. Ed.2012,51,3231-3235; (d) Shi, E. B.; Shao, Y.; Chen, S. L.; Hu, H. Y.; Liu, Z. J.; Zhang, J.; Wan, X. B. Tetrabutylammonium Iodide Catalyzed Synthesis of Allylic Ester with tert-Butyl Hydroperoxide as an Oxidant. Org. Lett.2012,14,3384-3387.
    [6]Xie, J.; Jiang, H. L.; Cheng,Y. X. and Zhu,C. J. Metal-free, Organocatalytic Cascade formation of C-N and C-O Bonds through Dual sp3 C-H Activation:Oxidative Synthesis of Oxazole Derivatives. Chem. Comm.2012,48,979-981.
    [7](a) Wan, C. F.; Zhang, J. T.; Wang, S. J.; Fan, J. M.; Wang, Z. Y. Facile Synthesis of Polysubstituted Oxazoles via A Copper-Catalyzed Tandem Oxidative Cyclization. Org. Lett.2010, 12,2338-2341; (b) Zhang, J. T.; Zhu, D. P.; Yu, C. M.; Wan, C. F.; Wang, Z. Y. A Simple and Efficient Approach to the Synthesis of 2-Phenylquinazolines via sp3 C-H Functionalization. Org. Lett.2010,12,2841-2843; (c) Wan, C. F.; Gao, L. F.; Wang, Q.; Zhang, J. T.; Wang, Z. Y. Simple and Efficient Preparation of 2,5-Disubstituted Oxazoles via a Metal-Free-Catalyzed Cascade Cyclization. Org. Lett.2010,12,3902-3905; (d) Yang, Y. Z.; Wang, Z. Y. Metal-free Intramolecular Oxidative Decarboxylative Amination of Primary a-Amino Acids with Product Selectivity. Chem. Comm.2011,47,9513-9515; (e) Wang, Q.; Wan, C. F.; Gu, Y.; Zhang, J. T.; Gao, L. F.; Wang, Z. Y. A Metal-free Decarboxylative Cyclization from Natural a-Amino Acids to Construct Pyridine Derivatives. Green Chem.2011,13,578-581.
    [8]Jiang, H. F.; Huang, H. W.; Cao, H.; Qi, C. R. TBHP/I2-Mediated Domino Oxidative Cyclization for One-Pot Synthesis of Polysubstituted Oxazoles. Org. Lett.2010,12,5561-5563.
    [9]Lamani, M.; Prabhu, K. R. Iodine-Catalyzed Amination of Benzoxazoles:A Metal-Free Route to 2-Aminobenzoxazoles under Mild Conditions. J. Org. Chem.2011,76,7938-7944.
    [10]Zhang, X. B.; Wang, L. TBHP/I2-promoted Oxidative Coupling of Acetophenones with Amines at Room Temperature under Metal-free and Solvent-free Conditions for the Synthesis of a-Ketoamides. Green Chem.2012,14,2141-2145.
    [11](a) Horton, D. A.; Bourne, GT.; Smythe, M. L. The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Chem. Rev.2003,103,893-930; (b) Bahrami, K.; Khodaei, M. M.; Naali, F. Mild and Highly Efficient Method for the Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. J. Org. Chem.2008,73,6835-6837.
    [12](a) Yang, X. L.; Xu, C. M.; Lin, S. M.; Chen, J. X.; Ding, J. C Wu, H. Y; Su, W. K. Eco-Friendly Synthesis of 2-Substituted Benzothiazoles Catalyzed by Cetyltrimethyl Ammonium Bromide (CTAB) in Water. J. Braz. Chem. Soc.2010,21,37-42; (b) Hyvl, J.; Srogl, J. Copper-Catalyzed Activation of Disulfides as a Key Step in the Synthesis of Benzothiazole Moieties. Eur. J. Org. Chem.2010,15,2849-2851; (c) Fan, X. S.; He,Y; Wang, Y. Y Xue, Z. K.; Zhang, X. Y Wang, J. J. A Novel and Practical Synthesis of 2-Benzoylbenzothiazoles and 2-Benzylbenzothiazoles. Tetrahedron Lett.2011,52,899-902; (d) Shokrolahi, A.; Zali, A.; Mahdavi, M. Sulfonated Porous Carbon (SPC)-Catalyzed Synthesis of Benzothiazole Derivatives in Water. Phosphorus, Sulfur Silicon Relat. Elem.2012,187,535-543.
    [13]Zuliani,V.; Cocconclli, G Fantint, M.; Ghiron, C Rivara, M. A Practical Synthesis of 2,4(5)-Diarylimidazoles from Simple Building Blocks. J. Org. Chem.2007,72,4551-4553.
    [14]Yin, GD.; Gao, M.; She, N. F.; Hu, S. L.; Wu, A. X.; Pan, Y. J. Highly Efficient and Clean Method for Direct a-Iodination of Aromatic Ketones. Synthesis 2007,3113-3116.
    [15](a) Kornblum, N.; Powers, J. W.; Anderson, GJ.; Jones, W. J.; Larson, H. O.; Levand, O.; Weaver, W. M. A new And Seletive Method of Oxidation. J. Am. Chem. Soc.1957,79,6562; (b) Yin, G. D.; Zhou, B. H.; Meng, X. G.; Wu, A. X.; Pan, Y. J. Efficient C-C Double-Bond Formation Reaction via a New Synthetic Strategy:A Self-Sorting Tandem Reaction. Org. Lett.2006,8, 2245-2248; (c) Zhu, Y. P.; Liu, M. C.; Jia, F. C.; Yuan, J. J.; Lian, M.; Gao, Q. H.; Wu, A. X. Metal-Free sp3 C-H Bond Dual-(Het)arylation:I2-Promoted Domino Process to Construct 2,2-Bisindolyl-l-arylethanones. Org. Lett.2012,14,3392-3395; (d) Xue, W. J.; Li, Q.; Zhu, Y. P.; Wang, J. G.; Wu, A. X. Convergent Integration of Two Self-labor Domino Sequences:a Novel Method for the Synthesis of Oxazole Derivatives from Methyl Ketones and Benzoins. Chem. Comm.2012,48,3485-3487.
    [16]Ishihara, M.; Togo, H. An Efficient Preparation of 2-Imidazolines and Imidazoles from Aldehydes with Molecular Iodine and (Diacetoxyiodo)benzene. Synlett.2006,227-230.
    [17]Gao, M.; Yang, Y; Wu, Y. D.; Deng, C.; Shu, W. M.; Zhang, D. X.; Cao, L. P.; She, N. F.; Wu, A. X. An Efficient Synthesis of Hydantoins via Sustainable Integration of Coupled Domino Processes. Org. Lett.2010,12,4026-4029.
    [18]Mu, X. J.; Zou, J. P.; Zeng, R. S.; Wu, J. C. Mn(Ⅲ)-Promoted Cyclization of Substituted Thioformanilides under Microwave Irradiation:a New Reagent for 2-Substituted Benzothiazoles. Tetrahedron Lett.2005,46,4345-4347.
    [19]Boga, C.; Stengel, R.; Abdayem, R.; Vecchio, E. D.; Forlani, L.; Todesco, P. E. Regioselectivity in the Addition of Vinylmagnesium Bromide to Heteroarylic Ketones:C-versus O-Alkylation. J. Org. Chem.2004,69,8903-8909.
    [20]Fan, X. S.; He, Y; Guo, S. H.; Zhang, X. Y RuCl3-3H2O Catalyzed Tandem Reaction of Alkynylbromides with 2-Aminothiophenols in Water:A Convenient Synthesis of 2-Benzoylbenzothiazoles. Aust. J. Chem.2011,64,1568-1573.
    [1]For some reviews of domino reactions, see:(a) Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis, Wiley-VCH:Weinheim, Germany,2006. (b) Tietze, L. F.; Domino Reactions in Organic Synthesis. Chem. Rev.1996,96,115-136. (c) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Tandem Reactions, Cascade Sequences, and Biomimetic Strategies in Total Synthesis. Chem. Commun.2003,551-564. (d) Talor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Tandem Oxidation Processes Using Manganese Dioxide:Discovery, Applications, and Current Studies. Acc. Chem. Res.2005,38,851-869. (e) Tietze, L. F.; Kinzel, T.; Brazel, C. C. The Domino Multicomponent Allylation Reaction for the Stereoselective Synthesis of Homoallylic Alcohols. Acc. Chem. Res.2009,42,367-378.
    [2](a) Fogg, D. E.; dos Santos, E. N. Tandem Catalysis:a Taxonomy and Illustrative Review. Coord. Chem. Rev.2004,248,2365-2379. (b) Shindoh, N.; Takemoto, Y.; Takasu, K. Auto-Tandem Catalysis:A Single Catalyst Activating Mechanistically Distinct Reactions in a Single Reactor. Chem.-Eur. J.2009,15,12168-12179. (c) Yin, G. D.; Zhou, B. H.; Meng, X. G.; Wu, A. X.; Pan, Y. J. Efficient C-C Double-Bond Formation Reaction via a New Synthetic Strategy:A Self-Sorting Tandem Reaction. Org. Lett.2006,8,2245-2248. (d) Gao, M.; Yang, Y.; Wu, Y. D.; Cong, C.; Shu, W. M.; Zhang, D. X.; Cao, L. P.; She, N. F.; Wu, A. X. An Efficient Synthesis of Hydantoins via Sustainable Integration of Coupled Domino Processes. Org. Lett. 2010,12,4026-4029. (e) Zhu, Y. P.; Gao, Q. H.; Lian, M.; Yuan, J. J.; Liu, M. C.; Zhao, Q.; Yang, Y; Wu, A. X. A Sustainable Byproduct Catalyzed Domino Strategy:Facile Synthesis of α-Formyloxy and Acetoxy Ketones via Iodination/Nucleophilic Substitution/Hydrolyzation/Oxidation Sequences. Chem. Commun.2011,47,12700-12702. (f) Allenn, A. E.; MacMillan, D. W. C. Synergistic Catalysis:A Powerful Synthetic Strategy for New Reaction Development Chem. Sci.2012,3,633-638. Reference therein.
    [3](a) Aragon, D. T.; Lopez, G. V.; Garcia-Tellado, F.; Marrero-Tellado, J. J.; Armas, P. d.; Terrero, D. An Effective One-Pot Synthesis of 5-Substituted Tetronic Acids. J. Org. Chem.2003,68, 3363-3365. (b) Tejedor, D.; Gonzalez-Cruz, D.; Garcia-Tellado, F.; Marrero-Tellado, J. J.; Rodriguez, M. L. A Diversity-Oriented Strategy for the Construction of Tetrasubstituted Pyrroles via Coupled Domino Processes. J. Am. Chem. Soc.2004,126,8390-8391. (c) Tejedor, D.; Santos-Exposito, A.; Gonzalez-Cruz, D.; Marrero-Tellado, J. J.; Garcia-Tellado, F. A Modular, One-Pot, Four-Component Synthesis of Polysubstituted 1,3-Oxazolidines.J. Org. Chem.2005,70, 1042-1045. (d) Yamamoto, Y.; Hayashi, H.; Saigoku, T.; Nishiyama, H. Domino Coupling Relay Approach to Polycyclic Pyrrole-2-carboxylates. J. Am. Chem. Soc.2005,127,10804-10805.
    [4](a) Brown, R. F. C.; Eastwood, F. W. Multiple pathways to ring-contracted aromatic Hydrocarbons. Pure & Appl. Chem.1996,68,261-266. (b) Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant Signaling. FEMS. Microbiol. Rev. 2007,31,425-448. (c) Therkelsen,F. D.; Hansen,A.-L. L.; Pedersen, E. B.; Nielsen, C. Multiple Pathways in the Synthesis of New Annelated Analogues of 6-Benzyl-1-(ethoxymethyl)-5-isopropyluracil (emivirine). Org. Biomol. Chem.2003,1, 2908-2918.
    [5]Yadav, J. S.; Subba Reddy, B. V.; Singh, A. P.; Basak, A. K.1BX/I2-Mediated Oxidation of Alkenes and Alkynes in Water:a Facile Synthesis of a-Iodoketones. Tetrahedron Lett.2008,49, 5880.
    [6]Moorthy, J. N.; Senapati, K.; Singhal, N. An Expedient Protocol for Conversion of Olefins to α-Bromo/Iodoketones Using IBX and NBS/NIS. Tetrahedron Lett.2009,50,2493.
