用户名: 密码: 验证码:
基于硫叶立德和光催化策略的串联反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环化合物因其繁多的种类,显著的生理药理活性以及丰富的功能性,而被广泛的应用于材料、农业、医药等与人类生活密切相关的行业中。有机合成化学是创造新型有机分子的主要手段,然而,其迅猛的发展为人类带来便利的同时也使得人们不得不面对其对生态环境的影响问题。因此探索新颖的有机合成策略,发展高效绿色的合成方法,致力于新型杂环化合物的合成具有重要的意义,也具有一定的挑战性。本论文围绕基于硫叶立德和可见光催化的串联反应开展了相关研究工作。
     首先,通过合理设计底物,发展了稳定硫叶立德与硝基烯烃肉桂酸酯类化合物的[4+1]/[3+2]串联反应,并通过使用由(R)-联萘二酚衍生的手性硫叶立德,成功的实现了氮杂和氧杂角三奎烷衍生物的对映选择性合成,dr>95:5,ee值高达96%。通过单晶衍射,我们确定了环化产物的绝对构型,并提出了反应可能的过渡态。
     其次,成功发展了乙烯基硫盐与吲哚甲醇类化合物的串联Michael加成-环化反应,高效、高产率的构建了一系列二氢噁嗪[4,3-α]吲哚类化合物和四氢吡嗪吲哚类化合物(产率高达93%),并通过所发展起来的方法合成了专利中已报道能够治疗实体肿瘤和血液肿瘤的药物3,4-dihydro-7,8-dimethoxy-10-(4-methoxyphenyl)-1H-[1,4] Oxazino[4,3-a]indole,与报道的方法相比较,我们的合成路线较短,产率较高。
     此外,设计并成功实现了乙烯基硫盐与异喹啉氮叶立德的[3+2]串联环化反应。通过条件筛选,可以在室温下以高达88%的产率合成一系列结构多样的吡咯[2,1-α]异喹啉衍生物,与所报道的方法相比较,该方法合成步骤短,条件温和,避免使用金属催化剂,操作简便。
     最后,利用可见光及光氧化还原催化剂首先将吲哚氧化,通过原位产生的氧负离子自由基,成功实现了吲哚的氧化胺化反应,合成了一系列具有潜在生理药理活性的吲哚啉[2,3-b]羟基喹啉类化合物(dr>95:5,产率高达79%)。并通过同位素标记实验及电化学分析手段初步证明了反应机理。该方法直接利用空气中的氧气作为氧化剂,条件温和,操作简便,底物范围宽广,具有明显的应用前景。
Heterocyclic compounds are of great significant in material, agriculture and pharmaceutically related research areas because of the natural abundance and prominent bioactivities. Organic synthesis is a powerful tool for generating novel moleculars, and its rapid development brings us much convience. However, in addition to all advantages, it also makes people have to face the problem of their impact on the environment. In this regard, the development of novel synthetic strategies and efficient and green approaches for heterocyclic synthesis is highly desirable. In this dissertation, my programs are focused on the highly efficient synthesis of heterocyclic compounds through tandem reactions of sulfur ylides and the reactions promoted by visible light irradiation.
     1、A formal [4+1]/[3+2] cycloaddition sequence of sulfur ylides and alkene-tethered nitroolefins has been developed. The use of (R)-binol-derived chiral sulfide leads to an asymmetric process that allows the construction of oxa-and aza-angular triquinanes in good to excellent diastereoselectivities and enantioselectivities (up to96%ee,>95:5dr). The absolute configuration of triquinane product was unambiguously confirmed to be (3aS,4S,8R,9R,9aS) by X-ray crystallographic analysis. And we have proposed a model which can rationalize the origin of stereo-discrimination in this tandem reaction.
     2、An addition-cyclization reaction of (1H-indole-2-yl)methanols and vinyl sulfonium salts has been developed. It provides biologically and pharmaceutically important oxazino[4,3-a]indoles in good to excellent yields (up to93%yield). This methodology can also be used in the preparation of pyrazino[1,2-a] indole derivatives. The synthetic utility of this transformation was highlighted in the synthesis of3,4-dihydro-7,8-dimethoxy-10-(4-methoxyphenyl)-1H-[1,4]oxazino[4,3-a]indole, a drug candidate for the treatment of tumors of the blood. Comparing with conventional three-step synthesis the current one-step procedure represents a significant improvement in terms of the criteria of green chemistry.
     3、A direct and efficient synthesis of2,3-unsubstituted1-acylpyrrolo[2,1-a]isoquinolines by1,3-dipolar cycloaddition of stabilized isoquinolinium N-ylides with vinyl sulfonium salts (up to88%yield) has been developed. This process features simple experimental procedures, under mild conditions.
     4、A visible light-induced, aerobic oxyamidation reaction of indoles, using oxygen in air as the oxidant, has been developed. This process serves as a photocatalytic strategy to generate efficiently tetrahydro-5H-indolo[2,3-b]quinolinols, which owing to their privileged indoline structure, may have interesting biological and pharmacological activities (up to79%yield,>95:5dr). In addition, based on18O-labeling experiments and electrochemical analysis, we proposed a novel mechanism for this reaction.
引文
[1]Norman, S.R. Drug design:Hiding in full view. Drug Development Res.2008,69,15-25.
    [2](a) The chemistry of heterocycles:Structures, reactions, synthesis and applications, Ed., Eicher, T., Wiley-VCH,2003. (b)杂环化学,花文廷,北京大学出版社,1991.
    [3]Padwa, A.; Bur. S. The pummerer reaction:□ Methodology and strategy for the synthesis of heterocyclic compounds. Chem. Rev.2004,104,2401-2432.
    [4](a) Chin, Y.W.; Balunas, M. J.; Chai, H. B.; Kinghorn, A. D. Drug discovery from natural sources. AAPS J.2006,8,239-253. (b) Koehn, F. E.; Carter, G. T. The evolving role of natural products in drug discovery. Nat. Rev. Drug. Discov.2005,4,206-220. (c) Cordell, G. A.; Quinn-Beattie, M. L.; Farnsworth, N. R. The potential of alkaloids in drug discovery. Phytother Res.2001,15,183-205. (d) Hughes, E. H.; Shanks, J. V. Metabolic engineering of plants for alkaloid production. Metab. Eng.2002,4,41-48.
    [5]21世纪有机化学发展战略,杜灿屏,刘鲁生,张恒,化学工业出版社,北京,2001.
    [6](a)现代有机合成化学进展,吴毓林,麻生明,戴立信,化学工业山版社,北京,2005,ppl43-173. (b) Denmark, S. E.; Thorarensen, A. Tandem [4+2]/[3+2] cycloadditions of nitroalkenes. Chem. Rev.1996,96,137-166. (c) Muller, T. J. J. Metal catalyzed cascade reactions. Topics in organometallic chemistry, Springer:New York,2006; Vol.19. (d) Walji, A. M.; MacMillan, D. W. C. Strategies to bypass the taxol problem. Enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexity. Synlett 2007, 1477-1489.
    [7]Birch, A. J. Investigating a scientific legend:The tropinone synthesis of Sir Robert Robinson, F.R.S. Notes and Records of the Royal Society of London,1993,47,277-296.
    [8]Winkler, J. D. Tandem Diels-Alder cycloadditions in organic synthesis. Chem. Rev.1996,96, 167-176.
    [9](a)叶立德化学,黄文芳,华中师范大学出版社,武汉,1997.(b) Sulfur Ylides, Trost, B. M.; Melvin, L. S. Academic Press:New York,1975.
    [10](a) Magdesieva N. N.; Sergeeva, T. A. Use of sulfonium ylides in the synthesis of heterocyclic systems. Chem. Heterocycl. Compd.1990,26,123-145. (b) Lakeev, S. N.; Maydanova, I. O.; Galin, F. Z.; Tolstikov, G. A. Sulfur ylides in the synthesis of heterocyclic and carbocyclic compounds. Russ. Chem. Rev.2001,70,655-672. (c) Sun, X.-L.; Tang, Y. Ylide-initiated michael addition-cyclization reactions beyond cyclopropanes. Acc. Chem. Res.2008,41, 937-948.
    [11]Wittig, G.; Geissler, G. Zur reaktionsweise des pentaphenyl-phosphors und einiger derivate. Justus Liebigs Ann. Chem.1953,580,44-57.
    [12](a) Walker, B. Ylides and related compounds. J. Organophosphorus Chem.1994,25,218-273 and references cited therein, (b) Ylides and imines of phosphorus, Johnson, A. W.; Kaska, W. C.; Starzewski, K. A. O.; Dixon, D. Wiley:New York,1993; pp 587. (c) Phosphonium salts, ylides and phosphoranes. The chemistry of organophosphorus compounds, Hartley, F. R. Ed. Wiley: Chichester (UK),1994; Vol.3, pp 442. (d) McKenna, E. G.; Walker, B. J. The mechanism and stereochemistry of Wittig reactions of phosphonium ylide-anions. Phosphorus, Sulfur Silicon Relat. Elem.1990,49/50,445-448.
    [13]Ingold, C. K.; Jessop, J. A. XCV.—Influence of poles and polar linkings on the course pursued by elimination reactions. Part IX. Isolation of a substance believed to contain a semipolar double linking with participating carbon. J. Chem. Soc.1930,713-718.
    [14](a) Johnson, A. W.; LaCount, R. B.9-Dimethyoxosulfonium fluorenylide. Chem. Ind. (London) 1958,1440-1441. (b) Johnson, A. W.; La Count, R. B. The chemistry of ylids. VI. Dimethylsulfonium fluorenylide—A synthesis of epoxides. J. Am. Chem. Soc.1961,83,417-423. (c) Corey, E. J.; Chaykovsky, M. Dimethyloxosulfonium methylide ((CH3)2SOCH2) and dimethylsulfonium methylide ((CH3)2SCH2). Formation and application to organic synthesis. J. Am. Chem. Soc.1965,87,1353-1364.
    [15](a) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Asymmetric ylide reactions:□ Epoxidation, cyclopropanation, aziridination, olefination, and rearrangement. Chem. Rev.1997,97,2341-2372. (b) Aggarwal, V. K..; Winn, C. L. Catalytic, asymmetric sulfur ylide-mediated epoxidation of carbonyl compounds:□ Scope, selectivity, and applications in synthesis. Ace. Chem. Res.2004, 37,611-620. (c) McGarrigle, E. M.; Myers, E. L.; Ilia, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K. Chalcogenides as organocatalysts. Chem. Rev.2007,107,5841-5883.
