用户名: 密码: 验证码:
丙烯氨氧化制丙烯腈催化剂晶格氧瞬变行为及相关动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯氨氧化催化剂MB-98用于生产丙烯腈,由于催化剂在贫氧区导致的晶格氧的失去,引起催化剂活性降低,为了恢复催化剂活性延长催化剂使用周期,必须多次再生。因此,开展催化剂再生动力学研究,对提高催化剂再生效果,延长使用周期,具有重要意义。
     首先设计了一套实验装置使催化剂的还原和氧化再生过程分开进行。在微型固定床反应器中通入氢气与MB-98催化剂反应,通过控制反应时间,能够制得部分失活的还原态催化剂。将此催化剂和热空气接触,在反应天平上发生氧化再生反应,测量其质量的变化,可以得到催化剂再生过程的TG曲线。以此来考察其补氧过程的瞬变行为,并进一步研究得到了反映反应动力学特性的再生机理模型。
     通过分析不同还原程度的催化剂的TG-DTG的基本特征,解析了TG曲线中两个增重区间的不同意义。研究表明,氧化过程存在两种化合反应。反应之一是Fe~(2+)被氧化,反应之二是钼的低价氧化物被氧化。并由此确定在还原程度不大的工业条件下,催化剂补氧再生时发生的主要反应是Fe~(2+)被氧化的过程。
     通过考查不同升温速率的影响,得到了补氧量和氧化温度随升温速率变化的规律,解释了补氧速率变化的原因。模拟工业条件制取部分失活的
     催化剂样品,用近似外推法求得升温速率无穷小时补氧的起始氧化温度和终止氧化温度,并得到了最佳的补氧升温速率10K.min~(-1)。
     采用几种不同的热分析方法处理实验数据,最终得到MB-98催化剂氧化再生时的反应机理,即相边界控制的收缩核模型。其活化能E=110kJ.mol~(-1),指前因子A=1.79*10~7min~()-1,并由此得到了动力学方程为dot/dt=Aexp(-E/RT)*3(1-α)~(2/3)。
Abstract: Ammoxidation catalyst MB-98 is used to produce Acrylonitrile. The activity would decrease when the catalyst is in the low oxygen zone because of the loss of lattice oxygen. The partial reduced catalyst needs to be regenerated continually in order to keep its activity. Therefore, to investigate the re-oxidation kinetics is significative for the improvement of the regeneration efficiency.
     firstly, An experimental set-up was built for splitting up of the overall reaction to two steps, selective reduction and re-oxidation of deoxidized catalyst . Partial reduced catalyst can be prepared in a fixed bed reactor. The as-prepared catalyst was then put into a thermo-analyzer with an air flow. The thermal re-oxidation behavior of the catalyst can be studied by measuring the mass variety under different heating rates. The reaction kinetics was investigated according to the thermal analysis data and a most suitable reaction mechanism model was obtained.
     The experimental results showed that there are two stages in the oxidation process. The first stage is about the Fe being oxidized and the second one is
     relative to the oxidation of some molybdenum oxides in a lower valent. According to the industrial conditions we know that the first stage is the main process which should be paid more attention to.
     The reaction rate increases as the heating rate increases and the total oxidation mass increase of the catalyst turn to be the highest value when the heating rate is 10 K.min. The reaction temperature with no heating rate influence is obtained using approximate extrapolate method.