    [7]Jiang, H. F.; Huang, H. W.; Cao, H.; Qi, C. R. TBHP/I2-Mediated Domino Oxidative Cyclization for One-Pot Synthesis of Polysubstituted Oxazoles. Org. Lett.2010,12,5561-5563.
    [8]Runcie, K. A.; Taylor, R. J. K. The in Situ Oxidation-Wittig Reaction of α-Hydroxyketones. Chem. Commun.2002,974-975.
    [9]Surendra, K.; Krishnaveni, N. S.; Reddy, M. A.; Nageswar, Y. V. D.; Rao, K. R. Mild Oxidation of Alcohols with o-Iodoxybenzoic Acid (IBX) in Water/Acetone Mixture in the Presence of-Cyclodextrin. J. Org. Chem.2003,68,2058-2059.
    [10](a) Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H. O.; Levand, O.; Weaver, W. M. A New and Selective Method of Oxidation. J. Am. Chem. Soc.1957,79,6562. (b) Zhu, Y. P.; Liu, M. C.; Jia, F. C.; Yuan, J. J.; Gao, Q. H.; Lian, M.; Wu, A. X. Metal-Free sp3 C-H Bond Dual-(Het)arylation:I2-Promoted Domino Process to Construct 2,2-Bisindolyl-l-arylethanones. Org. Lett.2012,14,3392-3395.
    [11](a) Nicolou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y. L. Iodine(V) Reagents in Organic Synthesis. Part 4. o-Iodoxybenzoic Acid as a Chemospecific Tool for Single Electron Transfer-Based Oxidation Processes. J. Am. Chem. Soc.2002,124,2245. (b) Zhdankin, V. V.; Stang, P. J. Chemistry of Polyvalent Iodine. Chem. Rev.2008,108,5299-5358. (c) Zhdankin, V. V. An Effective One-Pot Synthesis of 5-Substituted Tetronic Acids. J. Org. Chem.2011,76, 1185-1197.
    [12](a) Bahrami, K.; Khodaei, M. M.; Naali, F. Mild and Highly Efficient Method for the Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. J. Org. Chem.2008,73,6835-6837. (b) Blacker, A. J.; Farah, M. M.; Hall, M. I.; Marsden, S. P.; Saidi, O.; Williams, J. M. J. Synthesis of Benzazoles by Hydrogen-Transfer Catalysis. Org. Lett.2009,11,2039-2042. (c) Wu, M. Y., Hu, X.; Liao, Y. F.; Deng, G. J. Iron-Catalyzed 2-Arylbenzoxazole Formation from o-Nitrophenols and Benzylic Alcohols. Org. Lett.2012,14,2722-2725. (d) Zhu, C.; Akiyama, T.; A Novel Indium-Catalyzed Three-Component Reaction:General and Efficient One-Pot Synthesis of Substituted Pyrroles. Synlett.2010,2345-2351.
    [1]Do, H. Q.; Daugulis, O. Copper-Catalyzed Arylation of Heterocycle C-H Bonds. J. Am. Chem. Soc.2007,129,12404-12405. (b) Huang, J. K.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. A Highly Efficient Palladium/Copper Cocatalytic System for Direct Arylation of Heteroarenes:An Unexpected Effect of Cu(Xantphos)1. J. Am. Chem. Soc.2010,132, 3674-3675. (c) Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H. B.; Kwong, F. Y.; Lei, A. W. Organocatalysis in Cross-Coupling:DMEDA-Catalyzed Direct C-H Arylation of Unactivated Benzene. J. Am. Chem. Soc.2010,132,16737-16740. (d) Shuai, Q.; Yang, L.; Guo, X. Y.; Basle, O.; Li, C. J. Rhodium-Catalyzed Oxidative C-H Arylation of 2-Arylpyridine Derivatives via Decarbonylation of Aromatic Aldehydes. J. Am. Chem. Soc.2010, 132,12212-12213. (e) Wei, Y.; Su, W. P. Pd(OAc)2-Catalyzed Oxidative C-H/C-H Cross-Coupling of Electron-Deficient Polyfluoroarenes with Simple Arenes. J. Am. Chem. Soc.2010,132, 16377-16379. (f) Daugulis, O.; Do, H. Q.; Shabashov, D. Palladium-and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds. Acc. Chem. Res.2009,42,1074-1086. (g) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Weak Coordination as a Powerful Means for Developing Broadly Useful C-H Functionalization Reactions. Acc. Chem. Res.2012,45,788-802.
    [2](a) Stuart, D. R.; Fagnou, K. The Catalytic Cross-Coupling of Unactivated Arenes. Science 2007,316,1172-1175. (b) Stuart, D. R.; Villemure, E.; Fagnou, K. Elements of Regiocontrol in Palladium-Catalyzed Oxidative Arene Cross-Coupling. J. Am. Chem. Soc.2007,129, 12072-12073. (c) Truong, T.; Daugulis, O. Base-Mediated Intermolecular sp2 C-H Bond Arylation via Benzyne Intermediates. J. Am. Chem. Soc.2011,133,4243-4245. (d) Cao, H.; Zhan, H. Y.; Lin, Y. G.; Lin, X. L.; Du, Z, D.; Jiang, H. F. Direct Arylation of Imidazo[1,2-a]pyridine at C-3 with Aryl Iodides, Bromides, and Inflates via Copper(I)-Catalyzed C-H Bond Functionalization. Org. Lett.2012,14,1688-1691. (e) Suarez, L. L.; Greaney, M. F. Tandem indole C-H alkenylation/arylation for tetra-substituted alkene synthesis. Chem. Comm.2011,47,7992-7994. [3] (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. Highly Regioselective Arylation of sp3 C-H Bonds Catalyzed by Palladium Acetate. J. Am. Chem. Soc.2005,127,13154-13155. (b) Shabashov, D.; Daugulis, O. Catalytic Coupling of C-H and C-I Bonds Using Pyridine As a Directing Group. Org. Lett.2005,7,3657-3659. (c) Shabashov, D.; Daugulis, O. Auxiliary-Assisted Palladium-Catalyzed Arylation and Alkylation of sp2 and sp3 Carbon-Hydrogen Bonds. J. Am. Chem. Soc.2010,132,3965-3972. (d) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. Oxidative C-H Activation/C-C Bond Forming Reactions: Synthetic Scope and Mechanistic Insights. J. Am. Chem. Soc.2005,127,7330-7331. (e) Pastine, S. J.; Gribkov, D. V.; Sames, D. sp3 C-H Bond Arylation Directed by Amidine Protecting Group: a-Arylation of Pyrrolidines and Piperidines. J. Am. Chem. Soc.2006,128,14220-14221. (f) Giri, R.; Maugel,N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.; Yu, J. Q. Palladium-Catalyzed Methylation and Arylation of sp2 and sp3 C-H Bonds in Simple Carboxylic Acids. J. Am. Chem. Soc.2007,129,3510-3511. (g) Wang, D. H.; Wasa, M.; Giri, R.; Yu, J. Q. Pd(Ⅱ)-Catalyzed Cross-Coupling of sp3 C-H Bonds with sp2 and sp3 Boronic Acids Using Air as the Oxidant. J. Am. Chem. Soc.2008,130,7190-7191. (h) Wasa, M.; Engle, K. M; Yu, J. Q. Pd(0)/PR3-Catalyzed Intermolecular Arylation of sp3 C-H Bonds. J. Am. Chem. Soc.2009,131, 9886-9887. (i) Reddy, S. V. S.; Reddy, L. R.; Corey, E. J. Novel Acetoxylation and C-C Coupling Reactions at Unactivated Positions in a-Amino Acid Derivatives. Org. Lett.2006,8,3391-3394. (j) Zhao, Y. S.; Chen, G. Palladium-Catalyzed Alkylation of ortho-C(sp2)-H Bonds of Benzylamide Substrates with Alkyl Halides. Org. Lett.2011,13,4850-4853.
    [4](a) Lafrance, M.; Gorelsky, S. I.; Fagnou, K. High-Yielding Palladium-Catalyzed Intramolecular Alkane Arylation:Reaction Development and Mechanistic Studies. J. Am. Chem. Soc.2007,129,14570-14571. (b) Rousseaux, S.; Davi, M.; Sofack-Kreutzer, J.; Pierre, C.; Kefalidis, C. E.; Clot, E.; Fagnou, K.; Baudoin, O. Intramolecular Palladium-Catalyzed Alkane C-H Arylation from Aryl Chlorides. J. Am. Chem. Soc.2010,132,10706-10716. (c) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Palladium-Catalyzed sp3 C-H Activation of Simple Alkyl Groups: Direct Preparation of Indoline Derivatives from N-Alkyl-2-bromoanilines. Org. Lett.2008,10, 1759-1762. (d) Feng, Y. Q.; Wang, Y. J.; Landgraf, B.; Liu, S.; Chen, G. Facile Benzo-Ring Construction via Palladium-Catalyzed Functionalization of Unactivated sp3 C-H Bonds under Mild Reaction Conditions. Org. Lett.2010,12,3414-3417.
    [5](a) Li, Z. P.; Li, C. J. CuBr-Catalyzed Direct Indolation of Tetrahydroisoquinolines via Cross-Dehydrogenative Coupling between sp3 C-H and sp2 C-H Bonds. J. Am. Chem. Soc.2005, 127,6968-6969. (b) Li, Z. P.; Bohle, D. S., Li, C. J. Cu-catalyzed Cross-dehydrogenative Coupling:a Versatile Strategy for C-C Bond Formations via the Oxidative Activation of sp(3) C-H Bonds. Proc. Natl. Acad. Sci. U.S.A.2006,103,8928-8933. (c) Basle. O. Li, C. J. Copper-Catalyzed Oxidative sp3 C-H Bond Arylation with Aryl Boronic Acids. Org. Lett.2008, 10,3661-663. (d) Li, C. J. Cross-Dehydrogenative Coupling (CDC):Exploring C-C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res.2009,42,335-344. (e) Guo, X. Y.; Li, C. J. Ruthenium-Catalyzed Para-Selective Oxidative Cross-Coupling of Arenes and Cycloalkanes. Org. Lett.2011,13,4977-4979. (f) Wang, P.; Rao, H. H.; Hua, R. M.; Li, C. J. Rhodium-Catalyzed Xanthone Formation from 2-Aryloxybenzaldehydes via Cross-Dehydrogenative Coupling (CDC). Org. Lett.2012,14,902-905. (g) Huang, L. H.; Niu, T. M.; Wu, J.; Zhang, Y. H. Copper-Catalyzed Oxidative Cross-Coupling of N,N-Dimethylanilines with Heteroarenes under Molecular Oxygen. J. Org. Chem.2011,76,1759-1766. (h) Ghobrial, M.; Schniirch, M.; Mihovilovic, M. D. Direct Functionalization of (Un)protected Tetrahydroisoquinoline and Isochroman under Iron and Copper Catalysis:Two Metals, Two Mechanisms. J. Org. Chem.2011,76,8781-8793.
    [6]MacNally, A.; Prier, C. K.; MacMillan, D. W. C. iscovery of an a-Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science 2011,334,1114-1117.
    [7](a) Sundberg, R. J. The Chemistry of Indoles; Academic Press:New York,1996; p 113. (b) Lounasmaa, M.; Tolvanen, A. Simple Indole Alkaloids and Those with a Nonrearranged Monoterpenoid Unit. Nat. Prod. Rep.2000,17,175-191. (c) Hibino, S.; Chozi, T. Simple Indole Alkaloids and Those with a Nonrearranged Monoterpenoid Unit. Nat. Prod. Rep.2001,18,66-87. (d) Zaimoku, H.; Taniguchi, T.; Ishibashi, H. Synthesis of the Core of Actinophyllic Acid Using a Transannular Acyl Radical Cyclization. Org. Lett,2012,14,1656-1658.
    [8]Cacchi, S.; Fabrizi, G. Synthesis and Functionalization of Indoles Through Palladium-catalyzed Reactions. Chem. Rev.2005,105,2873-2920; Chem. Rev.2011,111, PR215.
    [9](a) Porter, J. K.; Bacon, C.W.; Robbins, J. D.; Himmelsbach, D. S.; Higman, H. C. Indole alkaloids from Balansia epichloe (Weese). J. Agric. Food. Chem.1977,25,88-93. (b) Zhuang, W.; Jogenesen, K. A. Friedel-Crafts Reactions in Water of Carbonyl Compounds with Heteroaromatic Compounds. Chem. Comm.2002,1336-1337. (c) Shiri, M. Indoles in Multicomponent Processes (MCPs). Chem. Rev.2012,112,3508-3549.