    [16](a) Furukawa, N.; Okano, K.; Fujihara, H. Synthesis of oxiranes by using sulfides-sulfonium salts as mediators. Nippon Kagaku Kaishi 1987,1353-1358. (b) Furukawa, N.; Sugihara, Y.; Fujihara, H. Camphoryl sulfide as a chiral auxiliary and a mediator for one-step synthesis of optically active 1,2-diaryloxiranes. J. Org. Chem.1989,54,4222-4224.
    [17](a) Li, A.-H.; Dai, L.-X.; Hou, X.-L.; Huang, Y.-Z.; Li, F.-W. Preparation of enantiomerically enriched (2R,3R)- or (2S,3S)-trans-2,3-diaryloxiranes via camphor-derived sulfonium ylides. J. Org. Chem.1996,61,489-493. (b) Saito, T.; Akiba, D.; Sakairi, M.; Kanazawa, S. Preparation of a novel, camphor-derived sulfide and its evaluation as a chiral auxiliary mediator in asymmetric epoxidation via the Corey-Chaykovsky reaction. Tetrahedron Lett.2001,42,57-59. (c) Hayakawa, R.; Shimizu, M. Synthesis of chiral epoxides from aldehydes using sulfur ylide derived from reduced product of Bakers'yeast reduction. Synlett 1999,1328-1330. (d) Hansch, M.; Illa, O.; McGarrigle, E. M.; Aggarwal, V. K. Synthesis and application of easily recyclable thiomorpholines for use in sulfur ylide mediated asymmetric epoxidation of aldehydes. Chem Asian J.2008,3,1657-1663. (e) Miniere, S.; Reboul, V.; Metzner, P.; Fochi, M.; Bonini, B. F. Catalytic ferrocenyl sulfides for the asymmetric transformation of aldehydes into epoxides. Tetrahedron:Asymmetry 2004,15,3275-3280. (f) Miyake, Y.; Oyamada, A.; Nishibayashi, Y.; Uemura, S. Asymmetric synthesis of epoxides from aromatic aldehydes and benzyl halides catalyzed by C2 symmetric optically active sulfides having a binaphthyl skeleton. Heteroatom Chem.2002,13,270-275. (g) Ishizaki, M.; Hoshino, O. Synthesis of novel C2-symmetrical chiral sulfides and their utility in asymmetric epoxidation of aldehydes. Chirality 2003,15,300-305. (h) Winn, C. L.; Bellenie, B. R.; Goodman, J. M. A highly enantioselective one-pot sulfur ylide epoxidation reaction. Tetrahedron Lett.2002,43,5427-5430. (i) Zanardi, J.; Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P. A catalytic cycle for the asymmetric synthesis of epoxides using sulfur ylides. J. Org. Chem.2001,66,5620-5623.(j) Zanardi, J.; Reboul, V.; Metzner, P. Direct utilization of naturally occurring sulfides for the asymmetric epoxidation of aldehydes mediated by catalytic ylides. Bull. Korean Chem. Soc.2004,25,1695-1698. (k) Davoust, M.; Briere, J.-F.; Jaffres, P. A.; Metzner, P. Design of sulfides with a locked conformation as promoters of catalytic and asymmetric sulfonium ylide epoxidation. J. Org. Chem.2005,70, 4166-4169.
    [18](a) Aggarwal, V. K.; Abdel-Rahman, H.; Jones, R. V. H.; Lee, H. Y.; Reid, B. D. Novel catalytic cycle for the synthesis of epoxides from aldehydes and sulfur ylides mediated by catalytic quantities of sulfides and Rh2(OAc)4. J. Am. Chem. Soc.1994,116,5973-5974. (b) Aggarwal, V. K.; Abdel-Rahman, H.; Jones, R. V. H.; Standen, M. C. H. A novel catalytic cycle for the synthesis of epoxides using sulfur ylides:Application to base sensitive aldehydes. Tetrahedron Lett.1995,36,1731-1732. (c) Aggarwal, V. K.; Abdel-Rahman, H.; Fan, L.; Jones, R. V. H.; Standen, M. C. H. A novel catalytic cycle for the synthesis of epoxides using sulfur ylides. Chem. Eur. J.1996,2,1024-1030. (d) Aggarwal, V. K.; Thompson, A.; Jones, R. V. H.; Standen, M. The use of chiral sulfides in catalytic asymmetric epoxidation. Tetrahedron:Asymmetry 1995,6, 2557-2564. (e) Myllymaki, V. T.; Lindvall, M. K.; Koskinen, A. M. P. Computer-assisted discovery of novel amino acid derived sulfides for enantioselective epoxidation of aldehydes. Tetrahedron 2001,57,4629-4635. (f) Aggarwal, V. K.; Alonso, E.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Porcelloni, M.; Studley, J. R. Catalytic asymmetric synthesis of epoxides from aldehydes using sulfur ylides with in situ generation of diazocompounds. Angew. Chem. Int. Ed. 2001,40,1430-1433. (g) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. The use of tosylhydrazone salts as a safe alternative for handling diazo compounds and their applications in organic synthesis. Eur. J. Org. Chem.2005,1479-1492. (h) Aggarwal, V. K.; Alonso, E.; Bae, I.; Hynd, G.; Lydon, K. M.; Palmer, M. J.; Patel, M.; Porcelloni, M.; Richardson, J.; Stenson, R. A.; Studley, J. R.; Vasse, J.-L.; Winn, C. L. A new protocol for the in situ generation of aromatic, heteroaromatic, and unsaturated diazo compounds and its application in catalytic and asymmetric epoxidation of carbonyl compounds. Extensive studies to map out scope and limitations, and rationalization of diastereo- and enantioselectivities. J. Am. Chem. Soc.2003,125,10926-10940.
    [19]Kunz, R. K.; MacMillan, D. W. C. Enantioselective organocatalytic cyclopropanations. The identification of a new class of iminium catalyst based upon directed electrostatic activation. J. Am. Chem. Soc.2005,127,3240-3241.
    [20](a) Hartikka, A.; Arvidsson, P. I. Tetrazolic acid functionalized dihydroindol:□ Rational design of a highly selective cyclopropanation organocatalyst. J. Org. Chem.2007,72,5874-5877. (b) Hartikka, A.; Slosarczyk, A. T; Arvidsson, P. I. Application of novel sulfonamides in enantioselective organocatalyzed cyclopropanation. Tetrahedron:Asymmetry 2007,18, 1403-1409.
    [21](a) Kakei, H.; Sone, T.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. Catalytic asymmetric cyclopropanation of enones with dimethyloxosulfonium methylide promoted by a La-Li3-(Biphenyldiolate)3+Nal complex. J. Am. Chem. Soc.2007,129,13410-13411. (b) Sone, T.; Yamaguchi, A.; Matsunaga, S.; Shibasaki, M. Catalytic asymmetric synthesis of 2,2-disubstituted terminal epoxides via dimethyloxosulfonium methylide addition to ketones. J. Am. Chem. Soc.2008,130,10078-10079.
    [22]Cheng, Y.; An, J.; Lu, L.-Q.; Luo, L.; Wang, Z.-Y.; Chen, J.-R.; Xiao, W.-J. Asymmetric cyclopropanation of β,γ-unsaturated a-ketoesters with stabilized sulfur ylides catalyzed by C2-symmetric ureas. J. Org. Chem.,2011,76,281-284.
    [23]Hayashi, Y.; Akazama, T.; Yamamoto, K.; Oda, R. The reaction of sulfonium ylides with carbon disulfide. Tetrahedron Lett.1971,12,1781-1784.
    [24]Hayashi, Y.; Nakamura, H.; Nozaki, H. The reaction of acyl-substituted sulfonium and pyridinium ylides with diphenylthiirene dioxide. Bull. Chem. Soc. Jpn.1973,46,667-669.
    [25](a) Okuma, K.; Tanaka, J.; Kaji, S.; Ohta, H. Reaction of dimethyloxosulfonium methylide with epoxides. Preparation of oxetanes. J. Org. Chem.1983,48,5133-5134. (b) Vaultier, M.; Danion-Bougot, R.; Danion, D.; Hamelin, J.; Carrie, R. Reaction d'une aziridine et d'une oxazoline-4 ylures d'azomethine potentiels avec les ylures du soufre, nouvelle methode de synthese d'azetidines. Tetrahedron Lett.1973,14,1923-1926. (c) Vaultier, M.; Danion-Bougot, R.; Danion, D.; Hamelin, J.; Carrie, R. Reaction of azomethine ylides with sulfur ylides. Novel azetidine synthesis. J. Org. Chem.1975,40,2990-2992. (d) Nadir, U. K.; Koul, V. K. Reaction of dimethylsulphoxonium methylid with N-arenesulphonylimines:A one-pot synthesis of 2-aryl-N-arenesulphonylazetidines. Synthesis 1983,554.
    [26]Sone, T.; Lu, G.; Matsunaga, S.; Shibasaki, M. Catalytic asymmetric synthesis of 2,2-disubstituted oxetanes from ketones by using a one-pot sequential addition of sulfur ylide. Angew. Chem. Int. Ed.2009,48,1677-1680.
    [27](a) Umani-Ronchi, A.; Bravo, P.; Gaudiano, G. The reaction between dimethyloxosulphonium methylide and benzonitrile oxide. Tetrahedron Lett.1966,7,3477-3481. (b) Gaudiano, G.; Umani-Ronchi, A.; Bravo, P.; Acampora, M. Dimethyloxosulphonium methylide:A tool for the synthesis of five-membered heterocycles. Tetrahedron Lett.1967,8,107-111. (c) Nakada, Y.; Hata, T.; Tamura, C.; Iwaoka, T.; Kondo, M.; Ide, J. Reactions of sulfoxonium allylides with nitrile oxides and ring transformations of their reaction products. Tetrahedron Lett.1981,22, 473-476.
    [28]Higo, M.; Mukaiyama, T. A convenient method for the synthesis of 3,4-furandicarboxylic acid derivatives by the reactions of sulfonium ylides with dimethyl acetylenedicarboxylate Tetrahedron Lett.1970,11,2565-2568.
    [29](a) Takaku, M.; Hayashi, Y.; Nozaki, H. A new synthesis of furans by the reaction of sulphonium diacylmethylides with diethyl acetylenedicarboxylate. Tetrahedron Lett.1969,10,2053-2056. (b) Hayashi, H.; Kobayashi, M.; Nozaki, H. Furans from sulphonium diacylmethylides and acetylenes. Tetrahedron,1970,26,4353-4360.
    [30]K6nig, H.; Metzger, H.; Sulert, K. Beilstein Institut zur Foerderung der Chemischen Wissenschaften Frankfurt am Main, DE. Chem. Ber.1965,98,3712-3723.
    [31]Clagett, M.; Gooch, A.; Graham, P.; Holy, N.; Mains, B.; Strunk, J. Organocopper intermediates. Synthesis of 2-isoxazoline N-oxides and cyclopropanes. J. Org. Chem.1976,41,4033-4035.