     Several methods for estimating the kinetic parameters and identifying the mechanism of the reaction were used to treat the non-isothermal kinetic data. The results obtained suggest that the re-oxidation process of the catalyst obeys the contracted core model controlled by the Phase border. The reaction rate equation can be expressed as dα/dt =Aexp(-E/RT)*3(1-α), where the activation energy E=110 kJ/mol, the frequency factor A=1.79*10min
引文
[1] 魏飞,胡永琪,赖志平.丙烯氨氧化循环流化床反应器数学模型[J].石油化工,1998,7(4):276-279
    [2] 戴擎镰,俞坚,张虹.丙烯氨氧化制丙烯腈的反应网络与动力学模型[J].化学反应工程与工艺,1993,9(4):345-352
    [3] 《化工百科全书》编辑委员会.《化工百科全书第一卷》[M].北京:化学工业出版社,1997.806-810
    [4] 罗保军,周子平,王美云.丙烯腈的生产现状与发展趋势[J1.化工科技市场,2003 (10):11-14
    [5] 白尔铮.丙烷氨氧化制丙烯腈催化剂及工艺进展[J].工业催化,2004,12(7):1-6
    [6] 韩秀山.丙烯腈的应用.四川化工与腐蚀控制[J].2000,3(6):52-53
    [7] 韩秀山,稽缓,朱伟平.丙烯腈生产技术现状及发展趋势[J].化工生产与技术,2000,3(7):15-17
    [8] 张廷深.国内外丙烯腈供需概况[J].石油化工技术经济,1999,(3):27-32
    [9] 于豪瀚.丙烯腈生产技术进展[J].石油化工设什,1995,12(1):1-24
    [10] 张文钲.氨氧化催化剂研发进展[J].中国钼业,2004,28(3):3-6
    [11] 张惠民,赵震,徐春明.丙烷直接氨氧化制丙烯腈催化剂的研究进展[J].化学通报,2005,68(11):832-838
    [12] 李殿军.丙烯腈的技术概况和发展趋势[J].化工科技,2004,12(6):58-62
    [13] 杨学萍.丙烯腈生产技术进展[J].上海化工,2000,(6):33-35
    [14] 秦伟程.国内外丙烯腈生产现状与市场分析[J].化工科技市场,2006,29(3):13-19
    [15] 韩秀山,朱伟平.丙烯腈生产技术现状和发展趋势[J].化工生产与技术,2000,7(3):15-17
    [16] T A Hanna. The role of bismuth in the SOHIO process[J]. Coordination Chemistry Reviews, 2004, 248:429-440
    [17] Grasselli R K. Advances and future trends in selective oxidation and ammoxidation catalysis[J]. Catalysis Today, 1999, 49:141-153
    [18] Albonettia S, Blanchardb G, Burattinb P. Propane ammoxidation to acrylonitrile over a tin-based mixed-oxide catalyst[J]. Catalysis Today, 1998, 42:283-295
    [19] 张惠民,赵震,徐春明.C3烃氨氧化制丙烯腈研究进展[J].石油化工,2005,34(2):181-187
    [20] 安炜.丙烯氨氧化合成丙烯腈[J].石油化工,1998,27(2):139-146
    [21] 孙玉声.丙烯腈生产及副产品综合利用技术途径[J].兰化科技,1995,13(1):53-57
    [22] 乔映宾.我国丙烯腈工业的发展[J].石油化工,1997,26(6):408-411
    [23] 陈涛.丙烯腈装置氨氧化反应器改造方案比较[J].石化技术与应用,2003,21(4):273-276
    [24] 杨杏生.制备丙烯腈的新工艺[J].合成纤维工业,1994,17(3):41-48
    [25] 谢方友.丙烷氨氧化制丙烯腈催化剂设计进展[J].工业催化,2003,11(8):38-42
    [26] 侯昭胤,戴擎镰,张勤鑫.丙烷氨氧化制丙烯腈的催化剂研究[J].化学反应工程与工艺,1998,14(3):229-235
    [27] 韩秀山.丙烷法制丙烯腈技术分析[J].化工时刊,2003,(10):51-53
    [28] Xiong G, Sullivan V S, Stair P C. Effect of titanium substitution on the structure of VSbO_4 catalysts for propane ammoxidation[J]. Journal of Catalysis, 2005, 230:317-326
    [29] Yoon Y S, Fujikawa N, Ueda W. Propane oxidation over various metal molybdate catalysts[J]. Catalysis Today, 1995, 24:327-333
    [30] 许红兵,朱志焱,孙科强.晶格氧丙烯氨氧化催化剂的研究[J].石油炼制与化工,1998,29(5):23-25
    [31] 赵震,张惠民,徐春明.丙烯氨氧化催化剂研究进展[J].黑龙江大学自然科学学报,2005,22(2):237-240
    [32] 顾政.丙烯腈催化剂的工业应用与发展[J].江苏化工,2005,33(3):55-58
    [33] 柳永敬,辛铭.国产丙烯腈催化剂的工业应用[J].兰化科技,1994,12(3):191-195
    [34] 王振华,俞昌吉.吉化集团公司丙烯腈装置扩能改造[J].石化技术与应用,2004,22(1):62-64
    [35] 吴粮华,陈欣,汪国军.Mo-Bi-Fe多组分丙烯腈催化剂的研制及工业应用[J].石油化工,2004,33:1619-1622
    [36] Burrington J D, Kartisek C T, Grasselli R K. Surface intermediates in selective propylene oxidation and ammoxidation over heterogeneous molybdate and antimonate catalysts[J]. Journal of Catalysis, 1984, 87:363
    [37] Grasselli R K. Selectivity and activity factors in bismuth-molybdate oxidation catalysts[J]. Applied Catalysis A: General, 1985, 15:127