    [10](a) Chen, D.; Yu, L.;Wang, P. G. Lewis Acid-catalyzed Reactions in Protic Media. Lanthanide-catalyzed Reactions of Indoles with Aldehydes or Ketones. Tetrahedron Lett.1996,37, 4467-4470. (b) Nair, V.; Abhilash, K. G.; Vidya, N. Practical Synthesis of Triaryl- and Triheteroarylmethanes by Reaction of Aldehydes and Activated Arenes Promoted by Gold(Ⅲ) Chloride. Org. Lett.2005,7,5857-7859. (c) Ji, S.-J.; Zhou, M.-F.; Gu, D.-G.; Jiang, Z.-Q.; Loh, T.-P. Efficient FeⅢ-Catalyzed Synthesis of Bis(indolyl)methanes in Ionic Liquids. Eur. J. Org. Chem.2004,7,1584-1587. (d) Ko, S.; Lin, C.; Tu, Z.; Wang, Y.-F.; Wang, C.-C.; Yao, C.-F. CAN and Iodine-catalyzed Reaction of Indole or 1-Methylindole with α,β-Unsaturated Ketone or Aldehyde. Tetrahedron Lett.2006,47,487-492. (d) Shingo, S.; Toshihiro, S. A Mild and Environmentally Friendly Scandium(Ⅲ) Trifluoromethanesulfonate-catalyzed Synthesis of Bis(3'-indolyl)alkanes and Bis(3'-indolyl)-1-deoxyalditols. Carbohyd. Res.2005,340,2251-2255. (e) Mi, X.; Luo, S.; He, J.; Cheng, J.-P. Dy(OTf)3 in Ionic Liquid:an Efficient Catalytic System for Reactions of Indole with Aldehydes/Ketones or Imines. Tetrahedron Lett.2004,45,4567-4570. (f) Cui, S.-C.; Li, Q.-J. Zirconium Triflate-catalyzed Reactions of Indole,1-Methylindole, and Pyrrole with α,β-Unsaturated Ketone. Tetrahedron 2004,60,6679-6684. (g) Wang, S.-Y.; Ji, S.-J. Facile Synthesis of Bis(indolyl)methanes Catalyzed by Ferric Dodecyl Sulfonate [Fe(DS)3] in Water at Room Temperature. Synth. Commun.2008,38,1291-1298. (h) Srinivasa, A.; Varma, P. P.; Hulikal, V.; Mahadevan, K. M. Antimony(Ⅲ) sulfate catalyzed condensation reaction of indoles with carbonyl compounds. Monatsh. Chem.2008,139,111-115. (i) Mo, L.-P.; Ma, Z. C.; Zhang, Z.-H. CuBr2-Catalyzed Synthesis of Bis(indolyl)methanes. Synth. Commun.2005,35,1997-2004. (j) Bandgar, B. P.; Bettigeri, S. V.; Joshi, N. S. Hexamethylenetetraaminebromine Catalyzed Rapid and Efficient Synthesis of Bis(indolyl)methanes. Monatsh. Chem.2004,135,1265-1273. (k) Hosseini-Sarvari, M. Synthesis of Bis(indolyl)methanes using a Catalytic Amount of ZnO under Solvent-Free Conditions. Synth. Commun.2008,38,832-840. (1) Bandgar, B. P.; Shaikh, K. A. J. Chem. Res.(S) 2004,1,34. (1) Zhang, Z.-H.; Yin, L.; Wang, Y.-M. An Efficient and Practical Process for the Synthesis of Bis(indolyl)methanes Catalyzed by Zirconium Tetrachloride. Synthesis 2005,1949. (m) Banerjee, B.; Mandal, S. K.; Roy, S. C. Efficient Synthesis of Bis(indolyl) methanes in Aqueous Medium Catalyzed by Molybdenyl Acetylacetonate. Indian J. Chem., Sect. B:Org. Chem. Incl. Med. Chem.2007,46,669-673. (n) Hasaninejad, A.; Parhami, A.; Zare, A.; Khalafi-Nezhad, A.; Shirazi, A. N.; Zare, A. R. M. Magnesium Sulfate as an Efficient and Very Cheap Reagent for the Preparation of Bis(indolyl)methanes. Pol. J. Chem.2008,82,565. (o) Wang, L.; Han, J.; Tian, H.; Sheng, J.; Fan, Z.; Tang, X. Rare Earth Perfluorooctanoate [RE(PFO)3]-Catalyzed Condensations of Indole with Carbonyl Compounds. Synlett,2005,337. (p) Tabatabaeian, K.; Mamaghani,M.; Mahmoodi, N.; Khorshidi, A. Efficient RuⅢ-catalyzed condensation of indoles and aldehydes or ketones. Can. J. Chem.2006,84,1541-1546. (q) Srinivasa, A.; Nandeshwarappa, B. P.; Kiran, B. M.; Mahadevan, K. M. Antimony Trichloride Catalyzed Condensation of Indole and Carbonyl Compounds:Synthesis of Bis(indolyl)methanes. Phosphorus, Sulfur Silicon Relat. Elem.2007,182,2243-2249. (r) Bartol, G.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L. Solvent-Free Indoles Addition to Carbonyl Compounds Promoted by CeCl3-7H2O-NaI-SiO2:An Efficient Method for the Synthesis of Streptindole. Synthesis 2004,895-900. (s) Soueidan, M.; Collin, J.; Gil, R. Friedel-Crafts Reactions Catalyzed by Samarium Diiodide. Tetrahedron Lett.2006,47,5467-5470. (t) Buscemi, G.; Biffis, A.; Tubaro, C.; Basato, M.; Graiff, C.; Tiripicchio, A. C-H Bond Functionalization of Aromatic Heterocycles with Chelating Dicarbene Palladium(Ⅱ) and Platinum(II) Complexes. Appl. Organomet. Chem.2010,24,285-290.
    [11]Dong, H. M.; Lu, H. H.; Lu, L. Q.; Chen, C. B.; Xiao, W. J. Asymmetric Friedel-Crafts Alkylations of Indoles with Ethyl Glyoxylate Catalyzed by (S)-BINOL-Titanium(IV) Complex: Direct Access to Enantiomerically Enriched 3-Indolyl-(hydroxy)acetates. Adv. Synth. Catal.2007, 349,1597-1063.
    [12]Xia, D. X.; Wang, Y.; Du, Z. T.; Zheng, Q. Y.; Wang, C. Y. Rhenium-Catalyzed Regiodivergent Addition of Indoles to Terminal Alkynes. Org. Lett.2012,14,588-591. [13] Guo, X. W.; Pan, S-P.; Liu, J. H.; Li, Z. P. One-Pot Synthesis of Symmetric and Unsymmetric 1,1-Bis-indolylmethanes via Tandem Iron-Catalyzed C-H Bond Oxidation and C-O Bond Cleavage. J. Org. Chem.2009,74,8848-8851.
    [14]Young, P. C.; Hadfield, M. S.; Arrowsmith, L.; Macleod, K. M.; Mudd, R. J.; Jordan-Hore, J. A.; Lee, A. L. Divergent Outcomes of Gold(I)-Catalyzed Indole Additions to 3,3-Disubstituted Cyclopropenes. Org. Lett.2012,14,898-901.
    (15)Yin, G. D.; Gao, M.; She, N. F.; Hu, S. L.; Wu, A. X. Pan, Y. J. Highly Efficient and Clean Method for Direct a-Iodination of Aromatic Ketones. Synthesis 2007,3113-3116.
    (16)(a) Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H. O.; Levand, O.; Weaver, W. M. A New and Selective Methos of Oxidation. J. Am. Chem. Soc.1957,79,6562. (b) Yin, G. D.; Zhou, B. H.; Meng, X. G.; Wu, A. X.; Pan, Y. J. Efficient C-C Double-Bond Formation Reaction via a New Synthetic Strategy:A Self-Sorting Tandem Reaction. Org. Lett.2006,8, 2245-2248. (d) Gao, M.; Yang, Y. Wu, Y. D.; Deng, C.; Cao, L. P.; Meng, X. G.; Wu, A. X. Formation of Unsymmetrical 1,4-Enediones via A Focusing Domino Strategy:Cross-Coupling of 1,3-Dicarbonyl Compounds and Methyl Ketones or Terminal Aryl Alkenes. Org. Lett.2010,12, 1856-1859. (e) Jiang, H. F.; Huang, H. W.; Cao, H.; Qi, C. R. TBHP/I2-mediated Domino Oxidative Cyclization for One-pot Synthesis of Polysubstituted Oxazoles. Org. Lett.2010,12, 5561-5563.
    (17)(a) Bandgar, B. P.; Shaikh, K. A. Molecular Iodine-catalyzed Efficient and Highly Rapid Synthesis of Bis(indolyl)methanes under Mild Conditions. Tetrahedron Lett.2003,44,1959-1960. (b) Jaratjaroonphong, J.; Sathalalai, S.; Techasauvapak, P.; Reutrakul, V. Iodine-catalyzed Friedel-Crafts Alkylation of Electron-rich Arenes with Aldehydes:Efficient Synthesis of Triarylmethanes and Diarylalkanes. Tetrahedron Lett.2009, 50,6012-6015. (c) Zhang, J. T.; Zhu, D. P.; Yu, C. M.; Wan, C. F.; Wang, Z. Y. A Simple and Efficient Approach to the Synthesis of 2-Phenylquinazolines via sp3 C-H Functionalization. Org. Lett.2010,12,2841-2843.
    [1](a) Hsin, L. W.; Dersch, C. M.; Baumann, M. H.; Stafford, D.; Glowa, J. R.; Rothman, R. B.; Jacobson, A. E.; Rice, K. C. Development of Long-acting Dopamine Transporter Ligands as Potential Cocaine-abuse Therapeutic Agents:Chiral Hydroxyl-containing Derivatives of 1-[2-[Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine and 1-[2-(Diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine. J. Med. Chem.2002,45,1321-1329. (b) Irie, M. Light-induced Reversible PH Change. J. Am. Chem. Soc.1983,105,2078-2079. (c)Khadilkar, B. M.; Borkar, S. D. Environmentally Clean Synthesis of Diphenylmethanes using Silica Gel-supported ZnCl2 and FeCl3. Chem. Technol. Biotechnol.1998,71,209-212. (d) Elz, S.; Kramer, K.; Leschke, C.; Schunack, W. Ring-substituted Histaprodifen Analogues as Partial Agonists for Histamine H1 Receptors:Synthesis and Structure-activity Relationships. Eur. J. Med. Chem.2000,35,41-52.
    [2](a) Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Thiophene Containing Triarylmethanes as Antitubercular Agents. Bioorg. Med. Chem. Lett.2008,18,289-292. (b) Palchaudhuri, R.; Nesterenko, V.; Hergenrother, P. J. The Complex Role of the Triphenylmethyl Motif in Anti-Cancer Compounds. J. Am. Chem. Soc.2008,130,10274-10274. (c) Shchepinov, M. S.; Korshun, V. A. Recent Applications of Bifunctional Trityl Groups. Chem. Soc. Rev.2003,32, 170-180.
    [3](a) Ryss, P.; Zollinger, H. Fundamentals of the Chemistry and Application of Dyes; Wiley-Interscience:New York,1972. (b) Xu, Y. Q.; Lu, J. M.; Li, N. J.; Yan, F.; Xia, X. W.; Xu, Q. F. Pseudo-living Radical Polymerization using Triarylmethane as the Thermal Iniferter. Eur. Polym. J.2008,44,2404-2411.
    [4](a) Thirupathi, P.; Kim, S. S. Friedel-Crafts Arylation Reactions of N-Sulfonyl Aldimines or Sulfonamidesulfones with Electron-Rich Arenes Catalyzed by FeCl3-6H2O:Synthesis of Triarylmethanes and Bis-heteroarylarylmethanes. J. Org. Chem.2010,75,5240-5249. (b) Hongfeng Li,H. F.; Yang,J. Y.; Liu, Y. H.; Li, Y. Z. Iron-Catalyzed Cascade Arene-Aldehyde Addition/Cyclizations for the Highly Efficient Synthesis of Xanthenes and Its Analogous: Observation of a C-C Bond Cleavage in Indole-Based Triarylmethanes. J. Org. Chem.2009,74, 6797-6801. (c) Endo,K.; Ishioka, T.; Ohkubo, T.; Shibata, T. One-Pot Synthesis of Symmetrical and Unsymmetrical Diarylmethanes via Diborylmethane. J. Org. Chem.2012,77,7223-7231. (d) Urkalan, K. B.; Sigman, M. S. Palladium-Catalyzed Oxidative Intermolecular Difunctionalization of Terminal Alkenes with Organostannanes and Molecular Oxygen. Angew. Chem. Int. Ed.2009, 48,3146-3149.