    [32]Zhu, C.-Y.; Deng, X.-M.; Sun, X.-L.; Zheng, J.-C.; Tang, Y. Highly enantioselective synthesis of isoxazoline N-oxides. Chem. Commun.2008,738-740.
    [33]Zhong, C.; Gautam, L. N. S.; Petersen, J. L.; Akhmedov, N. G.; Shi, X.-D. Highly enantioselective synthesis of isoxazoline N-oxides. Chem. Eur. J.2010,16,8605-8609.
    [34]Bravo, P.; Gaudiano, G.; Ticozzi, C.; Umani-Ronchi, A. Reactions of dimethyloxosulfonium methyl ylide with a-chloro oximes and a-nitroso chlorides. Synthesis of a-methylene oximes. Gazz. Chim. Ital.1969,99,549-564.
    [35]Bravo, P.; Ticozzi, C. Reactions of enamines with nitrosyl chloride and keto-stabilized sulfonium ylids. New synthesis of isoxazoles. Gazz. Chim. Ital.1975,105,91-98.
    [36]Tsuge, O.; Sakai, A.; Tashiro, M. Acyl and thioacyl isocyanates. XII. Reactions of benzoyl and thiobenzoyl isocyanates with sulfonium ylides and with diazoalkanes. Tetrahedron 1973,29, 1983-1990.
    [37]Loebach, J. L.; Bennett, D. M.; Danheiser, R. L. The reaction of (trialkylsilyl)vinylketenes with carbenoid reagents:A new [4+1] annulation route to cyclopentenones. J. Am. Chem. Soc.1998, 120,9690-9691.
    [38](a) Payne, G. B. Cyclopropanes from reactions of ethyl dimethylsulfuranylideneacetate with.alpha.,.beta.-unsaturated compounds.J. Org. Chem.1967,32,3351-3355. (b) Zheng, J.-C.; Zhu, C.-Y.; Sun, X.-L.; Tang, Y.; Dai, L.-X. Highly diastereoselective and enantioselective formal [4+1] ylide annulation for the synthesis of optically active dihydrofurans.J. Org. Chem. 2008.73,6909-6912.
    [39]Lu, L.-Q.; Zhang, J.-J.; Li, F.; Cheng, Y; An, J.; Chen, J.-R.; Xiao, W.-J. Tuning electronic and steric effects:Highly enantioselective [4+1] pyrroline annulation of sulfur ylides with α,β-unsaturated mines. Angew. Chem. Int. Ed.2010,49,4495-4498.
    [40]Chen, J.-R.; Dong, W.-R.; Candy, M.; Pan, F.-F.; Jorres, M.; Bolm, C. Enantioselective synthesis of dihydropyrazoles by formal [4+1] cycloaddition of in situ-derived azoalkenes and sulfur Ylides. J. Am. Chem. Soc.2012,134,6924-6927.
    [41](a) Schomaker, J. M.; Pulgam, V. R.; Borhan, B. Synthesis of diastereomerically and enantiomerically pure 2,3-disubstituted tetrahydrofurans using a sulfoxonium ylide. J. Am. Chem. Soc.2004, 126, 13600-13601. (b) Schomaker, J. M.; Bhattacharjee, S.; Yan, J.; Borhan, B. Synthesis of diastereomerically and enantiomerically pure 2,3-disubstituted tetrahydrofurans using a sulfoxonium ylide. J. Am. Chem. Soc. 2007,129,1996-2003.
    [42]Kokotos, C. G.; Aggarwal, V. K. Hemiaminals as substrates for sulfur ylides: Direct asymmetric syntheses of functionalised pyrrolidines and piperidines. Chem. Commun. 2006,2156-2158.
    [43]Lu, L.-Q.; Cao, Y.-J.; Liu, X.-R; An, J.; Yao, C.-J.; Ming, Z.-H.; Xiao, W.-J. A new entry to cascade organocatalysis: Reactions of stable sulfur ylides and nitroolefins sequentially catalyzed by thiourea and DMAP. J. Am. Chem. Soc. 2008, 130, 6946-6948. (b) Lu, L.-Q.; Li, F.; An, J.; Cheng, Y.; Chen, J.-R.; Xiao, W.-J. Hydrogen-bond-mediated asymmetric cascade reaction of stable sulfur ylides with nitroolefins: Scope, application and mechanism. Chem. Eur. J. 2012,18, 4073-4079. (c) Lu, L.-Q.; Ming, Z.-H.; An, J.; Li, C; Chen, J.-R.; Xiao, W.-J. Enantioselective cascade reactions of stable sulfur ylides and nitroolefins through an axial-to-central chirality transfer strategy.J. Org. Chem. 2012, 77,1072-1080.
    [44]Kramer, S.; Skrydstrup, T. Gold-catalyzed carbene transfer to alkynes: access to 2,4-disubstituted furans.Angew. Chem. Int. Ed. 2012, 51,4681-4684.
    [45](a) Hortmann, A. B.; Harris, R. L. Thiabenzenes.Ⅲ. Synthesis and properties of thiabenzene l-oxides. J. Am. Chem. Soc. 1971, 93, 2471-2481. (b) Tamura, Y.; Miyamoto, T.; Taniguchi, H.; Tsunekawa, M.; Ikeda,M.Syntheses and some properties of 4-acyl-1-methylthiabenzene 1-oxides. J. Org. Chem. 1974, 39, 3519-3525. (c) Watanabe, M.; Kinoshita, T.; Furukawa, S. Stable sulfur ylides. Ⅲ. Reaction of stable sulfonium allylides and oxosulfonium allylides with alkoxides. Chem. Phorm. Bull. 1975, 23, 258-263. (d) Kishida, Y.; Ide, J. Formation of thiabenzene l-oxide derivatives. Chem. Pharm. Bull. 1967,15,360-362. (e) Holt, B.; Howard, J.; Lowe, P. A. Reaction of p-diketones with dimethyloxosulphonium methylide. Tetrahedron Lett. 1969,10,4937-4940.
    [46]Vedejs, E.; Hagen, J. P. Macrocycle synthesis by repeatable 2,3-sigmatropic shifts. Ring-growing reactions. J. Am. Chem. Soc. 1965, 97,6878-6880.
    [47](a) Bravo, P.; Gaudiano, G.; Umani-Ronchi, A. The reaction of dimethylsulphonium methylide with aromatic ortho-aminocarbonyl compounds: A new synthesis of indoles. Tetrahedron Lett. 1969, 10, 679-682. (b) Bravo, P.; Gaudiano, G.; Umani-Ronchi, A. Synthesis of indoles by the use of sulfur ylides. Gazz. Chim.Ital. 1970,100,652-664.
    [48](a) Junjappa, H. A novel synthesis of 2-phenylindoles:Reactions of aromatic amines with phenacyldimethylsulphonium bromide and phenacylidinedimethylsulphurane. Synthesis 1975,12, 798. (b) Gassman, P. G.; Van Bergen, T. J.; Gilbert, D. P.; Cue, B. W. General method for the synthesis of indoles. J. Am. Chem. Soc.1974,96,5495-5508. (c) Gassman, P. G.; Van Bergen, T. J. Oxindoles. New, general method of synthesis. J. Am. Chem. Soc.1974,96,5508-5512.
    [49](a) Bravo, P.; Gaudiano, G.; Zubiani, M. G. Reaction of dimethylsulfonium methylide with aromatic o-mercapto ketones and the corresponding xanthates:New synthesis of benzothiophenes. J. Heterocycl. Chem.1970,7,967-968.
    [50](a) Holt, B.; Lowe, P. A. Reaction of ortho-hydroxyaldehydes with dimethylsulphoxonium methylide. Tetrahedron Lett.1966,7,683-686. (b) Bravo, P.; Gaudiano, G.; Ticozzi, C. Reaction of o-hydroxybenzaldehydes with keto-stabilized sulfonium ylides. Synthesis of benzofurans. Gazz. Chim. Ital.1973,103,95-103. (c) Cadona, L.; Dalla Croce, P. A convenient synthesis of 2-acyl-or 2-aroyl-substituted 2,3-dihydrobenzofurans and 1,2-dihydronaphtho[2,1-b]furans. Synthesis 1976,800. (d) Breuer, E.; Melumad, D. The reaction of o-quinone methides with dimethyl sulfoxonium methylide. A simple synthesis of coumarans. Tetrahedron Lett.1969,10, 1875-1877. (e) Lehmann, H.-G. Thermocontrolled benzylimine-benzaldimine rearrangement over Nafion-H catalysts for efficient entry into a-trifluoromethylbenzylamines. Tetrahedron Lett. 1968,9,607-611.
    [51](a) Ye, L.-W.; Sun, X.-L.; Zhu, C.-Y.; Tang, Y. Unexpected tandem ylide annulation reaction for controllable synthesis of 2H-chromenes and 4H-chromenes. Org. Lett.2006,8,3853-3856. (b) Ye, L.-W.; Sun, X.-L.; Li, C.-Y.; Tang, Y. Tetrahydrothiophene-catalyzed synthesis of benzo[n.1.0] bicycloalkanes. J. Org. Chem.2007,72,1335-1340.
    [52]Wang, Q.-G.; Deng, X.-M.; Zhu, B.-H.; Ye, L.-W.; Sun, X.-L.; Li, C.-Y.; Zhu, C.-Y.; Shen, Q.; Tang, Y. Tandem michael addition/ylide epoxidation for the synthesis of highly functionalized cyclohexadiene epoxide derivatives. J. Am. Chem. Soc.2008,130,5408-5409.
    [53]Chen, Z.; Zhang, J. Highly functionalized 4-alkylidenebicyclo[3.1.0]hex-2-enes by tandem michael addition and annulation of electron-deficient enynes. Chem. Asian J.2009,4, 1527-1529.
    [54](a) Yamashita, M.; Okuyama, K.; Kawajiri, T.; Takada, A.; Inagaki, Y.; Nakano, H.; Tomiyama, M.; Ohnaka, A.; Terayama, I.; Kawasaki, I.; Ohta, S. A novel tandem reaction of 3-substituted coumarins with two equivalents of dimethylsulfoxonium ylide to 2-substituted cyclopenta[b]benzofuran-3-ol derivatives. Tetrahedron 2002,58,1497-1505. (b) Yamashita, M.; Inaba, T.; Nagahama, M.; Shimizu, T.; Kosaka, S.; Kawasaki, I.; Ohta, S. Novel stereoconvrgent transformation of 1,2a-disubstituted 1,2,2a,8b-tetrahydro-3H-benzo [b]cyclobuta[d]pyran-3-ones to 1,3-disubstituted 1,2,4a,9b-tetrahydrodibenzofuran-4-ols and its application to the second-generation synthesis of (±)-linderol A. Org. Biomol. Chem.2005,3, 2296-2304. (c) Yadav, N. D.; Yamashita, M.; Nagahama, M.; Inaba, T.; Sawaki, T.; Kawasaki, I.; Kurume, A.; Ohta, S. A novel transformation of 1-exo-substituted 2a-aroyl-1,2,2a,8b-tetrahydro-3H-benzo[b]cyclobuta[d]pyran-3-ones with sulfoxonium ylide to highly strained 2a-(1-arylethenyl)-1,2,2a,7b-tetrahydrocyclobuta[b]benzofurans. Tetrahedron Lett.2008,49,1627-1630.
    [55]Lu, L.-Q.; Li, F.; An, J.; Zhang, J.-J.; An, X.-L.; Hua, Q.-L.; Xiao, W.-J. Construction of fused heterocyclic architectures by formal [4+1]/[3+2] cycloaddition cascade of sulfur ylides and nitroolefins. Angew. Chem. Int. Ed.2009,48,9542-9545.
    [56]Yang, Q.-Q.; Xiao, C.; Lu, L.-Q.; An, J.; Tan, F.; Li, B.-J.; Xiao, W.-J. Synthesis of indoles through highly efficient cascade reactions of sulfur ylides and N-(ortho-chloromethyl)aryl amides. Angew. Chem. Int. Ed.2012,51,9137-9140.
    [57]Gosselck, J.; Blress, L.; Schenk, H. Reactions of substituted vinylsulfonium salts with CH-acidic compounds.-A new route to polysubstituted cyclopropanes. Angew. Chem. Int. Ed. Engl.1966, 5,596-597.
    [58](a) Johnson, C. R.; Lockard, J. P. (Dimethylamino)-phenyl-(2-phenylvinyl)-oxosulfonium fluoroborate. A model reagent for ethylene transfer to dibasic nucleophiles. Tetrahedron Lett. 1971,12,4589-4592. (b) Batty, J. W.; Howes, P. D.; Stirling, C. J. M. Elimination-addition. Part ⅩⅫ. Addition of enolates to allenic sulphonium salts; a new general furan synthesis. J. Chem. Soc. Perkin Trans.11973,65-68. (c) Braun, H.; Huber, G. Reaktionen von butadienylsulfoniumsaltzen mit carbonionen. Tetrahedron Lett.1976,17,2121-2124. (d) Takaki, K.; Agawa, T. Synthesis of acylcyclopropanes and oxiranes from vinylsulfonium salts and lithium enolates. J. Org. Chem.1977,42,3303-3304. (e) Garst, M. E.; Arrhenius, P. Epoxyannulation.5. Reactions of 1-butadienyl sulfonium salts. J. Org. Chem.1983,48,16-24. (f) Rowbottom, M. W.; Mathews, N.; Gallagher, T. Synthesis of vinyl epoxides via a three-component coupling. J. Chem. Soc. Perkin Trans.1 1998,3927-3930. (g) Matsuo, J.; Yamanaka, H.; Kawana, A.; Mukaiyama, T. A convenient method for the synthesis of 2-arylaziridines from styrene derivatives via 2-arylethenyl(diphenyl)sulfonium salts. Chem. Lett. 2003,32,392-393. (h) Yamanaka, H.; Yamane, Y.; Mukaiyama, T. A new method for the preparation of nitrogen-containing heterocycles using diphenylsulfonium triflates. Heterocycles, 2004,63,2813-2826. (i) Yamanaka, H.; Mukaiyama, T. A convenient method for the synthesis of a-imidostyrenes from styrenes and imides via diphenylstyrylsulfonium salts. Chem. Lett.2003, 32,1192-1193. (j) Wang, Z.; Jimenez, L. S. Synthesis of the tetracyclic mitomycin skeleton via a dialkylvinylsulfonium salt. J. Am. Chem. Soc.1994,116,4977-4978.
    [59](a) Wang, Y.; Zhang, W.; Colandrea, V. J.; Jimenez, L. S. Reactivity and rearrangements of dialkyl-and diarylvinylsulfonium salts with indole-2-and pyrrole-2-carboxaldehydes. Tetrahedron 1999,55,10659-10672. (b) Kim, K.; Jimenez, L. S. A camphor-derived vinylsulfonium salt as a reagent for a cycloannulation. Tetrahedron:Asymmetry 2001,12, 999-1005.
    [60](a) Unthank, M. G.; Hussain, N.; Aggarwal, V. K. A camphor-derived vinylsulfonium salt as a reagent for a cycloannulation. Angew. Chem. Int. Ed.2006,45,7066-7069. (b) Kokotos, C. G.; McGarrigle, E. M.; Aggarwal, V. K. Sulfur ylide mediated three-component aziridination and epoxidation reactions using vinyl sulfonium salts. Synlett 2008,2191-2195. (c) Unthank, M. G.; Tavassoli, B.; Aggarwal, V. K. Epoxy-annulations by reactions of a-amido ketones with vinyl sulfonium salts. Reagent versus substrate control and kinetic resolution. Org. Lett.2008,10, 1501-1504. (d) Yar, M.; McGarrigle, E.; Aggarwal, V. K. An annulation reaction for the synthesis of morpholines, thiomorpholines, and piperazines from β-heteroatom amino compounds and vinyl sulfonium salts. Angew. Chem. Int. Ed.2008,47,3784-3786. (e) Yar, M.; McGarrigle, E.; Aggarwal, V. K. Bromoethylsulfonium salt More effective annulation agent for the synthesis of 6- and 7-membered 1,4-heterocyclic compounds. Org. Lett.2009,11,257-260. (f) McGarrigle, E. M.; Fritz, S. P.; Favereau, L.; Yar, M.; Aggarwal, V. K. An efficient synthesis of imidazolinium salts using vinyl sulfonium salts. Org. Lett.2011,13,3060-3063.
    [61]Xie, C.-S.; Han, D.-Y.; Liu, J.-H.; Xie, T. Novel syntheses of N-aryloxazolidin-2-ones via tandem reactions of vinyl sulfonium salts. Synlett 2009,3155-3158.
    [62](a) Mehta, G; Srikrishna, A. Synthesis of polyquinane natural products:An update. Chem. Rev. 1997,97,671-720. (b) Singh, V.; Thomas, B. Recent developments in general methodologies for the synthesis of linear triquinanest. Tetrahedron 1998,54,3647-3692. (c) Marchand, A. P. Polycyclic cage compounds as intermediates in organic synthesis. Synlett 1991,73-79. (d) Kouno, I.; Mori, K.; Kawano, N.; Sato, S. Structure of anislactone A; a new skeletal type of sesquiterpene from the pericarps of Illicium anisatum. Tetrahedron Lett.1989,30,7451-7452. (e) Schmidet, T. J.; Muller, E.; Fronczek, F. R. New allo-cedrane type sesquiterpene hemiketals and further sesquiterpene lactones from fruits of Illicium floridanwn. J. Nat. Prod.2001,64,411-414.
    [63]Yang, X.-Y.; Feng, T.; Li, Z.-H.; Sheng, Y.; Yin, X.; Leng, Y.; Liu, J.-K. Conosilane A, an unprecedented sesquiterpene from the cultures of basidiomycete conocybe siliginea. Org. Lett. 2012,14,5382-5384.
    [64](a) Smith, M. J.; Mazzola, E. P.; Sims, J. J.; Midland, S. L.; Keen, N. T.; Burton, V.; Stayton, M. M. The syringolides:Bacterial C-glycosyl lipids that trigger plant disease resistance. Tetrahedron Lett.1993,34,223-226. (b) Midland, S. L.; Keen, N. T.; Sims, J. J.; Midland, M. M.; Stayton, M. M.; Burton, V.; Smith, M. J.; Mazzola, E. P.; Graham, K. J.; Clardy, J. The structures of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomonas syringae pv. tomato. J. Org. Chem.1993,58,2940-2945. (c) Wood, J. L.; Jeong, S.; Salcedo, A.; Jenkins, J. Total syntheses of (+)-and (-)-Syringolides. J. Org. Chem.1995,60,286-287.
    [65](a) Clive, D. L. J.; Cole, D. C.; Tao, Y. Formation of angularly-fused triquinanes by successive use of the Pauson-Khand reaction and radical closure. J. Org. Chem.1994,59,1396-1406. (b) Hext, N. M.; Hansen, J.; Blake, A. J.; Hibbs, D. E.; Hursthouse, M. B.; Shishkin, O. V.; Mascal, M. Synthetic utility of sugar-derived cyclic nitrones:A diastereoselective synthesis of linear 4-azatriquinanes. J. Org. Chem.1998,63,6016-6020. (c) Li, Y.; Meng, Y.; Meng, X.; Li, Z. Stereoselective synthesis of polyoxygenated linear diaza-triquinanes via intramolecular 1,3-dipolar cycloaddition of sugar-derived hex-5-enals. Tetrahedron 2011,67,4002-4008. (d) Zancanella, M. A.; Romo, D. Facile synthesis of the trans-fused azabicyclo[3.3.0]octane core of the Palau'amines and the tricyclic core of the axinellamines from a common intermediate. Org. Lett.2008,10,3685-3688. (e) Kudryavtsev, K. V. Efficient synthesis of functionalized diazacyclopenta[c]pentalene with multiple intermolecular interactions in crystal. Heterocycles 2011,83,323-330. (f) Bandaru, A.; Kaliappan, K. P. Synthetic utility of sugar-derived cyclic nitrones:a diastereoselective synthesis of linear 4-azatriquinanes. Synlett 2012,1473-1476.