    [5]Segawa, Y.; Sinananwanich, W.; Ueda, M. Facile Synthesis of Poly(phenylene ether) and "in-Situ" Functionalization of Polymer Backbones. Macromolecules 2008,41,8309-8311.
    [6]Liu, C. R.; Li, M. B.; Yang, C. F.; Tian, S. K. Catalytic Selective Bis-arylation of Imines With Anisole, Phenol, Thioanisole and Analogues. Chem. Commmun.2008,1249.
    [7]Prakash, G. K. S.; Panja, C.; Shakhmin, A.; Shah, E.; Mathew, T.; Ola, G. A. BF3-H2O Catalyzed Hydroxyalkylation of Aromatics with Aromatic Aldehydes and Dicarboxaldehydes: Efficient Synthesis of Triarylmethanes, Diarylmethylbenzaldehydes, and Anthracene Derivatives. J. Org. Chem.2009,74,8659-8668.
    [8]Churruca, M.; SanMartin, R. Tellitu, I.; Domingues, E. PCP-Bis(phosphinite) Pincer Complexes:New Homogeneous Catalysts for a-Arylation of Ketones. Tetrahedron Lett.2006,47, 3233-3237.
    [9]Zhang, J. D.; Bellomo, A.; Creamer, A. D.; Dreher, S. D.; Walsh, P. J. Palladium-Catalyzed C(sp3)-H Arylation of Diarylmethanes at Room Temperature:Synthesis of Triarylmethanes via Deprotonative-Cross-Coupling Processes. J. Am. Chem. Soc.2012,134,13765-13772.
    [10](a) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Weak Coordination as a Powerful Means for Developing Broadly Useful C-H Functionalization Reactions. Acc. Chem. Res.2012,45,788-802. (b) Daugulis, O.; Do, H. Q.; Shabashov, D. Palladium- and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds. Acc. Chem. Res.2009,42,1074-1086. (c) Ali, S.; Li, Y. X.; Anwar, S.; Yang, F.; Chen, Z. S.; Liang, Y. M. One-Pot Access to Indolo[2,3-b]quinolines by Electrophile-Triggered Cross-Amination/Friedel-Crafts Alkylation of Indoles with 1-(2-Tosylaminophenyl)ketones. J. Org. Chem.2012,77,424-431. (d) Zhao, Y. S.; Chen, G Palladium-Catalyzed Alkylation of ortho-C(sp2)-H Bonds of Benzylamide Substrates with Alkyl Halides. Org. Lett.2011,13,4850-4853. (e) Hamann, B. C.; Hartwig, J. F. Palladium-Catalyzed Direct a-Arylation of Ketones. Rate Acceleration by Sterically Hindered Chelating Ligands and Reductive Elimination from a Transition Metal Enolate Complex. J. Am. Soc. Chem.1997,119, 12382-12383. (f) Moradi, W. A.; Buchwald, S. L. Palladium-Catalyzed a-Arylation of Esters. J. Am. Soc. Chem.2001,123,7996.
    [11]Laloo, B. M.; Mecadon, H.; Rohman, Md. R.; Kharbangar, I.; Kharkongor, I.; Rajbangshi, M.; Nongkhlaw, R.; Myrboh, B. Reaction of Selenium Dioxide with Aromatic Ketones in the Presence of Boron Triflouride Etherate:A Protocol for the Synthesis of Triarylethanones. J. Org. Chem. 2012,77,707-712.
    [12]Song, B.; Himmler, T.; Gooβen, L. J. Palladium/Copper-Catalyzed Di-a-arylation of Acetic Acid Esters. Adv. Synth. Catal.2011,353,1688.
    [13]Churruca, F.; SanMartin, R. Tellitu, I.; Domingues, E. Regioselective Diarylation of Ketone Enolates by Homogeneous and Heterogeneous Catalysis:Synthesis of Triarylethanones. Tetrahedron Lett.2003,44,59255929.
    [14](a) Zhu, Y. P.; Liu, M. C.; Jia, F. C.; Yuan, J. J.; Gao, Q. H.; Lian, M.; Wu, A. X. Metal-Free sp3 C-H Bond Dual-(Het)arylation:I2-Promoted Domino Process to Construct 2,2-Bisindolyl-1-arylethanones. Org. Lett.2012,14,3392-3395. (b) Zhu, Y. P.; Lian, M.; Jia, F. C.; Liu, M. C.; Yuan, J. J.; Gao, Q. H.; Wu, A. X. I2 Promoted Domino Oxidative Cyclization for One-pot Synthesis of 2-Acylbenzothiazoles via Metal-free sp3 C-H Functionalization. Chem. Comm.2012,48,9086-9088.
    [15]Zhu, Y. P.; Jia, F. C.; Liu, M. C.; Wu, A. X. A Multipathway Coupled Domino Strategy: Metal-free Oxidative Cyclization for One-Pot Synthesis of 2-Acylbenzothiazoles from Multiform Substrates. Org. Lett.2012,14,4414-4417.
    [1](a) Wiegand, M. H. Antidepressants for the Treatment of Insomnia:a Suitable Approach? Drugs 2008,68,2411-2417. (b) Gudmundsson, K. S.; Williams, J. D.; Drach, J. C.; Townsend, L. B. Synthesis and Antiviral Activity of Novel Erythrofuranosyl Imidazo[1,2-a]pyridine C-Nucleosides Constructed via Palladium Coupling of Iodoimidazo[1,2-a]pyridines and Dihydrofuran. J. Med. Chem.2003,46,1449-1455.
    [2](a) Hanson, S. M.; Morlock, E. V.; Satyshur, K. A.; Czajkowski, C. Structural Requirements for Eszopiclone and Zolpidem Binding to the Gamma-aminobutyric Acid Type-A (GABAA) Receptor are Different. J. Med. Chem.2008,51,7243-7252. (b) Harrison, T. S.; Keating, G. M. Zolpidem:a Review of Its Use in the Management of Insomnia. CNS Drugs 2005,19,65-69.
    [3]Shao, N.; Pang, G X.; Yan, C. X.; Shi, G.F.; Cheng, Y. Reaction of β-Lactam Carbenes with 2-Pyridyl Isonitriles:a One-pot Synthesis of 2-Carbonyl-3-(pyridylamino)imidazo[1,2-a]pyridines Useful as Fluorescent Probes for Mercury Ion. J. Org. Chem.2011,76,7458-7465.
    [4]Stasyuk, A. J.; Banasiewicz, M.; Cyranski, M. K.; Gryko, D. T. Imidazo[1,2-a]pyridines Susceptible to Excited State Intramolecular Proton Transfer:One-pot Synthesis via an Ortoleva-King Reaction. J. Org. Chem.2012,77,5552-5558.
    [5]Gerencser, J.; Panka, G.; Nagy, T.; Egyed, O.; Dorman, G; Urge, L.; Darvas, F. Procedure for the Parallel Preparation of 3-Imidazo[1,2-a]pyridin-3-yl-propionic Acid Derivatives Involving Meldrum's Acid. J. Comb. Chem.2005,7,530-538
    [6]Trabanco, A. A.; Tresadern, G.; Macdonald, G J.; Vega, J. A.; de Lucas, A. I.; Matesanz, E.; Garcia, A.; Linares, M. L.; Alonso de Diego S. A.; Alonso, J. M.; Oehlrich, D.; Ahnaou, A.; Drinkenburg, W.; Mackie, C.; Andres, J. I.; Lavreysen, H.; Cid. J. M. Imidazo[1,2-a]pyridines: Orally Active Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor. J. Med. Chem.2012,552,2688-2701.
    [7]Herath, A.; Dahl, R.; Cosford, N. D. P. Fully Automated Continuous Flow Synthesis of Highly Functionalized Imidazo[1,2-a] Heterocycles. Org. Lettt.2010,12,412-415.
    [8]Kianmehr, E.; Ghanbari, M.; Niri, M. N.; Faramarzi, R. Novel One-pot Three Component Reaction for the Synthesis of [2-(Alkylsulfanyl)imidazo[1,2-a]pyridin-3-yl](aryI)methanone. J. Comb. Chem.2010,12,41-44.
    [9]Wang, X.; Ma, L.; Yu, W. Synthesis of Imidazo[1,2-a]pyridines by the Bis(acetyloxy)(phenyl)-13-iodane-Mediated Oxidative Coupling of 2-Aminopyridines with β-Keto Esters and 1,3-Diones. Synthesis 2011,2445-2453.
    [10]Ma, L. J.; Wang, X. P.; Yu, W.; Han, B. TBAI-Catalyzed Oxidative Coupling of Aminopyridines with β-Keto Esters and 1,3-Diones-Synthesis of Imidazo[1,2-a]pyridines. Chem. Comm.2011,47,11333-11335.
    [11]Guchhait, S. K.; Chandgude, A. L. Priyadarshani G. CuSO4-glucose for in situ Generation of Controlled Cu(Ⅰ)-Cu(Ⅱ) Bicatalysts:Multicomponent Reaction of Heterocyclic Azine and Aldehyde with Alkyne, and Cycloisomerization toward Synthesis of N-Fused Imidazoles. J. Org. Chem.2012,77,4438-4444.
    [12]Burchak, O. N.; Mugherli, L.; Ostuni, M.; Lacapere, J. J.; Balakirev, M. Y. Combinatorial Discovery of Fluorescent Pharmacophores by Multicomponent Reactions in Droplet Arrays. J. Am. Chem. Soc.2011,133,10058-10061.
    [13]Lyon, M. A.; Kercher, T. S. Glyoxylic acid and MP-glyoxylate:Efficient Formaldehyde Equivalents in the 3-CC of 2-Aminoazines, Aldehydes, and Isonitriles. Org. Lett.2004,6, 4989-4992.
    [14]Yan, R. L.; Han, H.; Ma, C.; Ren, Z. Y.; Gao, X. A.; Huang, G. S.; Liang, Y M. Cu(I)-Catalyzed Synthesis of Imidazo[1,2-a]pyridines from Aminopyridines and Nitroolefins Using Air as the Oxidant. J. Org. Chem.2012,77,2024-2028.
    [15]Zeng, J.; Tan, Y. J.; Leow, M. L.; Liu, X. W. Copper(Ⅱ)/Iron(Ⅲ) Co-catalyzed Intermolecular Diamination of Alkynes:Facile Synthesis of Imidazopyridines. Org. Lett.2012,14,4386-4389.
    [16]Nair, D. K.; Mobin, S. M.; Namboothiri, I. N. N. Synthesis of Imidazopyridines from the Morita-Baylis-Hillman Acetates of Nitroalkenes and Convenient Access to Alpidem and Zolpidem. Org. Lett.2012,14,4580-4583.
    [17]Liao, Q.; Zhang, L. Y.; Li, S. T.; Xi, C. J. Domino N-H/C-H Bond Activation: Copper-catalyzed Synthesis of Nitrogen-bridgehead Heterocycles Using Azoles and 1,4-Dihalo-1,3-dienes. Org. Lett.2011,13,228-231.
    [18]Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. A Direct Intramolecular C-H Amination Reaction Cocatalyzed by Copper(II) and Iron(III) as Part of an Efficient Route for the Synthesis of Pyrido[1,2-a]benzimidazoles from N-Aryl-2-aminopyridines. J. Am. Chem. Soc.2010,132, 13217-13219.
    [19]Cao, H.; Zhan, H. Y; Lin, Y. G.; Lin, X. L.; Du, Z. D.; Jiang, H. F. Direct Arylation of Imidazo[1,2-a]pyridine at C-3 with Aryl Iodides, Bromides, and Triflates via Copper(Ⅰ)-Catalyzed C-H Bond Functionalization. Org. Lett.2012,14,1688-1691.