    [66](a) Yadav, J. S.; Kumar, P. T. K.; Gadgil, V. R. An expeditious approach to the synthesis of angular triquinane. Tetrahedron Lett.1992,33,3687-3690. (b) Woltering, T. J.; Hoffmann, H. M. R. Radical cascades in synthesis. Dioxatriquinanes and doubly-annulated glycosides by triethylborane-induced atom transfer cyclization of 1,5-enynes and 1,5-diynes. Tetrahedron 1995, 51,7389-7402. (c) Singh, V.; Alam, S. Q. Structural diversity through intramolecular cycloaddition and modulation of chemical reactivity in excited state. Synthesis and photoreactions of 3-oxa-tricyclo[5.2.2.01,5]undecenones:novel stereoselective route to oxa-triquinanes and oxa-sterpuranes. Bioorg. Med. Chem. Lett.2000,10,2517-2519. (d) Ader, T. A.; Champey, C. A.; Kuznetsova, L. V.; Li, T.; Lim, Y.-H.; Rucando, D.; Sieburth, S. McN. Polyquinanes by [4+4] cycloaddition-transannular cyclization. Org. Lett.2001,3,2165-2167. (e) Gurjar, M. K.; Ravindranadh, S. V.; Kumar, P.5-Exo-dig,5-exo-trig cascade radical cyclisation on sugar-furanose templates:entry to angularly fused oxa-and dioxa-triquinane skeletons. Chem. Commun.2001,917-918. (f) Singh, V.; Alam, S. Q.; Praveena, G. D. Synthesis and photoreactions of 3-oxa-tricyclo[5.2.2.01,5]undecenones:a novel, stereoselective route to oxa-triquinanes and oxa-sterpuranes. Tetrahedron 2002,58,9729-9736. (g) Kaliappan, K. P.; Nandurdikar, R. S. A cascade enyne/ring closing metathesis approach to angularly fused dioxatriquinanes. Chem. Commun.2004,2506-2507. (h) Kaliappan, K. P.; Nandurdikar, R. S.; Shaikh, M. M. A tandem enyne/ring closing metathesis approach to the synthesis of novel angularly fused dioxa-triquinanes. Tetrahedron 2006,62,5064-5073. (i) Ramakrishna, K.; Kaliappan, K. P. A one-pot deprotection and intramolecular oxa-michael addition to access angular trioxatriquinanes. Synlett 2011,2580-2584. (j) Liao, J.-H.; Maulide, N.; Augustyns, B.; Marko, I. E. Tandem radical rearrangement/Pd-catalysed translocation of bicyclo[2.2.2]lactones. An efficient access to the oxa-triquinane core structure. Org. Biomol. Chem.2006,4,1464-1467. (k) Mascal, M.; Hafezi, N.; Meher, N. K.; Fettinger, J. C. Oxatriquinane and oxatriquinacene: extraordinary oxonium ions. J. Am. Chem. Soc.2008,130,13532-13533.
    [67]Gharpure, S. J.; Niranjana, P.; Porwal, S. K. Stereoselective synthesis of oxa-and aza-angular triquinanes using tandem radical cyclization to vinylogous carbonates and carbamates. Org. Lett. 2012,14,5476-5479.
    [68]Selected reviews on the synthesis of indoles:(a) Humphrey, G. R.; Kuethe, J. T. Practical methodologies for the synthesis of indoles. Chem. Rev.2006,106,2875-2911. (b) Gribble, G. W. Recent developments in indole ring synthesis-methodology and applications. J. Chem. Soc. Perkin Trans.12000,1045-1075; (c) Cacchi, S.; Fabrizi, G. Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem. Rev.2005,105,2873-2920. (d) Sakai, N.; Annaka, K.; Fujita, A.; Sato, A.; Konakahara, T. InBr3-promoted divergent approach to polysubstituted indoles and quinolines from 2-ethynylanilines:Switch from an intramolecular cyclization to an intermolecular dimerization by a type of terminal substituent group. J. Org. Chem.2008,73,4160-4165.
    [69](a) Bos, M.; Jenck, F.; Martin, J. R.; Moreau, J. L.; Mutel, V.; Sleight, A. J.; Widmer, U. Synthesis, pharmacology and therapeutic potential of 10-methoxypyrazino[1,2-α]indoles, partial agonists at the 5HT2c receptor. Eur. J. Med. Chem.1997,32,253-261. (b) Cafieri, F.; Fattorusso, E.; Tagliatela-Scafati, O. Novel bromopyrrole alkaloids from the sponge agelas dispar. J. Nat. Prod.1998,61,122-125, and references therein. (c) Poullennec, K. G.; Romo, D. Enantioselective total synthesis of (+)-dibromophakellstatin. J. Am. Chem. Soc.2003,125, 6344-6345. (d) Tiwari, R. K.; Verma, A. K.; Chhillar, A. K.; Singh, D.; Singh, J.; Sankar, V. K.; Yadav, V.; Sharma, G. L.; Chandra, R. Synthesis and antifungal activity of substituted-10-methyl-1,2,3,4-tetrahydropyrazino[1,2-α]indoles. Bioorg. Med. Chem.2006,14, 2747-2752. (e) Bentley, J. M.; Hebeisen, P.; Muller, M.; Richter, H.; Roever, S.; Mattei, P.; Taylor, S. PCT Int. Appl. WO 2001-EP852020010724,2002. (f) Nettekoven, N.; Plancher, J. M.; Richter, H.; Roche, O.; Taylor, S. PCT Int. Appl. WO US 2007/0135416 A1,2007.
    [70](a) Demerson, C. A.; Santroch, G.; Humber, L. G.3,4-Dihydro-1H-1,4-oxazino[4,3-α]indoles as potential antidepressants. J. Med. Chem.1975,18,577-580. (b) Carlo, F.; Stefania, G.; Paola, M.; Paolo, C.; Franco, Z. PCT Int. Appl. WO 2005/105213 A3,2005.
    [71]Bandini, M.; Eichholzer, A. Catalytic functionalization of indoles in a new dimension. Angew. Chem. Int. Ed.2009,48,9608-9644.
    [72](a) Shiue, J. S.; Fang, J.-M. Samarium(Ⅱ) iodide-promoted hydroxyalkylations of indole 3-carbonyls. An expedient approach to pyrrolidino[1,2-α]indoles and furo[3,4-b]indoles. J. Chem. Soc. Chem. Commun.1993,1277-1278. (b) Wang, S.-F.; Chuang, C.-P. Free radical reaction of 1-(4-allylsulfonylbutyl)indoles. Tetrahedron Lett.1997,38,7597-7598. (c) Siebeneicher, H.; Bytschkov, I.; Doye, S. A flexible and catalytic one-pot procedure for the synthesis of indoles. Angew. Chem. Int. Ed.2003,42,3042-3044. (d) Tsuboike, K.; Guerin, D. J.; Mennen, S. M.; Miller, S. J. Synthesis of aziridinomitosenes through base-catalyzed conjugate addition. Tetrahedron 2004,60,7367-7374. (e) Bennasar, M.-L.; Roca, T.; Ferrando, F. Intramolecular reactions of 2-indolylacyl radicals:□ Access to 1,2-fused ring indole derivatives. Org. Lett.2004, 6,759-762. (f) Takaya, J.; Udagawa, S.; Kusama, H.; Iwasawa, N. Synthesis of N-fused tricyclic indoles by a tandem [1,2]Stevens-type rearrangement/1,2-alkyl migration of metal-containing ammonium ylides. Angew. Chem. Int. Ed.2008,47,4906-4909. (g) Verma, A. K.; Kesharwani, T.; Singh, J.; Tandon, V.; Larock, R. C. A copper-catalyzed tandem synthesis of indolo-and pyrrolo[2,1-a]isoquinolines.Angew. Chem. Int. Ed.2009,48,1138-1143.
    [73](a) Bandini, M.; Eichholzer, A.; Monari, M.; Piccinelli, F.; Umani-Ronchi, A. Versatile base-catalyzed route to polycyclic heteroaromatic compounds by intramolecular aza-michael addition. Eur. J. Org. Chem.2007,2917-2920. (b) Bandini, M.; Eichholzer, A.; Tragni, M.; Umani-Ronchi, A. Enantioselective phase-transfer-catalyzed intramolecular aza-michael reaction: Effective route to pyrazino-indole compounds. Angew. Chem. Int. Ed.2008,47,3238-3241.
    [74]Fuchibe, K.; Kaneko, T.; Mori, K.; Akiyama, T. Expedient synthesis of N-fused indoles:A C-F activation and C-H insertion approach. Angew. Chem. Int. Ed.2009,48,8070-8073.
    [75](a) Smith, W. R.; Moir, R. Y.1-Indoleacetic acid. Can. J. Chem.1952,30,411-421. (b) Elvridge, J. A.; Spring, F. S. Gliotoxin. Ⅱ. Degradation and synthetic studies on desthiogliotoxin. J. Chem. Soc.1949,2935-2942.
    [76](a) Jones, R. A.; Fresneda, P. M.; Saliente, T. A.; Arques, J. S. The reactivity of 2-vinyIindoles with dimethyl acetylenedicarboxylate. Tetrahedron 1984,40,4837-4842. (b) Gonzalez-Perez, P.; Perez-Serrano, L.; Casarrubios, L.; Dominguez, G.; Perez-Castells, J. RCM in indoles. A new entry to the mitosene skeleton. Tetrahedron Lett.2002,43,4765-4767.
    [77]Black,D. St C.; Kumar, N.; Wong, L. C. H. Synthesis of 2-(7-indolyl)benzimidazoles via 7-formylindoles. Synthesis 1986,474.
    [78]Csom6s, P.; Fodor, L.; Mandity, I.; Bernath, G. An efficient route for the synthesis of 2-arylthiazino[5,6-b]indole derivatives. Tetrahedron 2007,63,4983-4989.
    [79]Nenajdenko, V. G.; Vertelezkij, P. V.; Gridnev, I. D.; Shevchenko, N. E.; Balenkova, E. S. Reaction of dimethyl sulfide ditriflate with alkenes. Synthesis of sulfur derivatives of nortricyclane. Tetrahedron 1997,53,8173-8180.
    [80](a) Bailly, C. Lamellarins, from A to Z:A family of anticancer marine pyrrole alkaloids. Curr. Med. Chem. Anti-Cancer Agents 2004,4,363-378. (b) Handy, S. T.; Zhang, Y. Approaches to the synthesis of the lamellarins and related natural products. A review. Org. Prep. Proced. Int. 2005,37,411-445. (c) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J. F. Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem. Rev.2008,108,264-287. (d) Pla, D.; Albericio, F.; Alvarez, M. Recent advances in lamellarin alkaloids:isolation, synthesis and activity. Anti-Cancer Agents Med. Chem.2008,8,746-760.
    [81]Marco, E.; Laine, W.; Tardy, C; Lansiaux, A.; Iwao, M.; Ishibashi, F.; Bailly, C.; Gago, F. Molecular determinants of topoisomerase I poisoning by Lamellarins:□ Comparison with camptothecin and structure-activity relationships. J. Med. Chem.2005,48,3796-3807.
    [82](a) Reddy, M. V. R.; Rao, M. R.; Rhodes, D.; Hansen, M. S. T.; Rubins, K.; Bushman, F. D.; Venkateswarlu, Y.; Faulkner, D. J. Lamellarin a 20-Sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture.J. Med. Chem.1999,42,1901-1907. (b) Aubry, A.; Pan, X-S.; Fisher, L. M.; Jarlier, V.; Cambau, E. Mycobacterium tuberculosis DNA gyrase: Interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob. Agents Chemother.2004,48,1281-1288.