    [1](a) Metzger, J. V. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon:New York, NY,1984; Vol.6, pp 235-332. (b) Wang, W. L.; Yao, D. Y.; Gu, M.; Fan, M. Z.; Li, J. Y.; Xing, Y. C.; Nan, F. J. Synthesis and Biological Evaluation of Novel Bisheterocycle-containing Compounds as Potential Anti-influenza Virus Agents. Bioorg. Med. Chem. Lett.2005,15,5284-5287. (c) Lewis, J. R. Miscellaneous Alkaloids:Amaryllidaceae, Sceletium, Muscarine, Imidazole, Oxazole, Peptide and Other Miscellaneous Alkaloids. Nat. Prod. Rep.1999,16,389-416. (d) Fink, B. A.; Mortensen, D. S.; Stauffer, S. R.; Aron, Z. D.; Katzenellenbogen, J. A. Novel Structural Templates for Estrogen-receptor Ligands and Prospects for Combinatorial Synthesis of Estrogens. Chem. Biol.1999,6,205-219.
    [2](a) Haviv, F.; Ratajczyk, J. D.; DeNet, R. W.; Kerdesky, F. A.; Walters, R. L.; Schmidt, S. P.; Holms, J. H.; Young, P. R.; Carter, G W.3-[1-(2-Benzoxazolyl)hydrazino]propanenitrile Derivatives:Inhibitors of Immune Complex Induced Inflammation. J. Med. Chem.1988,31, 1719-1728; (b) Clemence, F.; Martret, O. L.; Delevallee, F.; Benzoni, J.; Jouanen, A.; Jouquey, S.; Mouren, M.; Deraedt, R.4-Hydroxy-3-quinolinecarboxamides with Antiarthritic and Analgesic Activities. J. Med. Chem.1988,31,1453-462. (c) Jaen, J. C.; Wise, L. D.; Caprathe, B. W.; Tecle, H.; Bergmeier, S.; Humblet, C. C.; Heffner, T. G.; Meltzner, L. T.; Pugsley, T. A. 4-(1,2,5,6-Tetrahydro-l-alkyl-3-pyridinyl)-2-thiazolamines:a Novel Class of Compounds with Central Dopamine Agonist Properties. J. Med. Chem.1990,33,311-317. (d) Tsuji, K.; Ishikawa, H. Synthesis and Anti-pseudomonal Activity of New 2-Isocephems with a Dihydroxypyridone Moiety at C-7. Bioorg. Med. Chem. Lett.1994,4,1601-1606.
    [3]Narender, M.; Somi, R. M.; Sridhar, R. Aqueous Phase Synthesis of Thiazoles and Aminothiazoles in the Presence of β-Cyclodextrin. Tetrahedron Lett.2005,46,5953-5955.
    [4]Potewar, T. M.; Ingale, S. A.; Srinivasan, K. V., Catalyst-free Efficient Synthesis of 2-Aminothiazoles in Water at Ambient Temperature. Tetrahedron 2008,64,5019-5022.
    [5]Matiychuk, V. S.; Obushak, N. D.; Pidlypnyi, N. I.; Ostapiuk, Y. V.; Voloshchuk, R. M., Symthesis Of Heterocycles on the Basis of Products of Arylation of Unstaurated Compounds 3-Aryl-2-Chloropropanal in the Synthesis of N-aryl-5-(R-benzyl)-1,3-thiazole-2-amines. Chem. Heterocycl. Compd.2010,46,495-499
    [6]Bharti, S. K.; Nath, G.; Tilak, R.; Singh, S. K., Synthesis, Anti-bacterial and Anti-fungal Activities of Some Novel Schiff Bases Containing 2,4-Disubstituted Thiazole Ring. Eur. J. Med. Chem.2010,45,651-660.
    [7]Jung, K.-Y.; Kim, S.-K.; Gao, Z.-G.; Gross, A. S.; Melman, N.; Jacobson, K. A.; Kim, Y.-C., Structure-activity Relationships of Thiazole and Thiadiazole Derivatives as Potent and Selective Human Adenosine A3 Receptor Antagonists. Bioorg. Med. Chem.2004,12,613-623.
    [8]Rudolph, J. Facile Access to N-thiazolyl Alpha-amino Acids from Alpha-bromo Ketones and Alpha-amino acids. Tetrahedron 2000,56,3161-3165.
    [9]Sasmal, P. K.; Chandrasekhar, A.; Sridhar, S.; Iqbal, J., Novel One-step Method for the Conversion of Isothiocyanates to 2-Alkyl(aryl)aminothiazoles. Tetrahedron 2008,64, 11074-11080.
    [10]Stieber, F.; Mazitschek, R.; Soric, N.; Giannis, A.; Waldmann, H., Traceless Solid-phase Synthesis of 2-Aminothiazoles:Receptor Tyrosine Kinase Inhibitors with Dual Selectivity for Tie-2 and VEGFR-2. Angew. Chem. Int. Ed.2002,41,4757-4761.
    [11]Kearney, P. C.; Fernandez, M.; Flygare, J. A., Solid-phase Synthesis of 2-Aminothiazoles. J. Org. Chem.1998,63,196-200.
    [12](a) Donohoe, T. J.; Kabeshov, M. A.; Rathi, A. H.; Smithb, I. E. D. Direct Preparation of Heteroaromatic Compounds from Alkenes. Synlett.2010,2956-2958. (b) Donohoe, T. J.; Kabeshov, M. A.; Rathi, A. H.; Smithb, I. E. D. Direct Preparation of Thiazoles, Imidazoles, Imidazopyridines and Thiazolidines from Alkenes. Org. Biomol. Chem.2012,10,1093-1101.
    [13]Yadav, J. S.; Reddy, B. V. S.; Rao, Y. G; Narsaiah, A. V., First Example of the Coupling of Alpha-diazoketones with Thiourea:a Novel Route for the Synthesis of 2-Aminothiazoles. Tetrahedron Lett.2008,49,2381-2383.
    [14](a) Yin, G. D.; Gao. M.; She. N. F.; Hu. S. L.; Wu, A. X.; Pan. Y. J. Highly Efficient and Clean Method for Direct alpha-Iodination of Aromatic Ketones. Synthesis.2007,3113-3116. (b) Wang. Z. H.; Yin, G. D.; Qin, J,; Gao. M.; Cao. L. P.; Wu, A. X. Efficient Method for Selective Iodination of α,β-Unsaturated Ketones. Synthesis 2008,3675-3681.
    [15]Compounds VII-29 were synthesized via condensation of aromatic aldehyde and acetone in the presence of NaOH. See:Drake, N. L.; Allen, P., Jr. Org. Synth. Coll. Vol.1; John Wiely & Sons:London,1941; pp 77-78.
    [1]杜灿屏,21世纪有机化学发展战略,北京:化学工业山版社,2002.
    [2](a)吴毓林,麻生明,戴立信,现代有机合成化学进展,北京:化学工业出版社,2005,pp1-26.(b)汪志勇,王官武,王中夏等译,绿色化学导论,北京:中国石化出版社,2110.
    [3]Alaimo, P. J.; O'Brien, R.; Johnson, A. W.; Slauson, S. R.; O'Brien, J. M.; Tyson, E. L.; Marshall, A.-L.; Ottinger, C. E.; Chacon, J. G.; Wallace, L.; Paulino, C. Y. Connell S. Sustainable Synthetic Methods:Domino Construction of Dihydropyridin-4-ones and β-Amino Esters in Aqueous Ethanol. Org. Lett.2008,10,5111-5114.
    [4]Yang, B.-L.; Weng, Z.-T.; Yang, S.-J.; Tian, S.-K. Byproduct-Catalyzed Four-Component Reactions of Aldehydes with Hexamethyldisilazane, Chloroformates, and Nucleophiles in Acetonitrile Leading to Protected Primary Amines, β-Amino Esters, and β-Amino Ketones. Chem. Eur.J.2010,16,718-723.
    [5]Cao, J. J.; Zhou, F.; Zhou, J. Improving the Atom Efficiency of the Wittig Reaction by a "Waste as Catalyst/Co-catalyst" Strategy. Angew. Chem., Int. Ed.2010,49,4976-4980.
    [6]Gao, M.; Yang, Y.; Wu, Y.-D.; Deng, C.; Shu, W.-M.; Zhang, D.-X.; Cao, L.-P.; She, N.-F.; Wu, A.-X. An Efficient Synthesis of Hydantoins via Sustainable Integration of Coupled Domino Processes. Org. Lett.2010,12,4026-4029.
    [7](a) Green, T. W.; Wuts, P. G. M. Protective Groups in organic Synthesis, Whily, New York, 1991, pp.87-104. (b) Liu, Z.-Q.; Cao, Z.-P.; Du, H.-F. Highly Effective Chiral Phosphorus Amidite-Olefin Ligands for Palladium-Catalyzed Asymmetric Allylic Substitutions. Org & Biomolescular Chemistry 2011,9,5369-5372. (c) Neufeldt, S. R.; Sanford, M. S. O-Acetyl Oximes as Transformable Directing Groups for Pd-Catalyzed C-H Bond Functionalization. Org. Lett.2010,12,532-535. (d) Wang, D.-W.; Ye, X.-H.; Shi, X.-D. Efficient Synthesis of E-a-Haloenones Through Chemoselective Alkyne Activation Over Allene with Triazole-Au Catalysts. Org. Lett.2010,12,2088-2091.
    [8]For selected examples, see:(a) Chen, M. S.; White, M. C. A Sulfoxide-Promoted, Catalytic Method for the Regioselective Synthesis of Allylic Acetates from Monosubstituted Olefins via C-H Oxidation. J. Am. Chem.Soc.2004,126,1346-1347. (b) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. Cu(Ⅱ)-Catalyzed Functionalizations of Aryl C-H Bonds Using O2 as an Oxidant. J. Am. Chem.Soc.2006,128,6790-6791. (c) Jiang, H.-F.; Chen, H.-J.; Wang, A.-Z.; Liu, X.-H. Palladium-catalyzed Acetoxylation of sp3 C-H Bonds Using Molecular Oxygen. Chem:Commun. 2010,46,7259-7261. (d) Leng, Y.-T.; Yang, F.; Zhu, W.-G.; Wu, Y.-J.; Li, X. Chlorination and Ortho-Acetoxylation of 2-Arylbenzoxazoles. Org & Biomolescular Chemistry 2011,9,5288-5296.
    [9]Wang, F.; Liu, H.; Cun, L.-F.; Zhu, J.; Deng, J.-G; Jiang, Y.-Z. Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Hydrophobic Metal-Amido Complexes in Aqueous Micelles and Vesicles.J. Org. Chem.2005,70,9424-9429.
    [10](a) Lee, J. C.; Jinn, Y. S.; Choi, J.-H.; Synthesis of a-Acetoxy and Formyloxy Ketones by Thallium(Ⅲ) Promoted a-Oxidation. Chem. Commun.2001,956-957. (b) Urata, H.; Nishioka, Y.; Tobashi, T.; Matsumura, Y.; Tomimori, N.; Ono, Y; Kiso, Y; Wada, S. I. First Chemical Synthesis of Antioxidative Metabolites of Sesamin. Chem. Pharm. Bull.2008,56,1611-1612.
    [11]Ochiai, M.; Takeuchi, Y; Katayama, T.; Sueda, T,; Miyamoto, K. Iodobenzene-Catalyzed a-Acetoxylation of Ketones. In Situ Generation of Hypervalent (Diacyloxyiodo)benzenes Using m-Chloroperbenzoic Acid.J.Am. Chem. Soc.2005,127,12244-12245.
    [12](a) Sun, Y; Fan, R.-H. Iodine(Ⅲ)-Mediated Tandem Acetoxylation-Cyclization of o-Acyl Phenols for the Facile Construction of a-Acetoxy Benzofuranones. Org. Lett.2009,11,5174-5177. (b) Sun, Y; Fan, R.-H. Construction of 3-Oxyindoles via Hypervalent Iodine Mediated Tandem Cyclization-Acetoxylation of O-acyl Anilines. Chem. Commun.2010,46,6834-6836.
    [13](a) Yin, G D.; Zhou, B. H.; Meng, X. G; Wu, A. X.; Pan, Y J. Efficient C-C Double-Bond Formation Reaction via a New Synthetic Strategy:A Self-Sorting Tandem Reaction. Org. Lett. 2006,8,2245-2248. (b) Gao, M.; Yang, Y; Wu, Y.-D.; Deng, C.; Cao, L.-P.; Meng, X.-G.; Wu, A.-X., Formation of Unsymmetrical 1,4-Enediones via A Focusing Domino Strategy: Cross-Coupling of 1,3-Dicarbonyl Compounds and Methyl Ketones or Terminal Aryl Alkenes. Org. Lett.2010,12,1856-1859.
    [1](a) Nicolaou K. C.; Edmonds D. J.; Bulger P. G. Cascade Reactions in Total Synthesis. Angew. Chem., Int. Ed.2006,45,7134-7186. (b) Corey. E. J.; Cheng, X.-M. The logic of Chemical Synthesis, Wiley, New York,1995; pp 1-16. (c) Trost, B. M. The Atom Economy-A Search for Synthetic Efficiency. Science 1991,254,1471-1477. (d) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century. Angew. Chem. Int. Ed.2000,39,44-122. (e) Isambert, N.; Lavilla. R. Heterocycles as Key Substrates in Multicomponent Reactions:The Fast Lane towards Molecular Complexity. Chem.-Eur. J.2008,14,8444-8454.
    [2](a) Tietze, L. F.; Brasche, G. and Gericke, K. Domino Reactions in Organic Synthesis, Wiley-VCH:Weinheim, Germany,2006. (b) Tietze, L. F.; Domino Reactions in Organic Synthesis. Chem. Rev.1996,96,115-136. (c) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Tandem Reactions, Cascade Sequences, and Biomimetic Strategies in Total Synthesis. Chem. Commun. 2003,551-564. (d) Talor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Tandem Oxidation Processes Using Manganese Dioxide:Discovery, Applications, and Current Studies. Acc. Chem. Res.2005, 38,851-869. (e) Tietze, L. F.; Kinzel, T.; Brazel, C. C. The Domino Multicomponent Allylation Reaction for the Stereoselective Synthesis of Homoallylic Alcohols. Acc. Chem. Res.2009,42, 367-378. Fogg, D. E.; dos Santos, E. N. Coord. Chem. Rev.2004,248,2365-2379. (f) Shindoh, N.; Takemoto, Y.; Takasu, K. Auto-Tandem Catalysis:A Single Catalyst Activating Mechanistically Distinct Reactions in a Single Reactor. Chem.-Eur. J.2009,15,12168-12179. (g) Allenn, A. E.; MacMillan, D. W. C. Synergistic Catalysis:A Powerful Synthetic Strategy for New Reaction Development. Chem. Sci.2012,3,633-638.
    [3]Yin, G. D.; Zhou, B. H.; Meng, X. G.; Wu, A. X.; Pan, Y. J. Efficient C-C Double-Bond Formation Reaction via a New Synthetic Strategy:A Self-Sorting Tandem Reaction. Org. Lett. 2006,8,2245-2248.
    [4]Gao, M.; Yang, Y.; Wu, Y.-D.; Deng, C.; Cao, L.-P.; Meng, X.-G.; Wu, A.-X., Formation of Unsymmetrical 1,4-Enediones via A Focusing Domino Strategy:Cross-Coupling of 1,3-Dicarbonyl Compounds and Methyl Ketones or Terminal Aryl Alkenes. Org. Lett.2010,12, 1856-1859.
    [5]Xue, W.-J.; Li, Q.; Zhu, Y.-P.; Wang, J.-G.; Wu, A.-X., Convergent Integration of Two Self-labor Domino Sequences:a Novel Method for the Synthesis of Oxazole Derivatives from Methyl Ketones and Benzoins. Chem. Commun.2012,48,3485-3487.
    [6](a) Schreiber, S. L. Target-oriented and Diversity-oriented Organic Synthesis in Drug Discovery. Science 2000,287,1964-1969. (b) Burke, M. D. Schreiber, S. L. A Planning Strategy for Diversity-Oriented Synthesis. Angew. Chem. Int. Ed.2003,43,46-58. (c) Kumagai, N.; Muncipinto, G.; Schreiber, S. L. Short Synthesis of Skeletally and Stereochemically Diverse Small Molecules by coupling petasis condensation reactions to cyclization reactions. Angew. Chem. Int. Ed.2006,46,3635-3638. (d) Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Diversity-oriented Synthesis as a Tool for the Discovery of Novel Biologically Active Small Molecules. Nat. Commun.2010,1,80. (e) O'Connor, C. J.; Beckmann, H. S. G.; Spring, D. R. Diversity-oriented Synthesis:Producing Chemical Tools for Dissecting Biology. Chem. Soc. Rev. 2012,41,4444-4456.
    [7]Surendra, K.; Krishnaveni, N. S.; Reddy, M. A.; Nageswar, Y. V. D.; Rao, K. R. Mild Oxidation of Alcohols with o-Iodoxybenzoic Acid (IBX) in Water/Acetone Mixture in the Presence of -Cyclodextrin. J. Org. Chem.2003,68,2058-2059.
    [8]J. A. Campoa, M. Canoa, J. V. Herasa, M. C. Lagunasa, J. Perlesa, E. Pinilla, M. R. Torres, Helv. Chim. Acta.2001,84,2316-2329.
    [9](a) Kornblum, N.; Powers, J. W.; Anderson, G. J.; Jones, W. J.; Larson, H. O.; Levand, O.; Weaver, W. M. J. Am. Chem. Soc.1957,79,6562. (b) Zhu, Y. P.; Liu, M. C.; Jia, F. C.; Yuan, J. J.; Gao, Q. H.; Lian, M.; Wu, A. X. Metal-Free sp3 C-H Bond Dual-(Het)arylation:I2-Promoted Domino Process to Construct 2,2-Bisindolyl-l-arylethanones. Org. Lett.2012,14,3392-3395.
    [10](a) Nicolou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y. L. Iodine(V) reagents in Organic Synthesis. Part 4. o-Iodoxybenzoic acid as a Chemospecific Tool for Single Electron Transfer-based Oxidation Processes. J. Am. Chem. Soc.2002,124,2245-2258. (b) Zhdankin, V. V.; Stang, P. J. Chemistry of Polyvalent Iodine. Chem. Rev.2008,108,5299-5385. (c) Zhdankin, V. V. Organoiodine(V) Reagents in Organic Synthesis. J. Org. Chem.2011,76,1185-1197.
    [1](a) Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. Efficient Catalytic Asymmetric Alkylations.1. Enantioselective Synthesis of (+)-Indacrinone via Chiral Phase-Transfer Catalysis. J. Am. Chem. Soc.1984,106,446-447. (b) deSolms, S. J.; Woltersdorf, O. W., Jr.; Cragoe, E. J., Jr. (Acylaryloxy)acetic Acid Diuretics.2. (2-Alkyl-2-aryl-l-oxo-5-indanyloxy)acetic Acids. J. Med. Chem.1978,21,437-443.
    [2](a) Lomberget, T.; Bentz, E.; Bouyssi, D.; Balme, G. Lewis Acid-Induced Intramolecular Friedel-Crafts Cyclization of 1,3-Bis-exocyclic Dienes. A New Route to 4a-Methyltetrahydrofluorenes. Org. Lett.2003,5,2055-2057. (b) Banerjee, M.; Makhopadhyay, R.; Achari, B.; Banerjee, A. Kr. First Total Synthesis of the 4a-Methyltetrahydrofluorene Diterpenoids (±)-Dichroanal B and (±)-Dichroanone. Org. Lett.2003,5,3931-3933. (c) Lin, W.-H.; Fang, J.-M.; Cheng, Y.-S. Uncommon Diterpenes with the Skeleton of 6-5-6-Fused-Rings from Taiwania-Cryptomerioides. Phytochemistry 1995,40,871-873.
    [3]Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. Synthesis and Structure-Activity Relationships of Acetylcholinesterase Inhibitors:1-Benzyl-4-[(5,6-dimethoxy-l-oxoindan-2-yl) methyl]piperidine Hydrochloride and Related Compounds. J. Med. Chem.1995,38,4821-4829.
    [4](a) Catoen-Chackal, S.; Facompr6, M.; Houssin, R.; Pommery, N.; Goossens, J.-F.; Colson, P.; Bailly, C.; Henichart, J.-P. DNA Binding To Guide the Development of Tetrahydroindeno[1,2-b] pyrido[4,3,2-de]quinoline Derivatives as Cytotoxic Agents. J. Med. Chem.2004,47,3665-3673. (b) Bauta, W. E.; Lovett, D. P.; Cantrell, W. R., Jr.; Burke, B. D. Formal Synthesis of Angiogenesis Inhibitor NM-3. J. Org. Chem.2003,68,5967-5973. (c) Caro, Y.; Masaguer, C. F.; Ravina, E. Preparation of (R)-(-)- and (S)-(+)-3-Hydroxymethyl-l-Tetralone Tosylates, Key Intermediates in the Synthesis of New CNS Drugs, via Resolution of Precursors. Tetrahedron:Asymmetry 2003,14, 381-387. (d) Shiraishi, M.; Aramaki, Y.; Seto, M.; Imoto, H.; Nishikawa, Y.; Kanzaki, N.; Okamoto, M.; Sawada, H.; Nishimura, O.; Baba, M.; Fujino, M. Discovery of Novel, Potent, and Selective Small-Molecule CCR5 Antagonists as Anti-HIV-1 Agents:Synthesis and Biological Evaluation of Anilide Derivatives with a Quaternary Ammonium Moiety. J. Med. Chem.2000,43, 2049-2063.
    [5](a) Pletnev, A. A.; Larock, R. C. Carbopalladation of Nitriles:Synthesis of Benzocyclic Ketones and Cyclopentenones via Pd-Catalyzed Cyclization of ω-(2-Iodoaryl)alkanenitriles and Related Compounds. J. Org. Chem.2002,67,9428-9438. (b) Pletnev A. A.; Larock, R. C. Synthesis of Benzocyclic Ketones via Palladium-Catalyzed Cyclization of ω-(2-Iodoaryl) alkanenitriles. Tetrahedron Lett.2002,43,2133-2136.
    [6](a) Titley, A. F. CCCXLI.-Conditions of Formation of Rings Attached to the o-, m-, and p-Positions of the Benzene Nucleus. Part Ⅲ. J. Chem. Soc.1928,2571-2583. (b) Ghosal, M.; Karpa, T. K.; Pal. S. K.; Mukherjee, D. Facile Synthesis of (±)-Isolongifolene and (±)-Isolongifolenedione Involving Ar1-5 Cyclisations. Tetrahedron Lett.1995,36,2527-2528.
    [7](a) Keumi, T.; Matsuura, K.; Nakayama, N.; Tsubota, T.; Morita, T. Ortho-Selective Side-Chain Nitration of a-Bromoacylpolymethylbenzenes and Its Application to the Syntheses of Indan-1-one and Inden-1-one Derivatives. Tetrahedron 1993,49,537-556. (b) Brunette, S. R.; Lipton, M. A. Oxyanion-Accelerated C2-C6 Cyclization of Benzannulated Enyne-allenes.J. Org. Chem.2000,65,5114-5119. (c) Nikolaev, V. A.; Popik, V. V. Decomposition of 2-Diazo-1,3-Diketones:Stereocontrol of the Mechanism. Tetrahedron Lett.1992,33,4483-4486. (d) Ceccherelli, P.; Curini, M.; Marcotullio, M. C. Rosati, O.; Wenkert, E. A New, General Cyclopentenone Synthesis. J. Org. Chem.1990,55,311-315. (e) Bishop, R.; Hamer, N. K. 2-Hydroxycyclopentenone Derivatives from Photocyclisation of αβ-Unsaturated 1,2-Diketones:a Suggested Triplet Biradical Intermediate. J. Chem. Soc.1970,1193-1197. (f) Maruyama, K.; Ono, K.; Osugi, J. The Photochemical Reaction of a-Diketones. Bull. Chem. Soc. Jpn.1972,45, 847-851. (g) Kopecky, K. R.; Filby, J. E. Yields of Excited States from Thermolysis of Some 1,2-Dioxetanes. Can. J. Chem.1979,57,283-288. (h) Wagner,P. J.; Park, B.; Sobczak, M.; Frey, J.; Rappoport, Z. Photocyclization of 2,4,6,2',4',6'-Hexaalkylbenzils. J. Am. Chem. Soc.1995,117, 7619-7629. (i) Smith, A. B; Agosta, W. C. J. Am. Chem. Soc.1973,95,1961-1968.(j) Rao, V. B.; Wolff, S.; Agosta, W. C. Novel cyclization of type Ⅱ biradicals from.alpha.,.beta.-acetylenic ketones. J. Am. Chem. Soc.1985,107,521-522. (k) Agosta, W. C.; Caldwell, R. A.; Jay, J.; Johnston, L. J.;Venepalli, B. R.; Scaiano, J. C.; Singh, M.; Wolff, S. Photochemistry of 4,4-Dimethyl-1-mesityl-2-pentyn-l-one. J. Am. Chem. Soc.1987,109,3050-3057. (1) Wessig, P.; Glombitza, C.; Muller, G.; Teubner, J. Photochemical Preparation of Highly Functionalized 1-Indanones. J. Org. Chem.2004,69,7582-7591.