    [83]Pla, D.; Marchal, A.; Olsen, C. A.; Francesch, A.; Cuevas, C.; Albericio, F.; Alvarez, M. Synthesis and structure-activity relationship study of potent cytotoxic analogues of the marine alkaloid Lamellarin D. J. Med. Chem.2006,49,3257-3268.
    [84]Pla, D.; Marchal, A.; Olsen, C. A.; Francesch, A.; Cuevas, C.; Albericio, F.; Alvarez, M. Modular total synthesis of Lamellarin D. J. Org. Chem.2005,70,8231-8234.
    [85](a) Toth, J.; Varadi, L.; Dancso, A.; Blasko, G.; Toke, L.; Nyerges, M. Novel oxidation of substituted pyrrolidines by N-bromosuccinimide:Rapid synthesis of pyrrolo[2,1-a]isoquinolines. Synlett 2007,1259-1263. (b) Kobayashi, M.; Tanabe, M.; Kondo, K.; Aoyama, T. Reaction of isoquinolinium methylide derivatives with trimethylsilylketene. Tetrahedron Lett.2006,47, 1469-1471. (c) Basketter, N. S.; Plunkett, A. O. Reactions of isoquinolinium ylides. Amine-catalyzed cycloaddition of aldehydes and ketones. J. Chem. Soc., Chem. Commun.1973, 188-189. (d) Huisgen, R.; Grashey, R.; Steingruber, E. Azomethin-ylide und ihre 1.3-dipolaren cycloadditionen. Tetrahedron Lett.1963,4,1441-1445. (e) Boekelheide, V.; Godfrey, J. C. Syntheses of 7,8-benzopyrrocoline derivatives. A novel reaction of Reissert compounds. J. Am. Chem. Soc.1953,75,3679-3685. (f) McEwen, W. E.; Mineo, I. C.; Shen, Y. H.1,3-dipolar addition reactions of Reissert compounds. J. Am. Chem. Soc.1971,93,4479-4484. (g) Tominga, Y.; Ichihara, Y.; Hosomi, A. Nitroolefins. I. A new and convenient access to indolizines and pyrazolo[1,5-a]pyridines using 1-nitro-2-(phenylthio)ethylene. Heterocycles 1988,27, 2345-2348. (h) Tominaga, Y.; Shiroshita, Y.; Kurokawa, T.; Gotou, H.; Matsuda, Y.; Hosomi, A. Synthesis of cycl[3.2.2]azine and benzo[g]cycl[3.2.2]azine derivatives by use of the [2+8] cycloaddition reaction of indolizines and dimethyl acetylenedicarboxylate. J. Heterocycl. Chem. 1989,26,477-487. (i) Linn, W. J.; Webster, O. W.; Benson, R. E. Tetracyanoethylene oxide. I. Preparation and reaction with nucleophiles. J. Am. Chem. Soc.1965,87,3651-3656. (j) Zhang, X.-C.; Huang, W.-Y. A one-step approach to 1-(fluoroalkyl)indolizine derivatives. Synthesis 1999,51-54. (k) Peng, W.-M.; Zhu, S.-Z. Reactions of N-benzyl-pyridinium or -isoquinolinium ylides with ethyl 3-fluoro-3-(fluoroalkyl)acrylates to give fluoroalkyl-substituted indolizine and pyrrolo[2,1-a]isoquinoline derivatives. J. Chem. Soc., Perkin Trans.12001,3204-3210. (1) Fan, X.; Wu, Y.-M.; Deng, J.; Wang, S.-W. Synthesis of monofluorinated indolizines and their derivatives by the 1,3-dipolar reaction of N-ylides with fluorinated vinyl tosylates. Tetrahedron 2004,60,5487-5493. (m) Katritzky, A. R.; Qiu, G.; Yang, B.; He, H.-Y. Novel syntheses of indolizines and pyrrolo[2,1-a]isoquinolines via benzotriazole methodology. J. Org. Chem.1999, 64,7618-7621. (n) Yu, C.-G.; Zhang, Y.-A.; Zhang, S.-L.; Wang, W. Cu(II) catalyzed oxidation-[3+2] cycloaddition-aromatization cascade:Efficient synthesis of pyrrolo[2,1-a] isoquinolines. Chem. Commun.2011,47,1036-1038.
    [86](a) Nyerges, M.; Toke, L.1,5-electrocyclisation of azomethine ylides leading to pyrrolo[2,1-a]isoquinolines-concise construction of the lamellarin skeleton. Tetrahedron Lett. 2005,46,7531-7534. (b) Toth, J.; Nedves, A.; Dancso, A.; Blask6, G.; Toke, L.; Nyerges, M. Synthesis of pyrrolo[2,1-a]isoquinolines by a tandem 1,5-electrocyclization-oxidation process. Synthesis 2007,1003-1014.
    [87](a) Verna, A. K.; Kesharwani, T.; Singh, J.; Tandon, V.; Larock, R. C. A copper-catalyzed tandem synthesis of indolo-and pyrrolo[2,1-a]isoquinolines. Angew. Chem. Int. Ed.2009,48, 1138-1143. (b) Su, S.; Porco, Jr., J. A.; Synthesis of pyrrolo-isoquinolines related to the lamellarins using silver-catalyzed cycloisomerization/dipolar cycloaddition. J. Am. Chem. Soc. 2007,129,7744-7745. (c) Seregin, I. V.; Gevorgyan, V. Gold-catalyzed 1,2-migration of silicon,. tin, and germanium en route to C-2 substituted fused pyrrole-containing heterocycles. J. Am. Chem. Soc.2006,128,12050-12051. (d) Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. A novel Cu-assisted cycloisomerization of alkynyl imines:□ Efficient synthesis of pyrroles and pyrrole-containing heterocycles. J. Am. Chem. Soc.2001,123,2074-2075. (e) Chernyak, D.; Gadamsetty, S. B.; Gevorgyan, V. Low temperature organocopper-mediated two-component cross coupling/cycloisomerization approach toward N-fused heterocycles. Org. Lett.2008,10, 2307-2310.
    [88](a) Yavari, I.; Piltan, M.; Moradi, L. Synthesis of pyrrolo[2,1-a]isoquinolines from activated acetylenes, benzoylnitromethanes, and isoquinoline. Tetrahedron 2009,65,2067-2071. (b) Alizadeh, A.; Zohreh, N. One-pot synthesis of pyrrolo[2,1-a]isoquinoline-l-carboxamide derivatives via a four-component reaction. Synthesis 2008,429-432. (c) Ploypradith, P.; Petchmanee, T.; Sahakitpichan, P.; Litvinas, N. D.; Ruchirawat, S. Total synthesis of natural and unnatural lamellarins with saturated and unsaturated D-rings. J. Org. Chem.2006,71,9440-9448. (d) Yamaguchi, T.; Fukuda, T.; Ishibashi, F.; Iwao, M. The first total synthesis of lamellarin a 20-sulfate, a selective inhibitor of HIV-1 integrase. Tetrahedron Lett.2006,47,3755-3757. (e) Yavari, I.; Hossaini, Z.; Sabbaghan, M. A synthesis of pyrrolo[2,1-a]isoquinolines through the reaction of activated acetylenes and isoquinoline in the presence of ethyl bromopyruvate. Tetrahedron Lett.2006,47,6037-6040. (f) Fujikawa, N.; Ohta, T.; Yamaguchi, T.; Fukuda, T.; Ishibashib, F.; Iwao, M. Total synthesis of lamellarins D, L, and N. Tetrahedron 2006,62, 594-604. (g) de Koning, C. B.; Michael, J. P.; Pathak, R.; van Otterlo, W. A. L. The synthesis of indolo-and pyrrolo[2,1-a]isoquinolines. Tetrahedron Lett.2004,45,1117-1119. (h) Ohsawa, A.; Abe, Y.; Igeta, H. One-step synthesis of 3-(dialkylamino)indolizines by the palladium-catalyzed reaction of a-bromopyridine, propargyl alcohol, and secondary amine. Bull. Chem. Soc. Jpn. 1980,53,3273-3275.
    [89]Liu, Y.; Zhang, Y.; Shen, Y.-M.; Hua, H.-W.; Xu, J.-H. Regioselective synthesis of 3-acylindolizines and benzo-analogues via 1,3-dipolar cycloadditions of N-ylides with maleic anhydride. Org. Biomol. Chem.2010,8,2449-2456.
    [90](a) Wender, P. A. Introduction:Frontiers in organic synthesis. Chem. Rev.1996,96,1-2. (b) Kleeeman, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances,4th ed., Thieme: New York, NY,2001. (c) Eicher, T.; Hauptmann, S. The Chemistry ofHeterocycles, Wiley-VCH: Weinheim, Germany,2003. (d) Wender, P. A.; Miller, B. L. Synthesis at the molecular frontier. Nature 2009,460,197-201. (e) Ganesan, A. Recent developments in combinatorial organic synthesis. Drug Discovery Today 2002,7,47-55. (f) Schreiber, S. L. Organic synthesis toward small-molecule probes and drugs. Proc. Nat. Acad. Sci. USA 2011,108,6699-6702.
    [91]Safe, S.; Taylor, A. Sporidesmins.8. Ovine ill-thrift in Nova Scotia.3. The characterisation of chetomin a toxic metabolite of Chaetomium cochliodes and Chaetomium globosum. J. Chem. Soc. Perkin Trans.11972,472-479, and references cited therein.
    [92]Jiao, R.-H.; Xu, S.; Liu, J.-Y.; Ge, H.-M.; Ding, H.; Xu, C.; Zhu, H.-L.; Tan, R.-X. Chaetominine, a cytotoxic alkaloid produced by endophytic Chaetomium sp. IFB-E015. Org. Lett.2006,8, 5709-5712.
    [93](a) Numata, A.; Takahashi, C.; Ito, Y.; Takada, T.; Kawai, K.; Usami, Y.; Matsumura, E.; Imachi, M.; Ito, T.; Hasegawa, T. Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett.1993,34,2355-2358. (b) Anderson, B.; Smedsgaard, J.; Frisvad, J. C. Penicillium expansum:Consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J. Agric. Food Chem.2004, 52,2421-2428. (c) Dalsgaard, P. W.; Blunt, J. W.; Munro, M. H. G.; Frisvad, J. C.; Christophersen, C. J. Communesins G and H, new alkaloids from the psychrotolerant fungus Penicillium rivulum. Nat. Prod.2005,68,258-261. (d) Siengalewicz, P.; Gaich, T.; Mulzer, J. It all began with an error:the nomofungin/communesin story. Angew. Chem. Int. Ed.2008,47, 8170-8176. (e) Jadulco, R.; Edrada, R. A.; Ebel, R.; Berg, A.; Schaumann, K.; Wray, B.; Steube, K.; Proksch, P. New communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa. J. Nat. Prod.2004,67,78-81. (f) Hayashi, H.; Matsumoto, H.; Akiyama, K. New insecticidal compounds, communesins C, D and E, from Penicillium expansum link MK-57. Biosci. Biotechnol. Biochem.2004,68,753-756.