    [8]Negishi, E.; Coperet, C.; Ma, S.; Mita, T.; Sugihara, T.; Tour, J. M. Palladium-Catalyzed Carbonylative Cyclization of 1-Iodo-2-alkenylbenzenes. J. Am. Chem. Soc.1996,118,5904-5918.
    [9](a) Koelsch, C. F.; Hochmann, H.; Le Claire, C. D. The Friedel-Crafts Reaction with Cinnamic, Crotonic, and β-Chlorocrotonic Acids. J. Am. Chem. Soc.1943,65,59-60. (b) Hart, R. T.; Tebbe, R. F. Acylation-Alkylation Studies. I. J. Am. Chem. Soc.1950,72,3286-3287. (c) Dugan, J. J.; deMayo, P.; Nisbet, M.; Robinson, J. R.; Anchel, M. Terpenoids. XIV. The Constitution and Biogenesis of Marasmic Acid. J. Am. Chem. Soc.1966,88,2838-2844. (d) Truce, W. E.; Olson, C. E. The Aluminum Chloride-Catalyzed Condensation of y-Butyrolactone with Benzene. J. Am. Chem. Soc.1952,74,4721-4721. (e) Rinehart, K. L.; Gustafson, D. H. Notes- α-lndanone from (3-Propiolactone. J. Org. Chem.1960,25,1836-1836. (f) Pinnick, H. W.; Brown, S. P.; McLean, E. A.; Zoller, L. W.Ⅲ. Friedel-Crafts reactions of ethyl cyclopropanecarboxylate. J. Org. Chem. 1981,46,3758-3760. (g) Nenajdenko, V. G.; Braznenok,I. L.; Balenkova, E. S. N,N-Dimethylacrylamide-triflic Anhydride Complex as a Novel Bifunctional Electrophile in Reaction with Electron-rich Aromatics. Tetrahedron 1996,52,12993-13006. (h) Prakash, G. K. S.; Yan, P.; Torok, B.; Olah, G. A. Superacidic Trifluoromethanesulfonic Acid-Induced Cycli-Acyalkylation of Aromatics. Catalysis Lett.2003,87,109-122. (i) Rendy, R.; Zhang, Y.; McElrea, A.; Gomez, A.; Klumpp, D. A. Superacid-Catalyzed Reactions of Cinnamic Acids and the Role of Superelectrophiles. J. Org. Chem.2004,69,2340-2347.
    [10]Kerfanto, M.; Quentin, J. P.; Raphalen, D.; Vene, J. Bull Soc Chim, Fr.1968,4526.
    [11](a) Shintani, R.; Hayashi, T. Rhodium-Catalyzed Addition of Arylzinc Reagents to Aryl Alkynyl Ketones:Synthesis of β,β-Disubstituted Indanones. Org. Lett.2005,7,2071-2073. (b) Shintani, R; Okamoto, K.; Hayashi, T. Rhodium-Catalyzed Isomerization of a-Arylpropargyl Alcohols to Indanones:Involvement of an Unexpected Reaction Cascade. J. Am. Chem. Soc.2005, 127,2872-2873. (c) Yamabe, H.; Mizuno, A.; Kusama, H.; Iwasawa, N. Rh(I)-Catalyzed Cyclization of 1-Arylprop-2-yn-1-o1 Derivatives Utilizing Rhodium 1,4-Migration. J. Am. Chem. Soc.2005,127,3248-3249.
    [12]Kerr, D. J.; Metje, C.; Flynn, B. L. A Convenient Two Step Protocol for the Synthesis of Cyclopentenones and Indanones, Including an Asymmetric Variant. Chem. Commmun.2003, 1380-1381.
    [13](a) Larock, R. Comprehensive Organic Transformations,2nd Edition; Wiley-VCH:New York, 1999, pp 1422-1433. (b) Olah, G. Friedel-Crafts Chemistry; Wiley-Interscience:New York,1973. (c) Heaney, H. In Comprehensive Organic Synthesis; Trost, B. M.; Flemming, I. Eds.; Pergamon Press:Oxford,1991; Vol 2, pp 733-752 and pp 753-768.
    [14](a) Hulin, B.; Koreeda, M. A Convenient, Mild Method for the Cyclization of 3- and 4-Arylalkanoic Acids via Their Trifluoromethanesulfonic Anhydride Derivatives. J. Org. Chem. 1984,49,207-209. (b) Effenberger, F.; Epple, G. Trifluoromethanesulfonic-Carboxylic Anhydrides, Highly Active Acylating Agents. Angew. Chem. Int. Ed.1972,11,299-300. (c) Effenberger, F.; Epple, G. Catalytic Friedel-Crafts Acylation of Aromatic Compounds. Angew. Chem. Int. Ed.1972, 11,300-301.
    [15]Gao, M.; Yang, Y; Wu, Y.-D.; Deng, C.; Cao, L.-P.; Meng, X.-G.; Wu, A.-X. Formation of Unsymmetrical 1,4-Enediones via A Focusing Domino Strategy:Cross-Coupling of 1,3-Dicarbonyl Compounds and Methyl Ketones or Terminal Aryl Alkenes. Org. Lett.2010,12, 1856-1859.
    [16]Yin, G.; Zhou, B.; Meng, X.; Wu, A.; Pan, Y. Efficient C-C Double-Bond Formation Reaction via a New Synthetic Strategy:A Self-Sorting Tandem Reaction. Org. Lett.2006,8,2245-2248.
    [1](a) Hawkins, A.; Jakubec, P.; Ironmonger, A.; Dixon, D. J. An Expedient Stereoselective Route to the ACE Tricyclic Core of Manzamine A via a Palladium-Catalysed Arylative Allene Spirocyclisation Cascade. Tetrahedron Lett.2013,54,365-369. (b) Jakubec, P.; Hawkins, A.; Felzmann, W.; Dixon, D. J., Total Synthesis of Manzamine A and Related Alkaloids. J. Am. Chem. Soc.2012,134,17482-17485. (c) Huang, H.; Yao, Y.; He, Z.; Yang, T.; Ma, J.; Tian, X.; Li, Y.; Huang, C.; Chen, X.; Li, W.; Zhang, S.; Zhang, C.; Ju, J., Antimalarial β-Carboline and Indolactam Alkaloids from Marinactinospora thermotolerans, a Deep Sea Isolate. Journal of Natural Products 2011,74,2122-2127. (d) Beghyn, T. B.; Charton, J.; Leroux, F.; Henninot, A.; Reboule, I.; Cos, P.; Maes, L.; Deprez, B., Drug-to-Genome-to-Drug, Step 2:Reversing Selectivity in a Series of Antiplasmodial Compounds. J. Med. Chem.2011,55,1274-1286.
    [2](a) Pasternak, A.; Feng, Z.; de Jesus, R.; Ye, Z.; He, S.; Dobbelaar, P.; Bradley, S. A.; Chicchi, G G.; Tsao, K.-L.; Trusca, D.; Eiermann, G J.; Li, C.; Feng, Y.; Wu, M.; Shao, Q.; Zhang, B. B.; Nargund, R.; Mills, S. G.; Howard, A. D.; Yang, L.; Zhou, Y.-P., Stimulation of Glucose-Dependent Insulin Secretion by a Potent, Selective sst3 Antagonist. ACS Medicinal Chemistry Letters 2012,3,289-293. (b) Li, S.-F.; Di, Y.-T.; He, H.-P.; Zhang, Y.; Wang, Y.-H.; Yin, J.-L.; Tan, C.-J.; Li, S.-L.; Hao, X.-J., Trigonoines A and B, two novel alkaloids from the leaves of Trigonostemon lii. Tetrahedron Lett.2011,52,3186-3188. (c) Kobayashi, M.; Chen, Y.-J.; Aoki, S.; In, Y.; Ishida, T.; Kitagawa, I., Four new β-carboline alkaloids isolated from two Okinawan marine sponges of Xestospongia sp. and Haliclona sp.l Tetrahedron 1995,51,3727-3736.
    [3]Holloway, C. A.; Muratore, M. E.; Storer, R.1.; Dixon, D. J. Direct Enantioselective Bronsted Acid Catalyzed N-Acyliminium Cyclization Cascades of Tryptamines and Ketoacids. Org. Lett. 2010,12,4720-4723.
    [4]Subba Reddy, B. V.; Swain, M.; Reddy, S. M.; Yadav, J. S.; Sridhar, B. Gold-Catalyzed Domino Cycloisomerization/Pictet-Spengler Reaction of 2-(4-Aminobut-1-yn-1-yl)anilines with Aldehydes:Synthesis of Tetrahydropyrido[4,3-b]indole Scaffolds. J. Org. Chem.2012,77, 11355-11361.
    [5]Yang, M. L.; Kuo, P. C.; Damu, A. G.; Chang, R. J.; Chiou, W. F.; Wu, T. S. A Versatile Route to the Synthesis of 1-Substituted β-carbolines by a Single Step Pictet-Spengler Cyclization. Tetrahedron 2006,62,10900-10906.
    [6]Kulkarni, A.; Abid, M.; Torok, B.; Huang, X. D. A Direct Synthesis of β-Carbolines via a Three-Step One-Pot Domino Approach with a Bifunctional Pd/C/K-10 Catalyst. Tetrahedron Lett. 2009,50,1791-1794.
    [7]Sharma, S. K.; Gupta, S.; Saifuddin, M.; Mandadapu, A. K.; Agarwal, P. K..; Gauniyal, H. M.; Kundu, B. Three Component Tandem Reactions Involving Protected 2-Amino Indoles, Disubstituted Propargyl Alcohols, and I2/IC1:Iodo-Reactant Controlled Synthesis of Dihydro-a-carbolines and a-Carbolines via Iodo-cyclization/iodo-cycloelimination. Tetrahedron Lett.2011,52,65-68.
    [8]Zhang, H.; Larock, R. C., Synthesis of β- and γ-Carbolines by the Palladium-Catalyzed Iminoannulation of Internal Alkynes. Org. Lett.2001,3,3083-3086.
    [9]Too, P. C.; Chua, S. H.; Wong, S. H.; Chiba, S. Synthesis of Azaheterocycles from Aryl Ketone O-Acetyl Oximes and Internal Alkynes by Cu-Rh Bimetallic Relay Catalysts. J. Org. Chem.2011,76,6159-6168.
    [10]Ding, S.; Shi, Z.; Jiao, N. Pd(II)-Catalyzed Synthesis of Carbolines by Iminoannulation of Internal Alkynes via Direct C-H Bond Cleavage Using Dioxygen as Oxidant. Org. Lett.2010,12, 1540-1543.
    [11]England, D. B.; Padwa, A., Gold-Catalyzed Cycloisomerization of N-Propargylindole-2-carboxamides:Application toward the Synthesis of Lavendamycin Analogues. Org. Lett.2008,10,3631-3634.
    [12]Kumar, A. S.; Nagarajan, R. Synthesis of α-Carbolines via Pd-Catalyzed Amidation and Vilsmeier-Haack Reaction of 3-Acetyl-2-chloroindoles. Org. Lett.2011,13,1398-1401.
    [13]Ohta, Y.; Oishi, S.; Fujii, N.; Ohno, H. Facile Synthesis of 1,2,3,4-Tetrahydro-β-carbolines by One-Pot Domino Three-Component Indole Formation and Nucleophilic Cyclization. Org. Lett. 2009,11,1979-1982.
    [14]Zhang, Y.-Q.; Zhu, D.-Y.; Jiao, Z.-W.; Li, B.-S.; Zhang, F.-M.; Tu, Y.-Q.; Bi, Z. Regiodivergent Annulation of Alkynyl Indoles To Construct Spiro-pseudoindoxyl and Tetrahydro-β-carbolines. Org. Lett.2011,13,3458-3461.
    [15]Wang, L.; Xie, X.; Liu, Y. Facile Synthesis of Fully Substituted Dihydro-β-carbolines via Bronsted Acid Promoted Cascade Reactions of α-Indolyl Propargylic Alcohols with Nitrones. Org. Lett.2012,14,5848-5851.
    [16]Laha, J. K.; Barolo, S. M.; Rossi, R. A.; Cuny, G. D. Synthesis of Carbolines by Photostimulated Cyclization of Anilinohalopyridines. J. Org. Chem.2011,76,6421-6425.
    [17]Laha, J. K.; Petrou, P.; Cuny, G. D. One-Pot Synthesis of a-Carbolines via Sequential Palladium-Catalyzed Aryl Amination and Intramolecular Arylation. J. Org. Chem.2009,74, 3152-3155.
    [18]Panarese, J. D.; Waters, S. P. Room-Temperature Aromatization of Tetrahydro-β-carbolines by 2-Iodoxybenzoic Acid:Utility in a Total Synthesis of Eudistomin U. Org. Lett.2010,12, 4086-4089.
    [19](a) Radchenko, O. S.; Novikov, V. L.; Elyakov, G. B. A Simple and Practical Approach to the Synthesis of the Marine Sponge Pigment Fascaplysin and Related Compounds. Tetrahedron Lett. 1997,38,5339-5342. (b) Zhidkov, M. E.; Baranova, O. V.; Balaneva,. N.; Fedorov, S. N.; Radchenko, O. S.; Dubovitskii, S. V. The first syntheses of 3-bromofascaplysin, 10-bromofascaplysin and 3,10-dibromofascaplysin-marine alkaloids from Fascaplysinopsis reticulata and Didemnum sp. by application of a simple and effective approach to the pyrido[1,2-a:3,4-b0]diindole system. Tetrahedron Lett.2007,48,7998-8000.
    [20]J. Slavik, L. Slavikova, Alkaloids from Papaver setigerum DC. Collec. Czech. Chem. Commun.1996,61,1047.
    [1]Corey. E. J.; Cheng, X.-M. The logic of Chemical Synthesis, Wiley, New York,1995; pp 1-16. (b) Tietze, L. F.; Brasche, G; Gericke, K. Domino Reactions in Organic Synthesis, Wiley-VCH, Weinheim, Germany,2006. (c) Trost, B. M. The Atom Economy-A Search for Synthetic Efficiency. Science 1991,254,1471-1477. (d) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century. Angew. Chem. Int. Ed.2000,39,44-122. (e) Nicolaou, K. C.; Hale, C. R. H.; Nilewski, C.; Ioannidou, H. A. Constructing Mmolecular Complexity and Diversity:Total Synthesis of Natural Products of Biological and medicinal importance. Chem. Soc. Rev.2012,41,5185-5238.
    [2](a) Tseng, M. C.; Chu, Y. W.; Tsai,H. P.; Lin, C. M. Hwang, J. L.; Chu,Y. H. One-pot Synthesis of Luotonin A and its Analogues. Org. Lett.2011,13,920-923. (b) Liu, J. F.; Ye, P.; Zhang, B. L.; Bi, G; Sargent, K.; Yu, L. B.; Yohannes, D.; Baldino, C. M. Three-component One-pot Total Syntheses of Glyantrypine, Fumiquinazoline F, and Fiscalin B Promoted by Microwave Irradiation. J. Org. Chem.2005,70,6339-6345. (c) Foley, P.; Eghbali, N.; Anastas, P. T. Silver-catalyzed One-pot Synthesis of Arylnaphthalene Lactone Nnatural Products. J. Nat. Prod.2010,73, 811-813.
    [3](a) Xiao, X. H.; Qiu, G L.; Wang, H. L.; Liu, L. S.; Zheng, R. L.; Jia, Z. J.; Deng, Z. B. Effect of Alkaloids from Peganum nigellastrum on Mouse Ascitic Hepatoma and Isolated Cells. Chin. J. Pharmacol. Toxicol.1988,2,232-234. (b) Ma, Z. Z.; Hano, Y.; Nomura, T.; Chen, Y. J. Two New Quinazolinequionline Alkaloids from Peganum Nigellastrum. Heterocycles 1997,46,541-546. (c) Osborne, D.; Stevenson, P. J. A Concise Formal Synthesis of Luotonin A. Tetrahedron Lett.2002, 43,5469-5470. (d) Cagir, A.; Jones, S. H.; Gao, R.; Eisenhauer, B. M.; Hecht, S. M. Luotonin A. A Naturally Occurring Human DNA Topoisomerase I Poison. J. Am. Chem. Soc.2003,125, 13628-13629. (e) Ma, Z.; Hano, Y.; Nomura, T; Chen, Y. Novel Quinazoline-quinoline Alkaloids with Cytotoxic and DNA Topoisomerase Ⅱ Inhibitory Activities. Bioorg. Med. Chem. Lett.2004, 14,1193-1196. (f) Cagir, A.; Jones, S. H.; Eisenhauer, B. M.; Gao, R.; Hecht, S. M. Synthesis and Biochemical Properties of E-ring Modified Luotonin A Derivatives. Bioorg. Med. Chem. Lett. 2004,14,2051-2054.
    [4](a) Ma, Z. Z.; Hano, Y.; Nomura, T.; Chen, Y. J. Alkaloids and Phenylpropanoids from Peganum Nigellastrum. Phytochemistry 2000,53,1075-1078. (b) Harayama, T.; Morikami, Y.; Shigeta, Y.; Abe, H.; Takeuchi, Y. A Convenient Synthesis of Luotonin A and B. Synlett.2003, 847-848. (c) Twin, H.; Batey, R. A. Intramolecular Hetero Diels-Alder (Povarov) Approach to the Synthesis of the Alkaloids Luotonin A and Camptothecin. Org. Lett.2004,6,4913-4916. (d) Ju, Y.; Lu, F., F.; Li, C. Palladium-catalyzed Sequential Cyanation/Addition/N-Arylation in One-pot: Efficient Synthesis of Luotonin A and its Derivatives. Org. Lett.2009,11,3582-3585. (e) Liang, Y.; Jiang, X.; Yu, Z. X. Mechanisms of Cascade Reactions in the Syntheses of Camptothecin-family Alkaloids:Intramolecular [4+2] Reactions of N-Arylimidates and Alkynes. Org. Lett.2009,11,5302-5305. (f) Huang, W. P.; Liu, J. L.; Wang, C. L. Progress in the Synthesis of Natural Product Luotonin A and Its Derivatives. Chin. J. Org. Chem.2009,29,1533-1543. (g) Liang, J. L.; Cha, H. C.; Jahng, Y. Recent Advances in the Studies on Luotonins. Molecules 2011, 16,4861-4883. reference therein.
    [5]Ma, Z. Z.; Hano, Y.; Nomura, T.; Chen, Y. J. Two New Quinazoline-Quinoline Alkaloids from Peganum nigellastrum. Heterocycles 1999,51,1883-1889.
    [6]Mhaske, S. B.; Argade, N. P. Biogenetic Synthesis of Luotonin F. Synthesis 2002,323-325.
    [7]Connolly, D. J.; Cusack, D.; O'Sullivan, T. P.; Guiry. P. J. Synthesis of Quinazolinones and Quinazolines. Tetrahedron 2005,61,10153-15202.
    [8](a) Kornblum, N.; Powers, J. W.; Anderson, G J.; Jones, W. J.; Larson, H. O.; Levand, O.; Weaver, W. M. A New and selective methos of oxidation. J. Am. Chem. Soc.1957,79,6562. (b) Zhu, Y. P.; Liu, M. C.; Jia, F. C.; Yuan, J. J.; Gao, Q. H.; Lian, M.; Wu, A. X. Metal-Free sp3 C-H Bond Dual-(Het)arylation:I2-Promoted Domino Process to Construct 2,2-Bisindolyl-l-arylethanones. Org. Lett.2012,14,3392-3395. (c) Zhu, Y. P.; Jia, F. C.; Liu, M. C.; Wu, L. M.; Cai, Q.; Gao, Y.; Wu, A. X. I2-CF3SO3H Synergistic Promoted sp3 C-H Bond Diarylation of Aromatic Ketones. Org. Lett.2012,14,5378-5381. (d) Zhu, Y. P.; Jia, F. C.; Liu, M. C.; Wu, A. X. A Multipathway Coupled Domino Strategy:Metal-free Oxidative Cyclization for One-Pot Synthesis of 2-Acylbenzothiazoles from Multiform Substrates. Org. Lett.2012,14, 4414-4417. (e) Zhu, Y. P.; Lian, M.; Jia, F. C.; Liu, M. C.; Yuan, J. J.; Gao, Q. H.; Wu, A. X. I2 Promoted Domino Oxidative Cyclization for One-pot Synthesis of 2-Acylbenzothiazoles via Metal-free sp3 C-H Functionalization. Chem. Commun.2012,48,9086-9088. (f) Jiang, H. F.; Huang, H. W.; Cao, H.; Qi, C. R. TBHP/I2-mediated Domino Oxidative Cyclization for One-pot Synthesis of Polysubstituted Oxazoles. Org. Lett.2010,12,5561-5563.
    [9](a) Yin, G. D.; Gao, M.; She, N. F.; Hu, S. L.; Wu, A. X. Pan, Y. J. Highly Efficient and Clean Method for Direct a-Iodination of Aromatic Ketones. Synthesis 2007,3113-3116. (b) Wang, Z. H.; Yin, G. D.; Qin, J.; Gao, M.; Cao, L. P.; Wu, A. X. An Efficient Method for the Selective Iodination of a,b-Unsaturated Ketones. Synthesis 2008,3675-3681. (c) Zhu, Y. P.; Gao, Q. H.; Lian, M.; Yuan, J. J.; Liu, M. C.; Zhao, Q.; Yang, Y.; Wu, A. X. A Sustainable Byproduct Catalyzed Domino Strategy:Facile Synthesis of a-Formyloxy and Acetoxy Ketones via Iodination/Nucleophilic Substitution/Hydrolyzation/Oxidation Sequences. Chem. Commun.2011, 47,12700-12702. (d) Barluenga, J.; Marco-Arias, M.; Gonzalez-Bobes, F.; Ballesteros, A.; Gonzalez, J. M. Effective and Selective Iodofunctionalisation of Organic Molecules in Water Using the Iodine-Hydrogen Peroxide Tandem. Chem. Commun.2004,2614-2615. (e) Pavlinac, J.; Stavber, S.; Zupan, M. Effect of Water on the Functionalization of Substituted Anisoles with Iodine in the Presence of F-TEDA-BF4 or Hydrogen Peroxide. J. Org. Chem.2006,71, 1027-1032.
    [10]Halogenation reaction and Kornblum oxidation processes are well investigated in our previous studies. See reference 9b-e and lOa-c.
    [11](a) Xu, W.; Jin,Y. B.; Liu, H. X.; Jiang, Y. Y.; Fu, H. Copper-catalyzed Domino SSynthesis of Quinazolinones via Ullmann-type Coupling and Aerobic Oxidative C-H Amidation. Org. Lett. 2011,13,1274-1277. (b) Yan, Y. Z.; Wang, Z. Y. Metal-free Intramolecular Oxidative Decarboxylative Amination of Primary α-Amino Acids with Product Selectivity. Chem. Commun. 2011,47,9513-9515. (c) Zhou, J. G.; Fang, J. One-Pot Synthesis of Quinazolinones via Iridium-Catalyzed Hydrogen Transfers. J. Org. Chem.2011,76,7730-7736. (d) Hikawa, H.; Ino, Y.; Suzuki, H.; Yokoyama, Y. Pd-catalyzed Benzylic C-H Amidation with Benzyl Alcohols in Water:a Atrategy to Construct Quinazolinones. J. Org. Chem.2012,77,7046-7051. (e) Ishihara, M.; Togo, H. An Efficient Preparation of 2-Imidazolines and Imidazoles from Aldehydes with Molecular Iodine and (Diacetoxyiodo)benzene. Synlett.2006,227-230.
    [12]Cheng, X.; Vellalath, S.; Goddard, R.; List. B. Direct Catalytic Asymmetric Synthesis of Cyclic Aminals from Aldehydes. J. Am. Chem. Soc.2008,130,15786-15787.
    [13]Monnereau, C.; Blart, E.; Odobel. F. A Cheap and Efficient Method for Selective para-Iodination of Aniline Derivatives. Tetrahedron Lett.2005,46,5421-5423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700