    [94](a) Beaumont, S.; Pons, V.; Retailleau, P.; Dodd, R. H.; Dauban, P. Catalytic oxyamidation of indoles. Angew. Chem. Int. Ed.2010,49,1634-1637. (b) Benkovics, T.; Guzei, I. A.; Yoon, T. P. Oxaziridine-mediated oxyamination of indoles:An approach to 3-aminoindoles and enantiomerically enriched 3-aminopvrroloindolines.Angew. Chem. Int. Ed.2010,49,9153-9157.
    [95](a) Ohno, M.; Spande, T. F.; Witkop, B. Cyclization of tryptophan and tryptamine derivatives to 2,3-dihydropyrroIo[2,3-b]indoles. J. Am. Chem. Soc.1970,92,343-348. (b) Kamenecka, T. M.; Danishefsky, S. J. Discovery through total synthesis:a retrospective on the himastatin problem. Chem. Eur. J.2001,7,41-43. (c) Ley, S. V.; Hewitt, P. R.; Cleator, E. A rapid stereocontrolled synthesis of the 3a-hydroxy-pyrrolo[2,3-b]indole skeleton, a building block for 10b-hydroxy-pyrazino[1',2':1,5]pyrrolo[2,3-b]indole-1,4-diones. Org. Biomol. Chem.2003,1, 3492-3494. (d) Hewitt, P. R.; Cleator, E.; Ley, S. V. A concise total synthesis of (+)-okaramine C. Org. Biomol. Chem.2004,2,2415-2417. (e) Itakura, K.; Uchida, K.; Kawakishi, S. Superoxide-mediated oxygenation of tryptophan analogue. Biosci. Biotech. Biochem.1994,58, 488-493. (f) Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Second-generation, biomimetic total synthesis of chaetominine. Synthesis 2009,2927-2934. (g) May, J. P.; Fournier, P.; Pellicelli, J.; Patrick, B. O.; Perrin, D. M. High yielding synthesis of 3a-hydroxypyrrolo[2,3-b]indoline dipeptide methyl esters:Synthons for expedient introduction of the hydroxypyrroloindoline moiety into larger peptide-based natural products and for the creation of tryptathionine bridges. J. Org. Chem.2005,70,8424-8430. (h) Kitajima, M.; Mori, I.; Arai, K.; Kogure, N.; Takayama, H. Two new tryptamine-derived alkaloids from Chimonanthus praecox f. Concolor. Tetrahedron Lett.2006,47,3199-3202.
    [96](a) Morton, O. Solar energy:A new day dawning? Silicon Valley sunrise. Nature 2006,443, 19-22. (b) Nocera, D. G. On the future of global energy. Daedalus 2006,135,112-115. (c) Lewis, N. S. Toward cost-effective solar energy use. Science 2007,315,798-801.
    [97]Ciamician, G. Photochemistry of the future. Science 1912,36,385-394.
    [98](a) Gust, D.; Moore, T. A. Mimicking photosynthesis. Science 1989,244,35-41. (b) Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res.1989,22,163-170. (c) Gust, D. Moore, T. A. and Moore, A. L. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res.1993,26,198-205. (d) Balzani, V.; Credi, A.; Venturi, M. Photochemical conversion of solar energy. ChemSusChem 2008,1,26-58.
    [99](a) Kalyanasundaram, K. Coord. Chem. Rev.1982,46,159-244. (b) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Coord. Chem. Rev.1988,84,85-277. (c) Balzani, V.; Bergamini, G.; Marchioni, F.; Ceroni, P. Coord. Chem. Rev.2006,250, 1254-1266. (d) Sala, X.; Romero, I.; Rodriguez, M.; Escriche, L.; Llobet, A. Angew. Chem. Int. Ed.2009,48,2842-2852.
    [100](a) Gust, D.; Moore, T. A. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res.1993,26,198-205. (b) Zeitler, K. Photoredox catalysis with visible light. Angew. Chem. Int. Ed.2009,48,9785-9789. (c) Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev.2009,38, 1999-2011. (d) Yoon, T. P.; Ischay, M. A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem.2010,2,527-532. (e) Narayanam, J. M. R.; Stephenson, C. R. J. Visible light photoredox catalysis:applications in organic synthesis. Chem. Soc. Rev.2011,40,102-11. (f) Teply, F. Photoredox catalysis by [Ru(bpy)3]2+to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collect. Czech. Chem. Commun.2011,76,859-917. (g) Xuan, J.; Xiao, W.-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed.2012,51,6828-6838. (h) Shi, L.; Xia, W.-J. Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. Chem. Soc. Rev. 2012,41,7687-7697.
    [101]Ravelli, D.; Fagnoni, M.; Dyes as visible light photoredox organocatalysts. ChemCatChem 2012,4,169-171.
    [102]Cano-Yelo, H.; Deronzier, A. Photocatalysis of the pschorr reaction by tris(2,2'-bipyridyl)ruthenium(II) in the phenanthrene series. J. Chem. Soc., Perkin Trans.21984, 1093-1098.
    [103](a) Nicewicz, D. A.; MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science 2008,322,77-80. (b) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. Enantioselective a-trifluoromethylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc.2009,131,10875-10877. (c) Shih, H. W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. Enantioselective a-benzylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc.2010,132,13600-13603. (d) Pham, P. V.; Nagib, D. A.; MacMillan, D. W. C. Photoredox catalysis:A mild, operationally simple approach to the synthesis of a-trifluoromethyl carbonyl compounds. Angew. Chem. Int. Ed.2011, 50,6119-6122. (e) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Discovery of an a-amino C-H arylation reaction using the strategy of accelerated serendipity. Science 2011,334,1114-1117. (f) Nagib, D. A.; MacMillan, D. W. C. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature 2011,480,224-228.
    [104](a) Lu, Z.; Shen, M.; Yoon, T. P. [3+2] cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. J. Am. Chem. Soc.2011,133,1162-1164. (b) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc.2008,130,12886-12887. (c) Du, J.; Yoon, T. P. Crossed intermolecular [2+2] cycloadditions of acyclic enones via visible light photocatalysis. J. Am. Chem. Soc.2009,131, 14604-14605. (d) Ischay, M. A.; Lu, Z.; Yoon, T. P. [2+2] cycloadditions by oxidative visible light photocatalysis. J. Am. Chem. Soc.2010,132,8572-8574. (e) Du, J.; Espelt, L. R.; Guzei, I. A.; Yoon, T. P. Photocatalytic reductive cyclizations of enones:Divergent reactivity of photogenerated radical and radical anion intermediates. Chem. Sci.2011,2,2115-2119. (f) Hurtley, A. E.; Cismesia, M. A.; Ischay, M. A.; Yoon, T. P. Visible light photocatalysis of radical anion hetero-Diels-Alder cycloadditions. Tetrahedron 2011,67,4442-4448. (g) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. Radical cation Diels-Alder cycloadditions by visible light photocatalysis. J. Am. Chem. Soc.2011,133,19350-19353. (h) Tyson, E. L.; Farney, E. P.; Yoon, T. P. Photocatalytic [2+2] cycloadditions of enones with cleavable redox auxiliaries. Org. Lett. 2012,14,1110-1113. (i) Parrish, J. D.; Ischay, M. A.; Lu, Z.; Guo, S.; Peters, N. R.; Yoon, T. P. Endoperoxide synthesis by photocatalytic aerobic [2+2+2] cycloadditions. Org. Lett.2012,14, 1640-1643.
    [105](a) Furst, L; Matsuura, B. S.; Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. Visible light-mediated intermolecular C-H functionalization of electron-rich heterocycles with malonates. Org. Lett.2010,12,3104-3107. (b) Tucker, J. W.; Nguyen, J. D.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Tin-free radical cyclization reactions initiated by visible light photoredox catalysis. Chem. Commun.2010,46,4985-4987. (c) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. J. Am. Chem. Soc.2011,133, 4160-4163. (d) Condie, A. G.; Gonzalez-G6mez, J. C.; Stephenson, C. R. J. Visible-light photoredox catalysis:Aza-henry reactions via C-H functionalization. J. Am. Chem. Soc.2010, 132,1464-1465. (e) Tucker, J. W.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Electron transfer photoredox catalysis:Intramolecular radical addition to indoles and pyrroles. Org. Lett.2010,12,368-371. (f) Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. Electron-transfer photoredox catalysis:Development of a tin-Free reductive dehalogenation reaction. J. Am. Chem. Soc.2009,131,8756-8757. (g) Tucker, J. W.; Narayanam, J. M. R.; Krabbe, S. W.; Stephenson, C. R. J. Electron transfer photoredox catalysis:Intramolecular radical addition to indoles and pyrroles. Org. Lett.2010,12,368-371. (h) Tucker, J. W.; Narayanam, J. M. R.; Shah, P. S.; Stephenson, C. R. J. Oxidative photoredox catalysis:mild and selective deprotection of PMB ethers mediated by visible light. Chem. Commun.2011,47,5040-5042. (i) Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Total synthesis of (+)-gliocladin C enabled by visible-light photoredox catalysis. Angew. Chem. Int. Ed.2011,50,9655-9659.0) Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. Visible-light-mediated conversion of alcohols to halides. Nat. Chem.2011,3,140-145. (k) Tucker, J. W.; Stephenson, C. R. J. Tandem visible light-mediated radical cyclization-divinylcyclopropane rearrangement to tricyclic pyrrolidinones. Org. Lett.2011,13,5468-5471. (1) Freeman, D. B.; Furst, L.; Condie, A. G.; Stephenson, C. R. J. Functionally diverse nucleophilic trapping of iminium intermediates generated utilizing visible light. Org. Lett.2012,14,94-97. (m) Tucker, J. W.; Stephenson, C. R. J. Shining light on photoredox catalysis:Theory and synthetic applications. J. Org. Chem.2012,77,1617-1622. (n) Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J. Visible-light photoredox catalysis in flow. Angew. Chem. Int. Ed.2012,51,4144-4147.
    [106](a) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K. D.; Fabry, C. Dual catalysis: combining photoredox and Lewis base catalysis for direct Mannich reactions. Chem. Commun. 2011,47,2360-2362. (b) Rueping, M.; Zhu, S.; Koenigs, R. M. Photoredox catalyzed C-P bond forming reactions-visible light mediated oxidative phosphonylations of amines. Chem. Commun. 2011,47,8679-8681. (c) Rueping, M.; Leonori, D.; Poisson, T. Visible light mediated azomethine ylide formation-photoredox catalyzed [3+2] cycloadditions. Chem. Commun.2011, 47,9615-9617. (d) Rueping, M.; Zhu, S.; Koenigs, R. M. Visible-light photoredox catalyzed oxidative Strecker reaction. Chem. Commun.2011,47,12709-12711. (e) Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.; Vila, C. Dual catalysis:Combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions—C-C Bond formation using visible light. Chem. Eur. J.2012,18,5170-5174. (f) Neumann, M.; Fuldner, S.; Konig, B.; Zeitler, K. Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew. Chem. Int. Ed.2011,50,951-954. (g) Prasad, D.; Konig, B. Eosin Y catalyzed visible light oxidative C-C and C-P bond formation. Org. Lett.2011,13,3852-3855. (h) Andrews, R. S.; Becker, J. J.; Gagne, M. R. Intermolecular addition of glycosyl halides to alkenes mediated by visible light. Angew. Chem. Int. Ed.2010,49,7274-7276. (i) Andrews, R. S.; Becker, J. J.; Gagne, M. R. Investigating the rate of photo-reductive glucosyl radical generation. Org. Lett. 2011,13,2406-2409. (j) Zhu, M.; Zheng, N. Photoinduced cleavage of N-N bonds of aromatic hydrazines and hydrazides by visible light. Synthesis 2011,2223-2236. (k) Xie, Z.; Wang, C.; DeKrafft, K. E.; Lin, W. Highly stable and porous cross-linked polymers for efficient photocatalysis. J. Am. Chem. Soc.2011,133,2056-2059. (1) Chen, Y.; Kamlet, A. S.; Steinman, J. B.; Liu, D. R. A biomolecule-compatible visible-light-induced azide reduction from a DNA-encoded reaction-discovery system. Nat. Chem.2011,3,146-153. (m) Liu, Q.; Li, Y.-N.; Zhang, H.-H.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Reactivity and mechanistic insight into visible-light-induced aerobic cross-dehydrogenative coupling reaction by organophotocatalysts. Chem. Eur. J.2012,18,620-627. (n) Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs, R. M.; Weirich, T. E.; Mayer, J. Light-mediated heterogeneous cross dehydrogenative coupling reactions:Metal oxides as efficient, recyclable, photoredox catalysts in C-C bond-forming reactions. Chem. Eur. J.2012,18,3478-3481. (o) Hari, D. P.; Schroll, P.; Konig, B. Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. J. Am. Chem. Soc.2012,134,2958-2961. (p) Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Visible-light-mediated utilization of a-aminoalkyl radicals:Addition to electron-deficient alkenes using photoredox catalysts. J. Am. Chem. Soc.2012,134,3338-3341.
    [107](a) Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Intermolecular [3+2] cycloaddition of cyclopropylamines with olefins by visible-light photocatalysis. Angew. Chem. Int. Ed.2012,51, 222-226. (b) Maji, T.; Karmakar, A.; Reiser, O. Visible-light photoredox catalysis: Dehalogenation of vicinal dibromo-, a-halo-, and a,a-dibromocarbonyl compounds. J. Org. Chem. 2011,76,736-739. (c) Larraufie, M.-H.; Pellet, R.; Fensterbank, L.; Goddard, J.-P.; Lacote, E.; Malacria, M.; Ollivier, C. Visible-light-induced photoreductive generation of radicals from epoxides and aziridines. Angew. Chem. Int. Ed.2011,50,4463-4466. (d) Koike, T.; Akita, M. Photoinduced oxyamination of enamines and aldehydes with TEMPO catalyzed by [Ru(bpy)3]2+. Chem. Lett.2009,38,166-167. (e) Cheng, Y.; Yang, J.; Qu, Y.; Li, P. Aerobic visible-light photoredox radical C-H functionalization:Catalytic synthesis of 2-substituted benzothiazoles. Org. Lett.2012,14,98-101. (f) Zlotorzynska, M.; Sammis, G. M. Photoinduced electron-transfer-promoted redox fragmentation of N-alkoxyphthalimides. Org. Lett.2011,13, 6264-6267. (g) DeClue, M. S.; Monnard, P.; Bailey, J. A.; Maurer, S. E.; Collis, G. E.; Ziock, H.; Rasmussen, S.; Boncella, J. M. Nucleobase mediated, photocatalytic vesicle formation from an ester precursor. J. Am. Chem. Soc.2009,131,931-933. (h) Edson, J. B.; Spencer, L. P.; Boncella, J. M. Photorelease of primary aliphatic and aromatic amines by visible-light-induced electron transfer. Org. Lett.2011,13,6156-6159. (i) Ceroni, P.; Bergamini, G.; Balzani, V. Old molecules, new concepts:[Ru(bpy)3]2+as a molecular encoder-decoder. Angew. Chem. Int. Ed.2009,48, 8516-8518.(j) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. Room-temperature C-H arylation:Merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. J. Am. Chem. Soc.2011,133,18566-18569. (k) Pan, Y.; Wang, S.; Kee, C. W.; Dubuisson, E.; Yang, Y.; Loh, K. P.; Tan, C.-H. Graphene oxide and Rose Bengal:Oxidative C-H functionalization of tertiary amines using visible light. Green Chem.2011,13,3341-3344. (1) Courant, T.; Masson, G. Photoredox-initiated a-alkylation of imines through a three-component radical/cationic reaction. Chem. Eur. J.2012,18,423-427. (m) Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Visible light photoredox catalysis:Generation and addition of N-aryltetrahydroisoquinoline-derived a-amino radicals to michael acceptors. Org. Lett.2012,14, 672-675. (n) Zhao, G.; Yang, C.; Guo, L.; Sun, H.; Chen, C.; Xia, W. Visible light-induced oxidative coupling reaction:easy access to Mannich-type products. Chem. Commun.2012,48, 2337-2339.
    [108](a) Stahl, S. S. Palladium oxidase catalysis. Selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew. Chem. Int. Ed.2004,43,3400-3420. (b) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev.2005,105,2329-2363. (c) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Recent advances in transition metal-catalyzed reactions using molecular oxygen as the oxidant. Chem. Soc. Rev.2012,41,3381-3430.
    [109]Zen, J.-M.; Liou, S.-L.; Kumar, A. S.; Hsia, M.-S. An efficient and selective photocatalytic system for the oxidation of sulfides to sulfoxides. Angew. Chem. Int. Ed.2003,42,577-579.
    [110](a) Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X.-C. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010,132,16299-16301. (b) Su, F.; Mathew, S. C.; Mohlmann, L.; Antonietti, M.; Wang, X.-C.; Blechert, S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem. Int. Ed.2011,50,657-660.
    [111]Su, Y.; Zhang, L.; Jiao, N. Utilization of natural sunlight and air in the aerobic oxidation of benzyl halides. Org. Lett.2011,13,2168-2171.
    [112](a) Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.; Jorgensen, K. A.; Xiao, W.-J. Highly efficient aerobic oxidative hydroxylation of arylboronic acids:Photoredox catalysis using visible light. Angew. Chem. Int. Ed.2012,51,784-788. (b) Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.; Chen, J.-R.; Xiao, W.-J. Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence:A photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. Angew. Chem. Int. Ed.2011,50,7171-7175. (c) Xuan, J.; Cheng, Y.; An, J.; Lu, L.-Q.; Zhang, X.-X.; Xiao, W.-J. Visible light-induced intramolecular cyclization reactions of diamines:a new strategy to construct tetrahydroimidazoles. Chem. Commun.2011, 47,8337-8339.
    [113](a) Colonna, M.; Greci, L.; Poloni, M.; Marrosu, G.; Trazza, A.; Colonna, F. P.; Distefano, G. A correlation between halfwave and ionization potentials for indoles and indolizines. J. Chem. Soc. Perkin Trans.21986,1229-1231. (b) Waltman, R. J.; Diaz, A. F.; Bargon, J. Substituent effects in the electropolymerization of aromatic heterocyclic compounds. J. Phys. Chem.1984,88, 4343-4346. (c) Carloni, P.; Greci, L.; Iacussi, M.; Rossetti, M.; Cozzini, P.; Sgarabotto, P. Molecular orbital calculations on the P-S bond cleavage step in the hydroperoxidolysis of nerve agent VX. J. Chem. Res. (S) 1998,232-240.
    [114]Robertson F. J.; Kenimer, B. D.; Wu, J. Direct annulation and alkylation of indoles with 2-aminobenzyl alcohols catalyzed by TFA. Tetrahedron 2011,67,4327-4332.
    [115](a) Saito, I.; Matsuura, T.; Nakagawa, M.; Hino, T. Peroxidic intermediates in photosensitized oxygenation of tryptophan derivatives. Acc. Chem. Res.1977,10,346-352, and references cited therein, (b) Nakagawa, M.; Watanabe, H.; Kodato, S.; Okajima, H.; Hino, T.; Flippen, J. L.; Witkop. B. A valid model for the mechanism of oxidation of tryptophan to formylkynurenine—25 years later. Pro. Natl. Acad. Sci. USA 1977,74,4730-4733.
    [116](a) The Chemistry of Indoles. Sundberg, R. J. Academic Press, New York,1970. (b) Indoles. Sundberg, R. J. Academic Press, London,1996.
    [117](a) Frimer, A. A. The reaction of singlet oxygen with olefins:The question of mechanism. Chem. Rev.1979,79,359-387. (b) Lissi, E. A.; Encinas, M. V.; Lemp, E.; Rubio, M. A. Singlet oxygen O2(1Δg) bimolecular processes. Solvent and compartmentalization effects. Chem. Rev. 1993,93,699-723. (c) DeRosa, M. C.; Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev.2002,351-357.
    [118](a) Quannes, C.; Wilson, T. Quenching of singlet oxygen by tertiary aliphatic amines. Effect of DABCO (1,4-diazabicyclo[2.2.2]octane). J. Am. Chem. Soc.1968,90,6527-6528. (b) Young, R. H.; Martin, R. L. Mechanism of quenching of singlet oxygen by amines. J. Am. Chem. Soc.1972, 94,5183-5185. (c) Clennan, E. L.; Noe, L. J.; Wen, T.; Szneler, E. Solvent effects on the ability of amines to physically quench singlet oxygen as determined by time-resolved infrared emission studies. J. Org. Chem.1989,54,3581-3584.
    [119]Nakagawa, M.; Yoshikawa, K.; Hino, T. Photosensitized oxygenation of Nb-methyltryptamine. J. Am. Chem. Soc.1975,97,6496-6501.
    [120]Amsterdarnsky, C.; Rigaudy, J. A new methoxylation of 3-hydroperoxy indolines resulting from the photooxygenation of indoles in reducing medium. Tetrahedron Lett.1981,22, 1403-1406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700