    [38] Brazdil J F, Suresh Div D, Grasselli R K, Redox kinetics of bismuth olybdate ammoxidation catalysts[J]. Journal of Catalysis, 1980, 66:347
    [39] Belgacem J, Kress J, Osbom J A. Catalytic oxidation and ammoxidation of propylene. modelling studies on well-defined molybdenum complexes[J]. Journal of Molecular Catalysis, 1994, 86:267
    [40] Burrington J D, Grasselli R K. Aspects of oxidation and ammoxidation mechanisms over bismuth molybdate catalysts[J]. Journal of Catalysis, 1979, 59:79
    [41] Burrington J D, Kartisek C T, Grasselli R K. Aspects of oxidation and ammoxidation mechanisms over bismuth molybdate catalysts ⅱ. allyl alcohol as a probe for the allylic intermediate[J]. Journal of Catalysis, 1980, 63:235
    [42] Burrington J D, Kartisek C T, Grasselli R K. Aspects of oxidation and ammoxidation mechanisms over bismuth molybdate catalysts Ⅳ-allylamine as a probe for nitrogen insertion[J]. Journal of Catalysis, 1982, 75:225
    [43] Burrington J D, Kartisek C T, Grasselli R K. Mechanism of nitrogen insertion in ammoxidation catalysts [J]. Journal of Catalysis, 1983, 81:489
    [44] Brazdil J F, Suresh D D, Grasselli R K. Redox kinetics of bismuth molybate ammoxidation catalysts[J]. Journal of Catalysis, 1980, 66:347-367
    [45] Sancier K. M, Aoshima A, Wise H. Charge transfer during redox of bismuth molybdate catalysts[J]. Journal of Catalysis, 1974, 34:257-266
    [46] Ueda W, Asakawa K, Chen C L. Catalytic roerties of tricomonent metal oxides having the scheelite structure[J]. Journal of Catalysis, 1986, 101:360-375
    [47] Schuit G C A. Bismuth, Molybdates as oxidation catalysts. Journal of the Less-Common Metals[J], 1974, 36:329-338
    [48] Wragg R D, Ashmore G, Hockey J A. Selective oxidation of roene over bismuth molydate catalysts: the oixdation of roene using ~(18)o labeled oxygen and catalyst[J]. Journal of Catalysis, 1971,22:40-53
    [49] 沈师孔,闵恩泽.烃类晶格氧选择氧化[J].化学进展,1998,10(2):137-145
    [50] Han Y H, Ueda W. Lattice oxide ion-transfer effect demonstrated in the selective oxidation of propene over silica-supported bismuth molybdate catalysts[J]. Applied Catalysis A: General 1999, 176:11-16
    [51] Matsuura I. Adsorption equilibria of acrolein and ammonia on the bismuth molybdate koechlinite catalyst[J]. Journal of Catalysis, 1974, 33:420
    [52] Matsuura I. The adsorption of butene, butadiene and ammonia on uo_3-sb_2o_3 catalysts[J]. Journal of Catalysis, 1974, 35: 452.
    [53] Matsuura I. Schuit G C A. Adsorption and reaction of adsorbed species on bi_2moo_6 catalyst influence on sintering and of temperature of reduction[J]. Journal of Catalysis, 1972, 25: 314.
    [54] Matsuura I. Schuit G C A. Adsorption equilibria and rates of reactions of adsorbed compounds on reduced and oxidized bi-mo catalysts[J]. J. Catal., 1971, 20:19.
    [55] Haber J, Grzybowska B. Mechanism for the oxidation of olefins on mixed oxide catalysts[J]. Journal of Catalysis, 1973, 28: 489.
    [56] Grzybowska B, Haber J, Janas J. Interaction of allyl iodide with molybdate catalysts for the selective oxidation of hydrocarbons[J]. Journal of Catalysis, 1977, 49: 150.
    [57] Aykan K, Sleight A W, Rogers D S. Defect control in oxidation catalysts[J]. Journal of Catalysis, 1973, 29: 185.
    [58] Sleight A W. Advanced materials in catalysis[M]. New York: Academic Press, 1977.
    [59] 许红兵.低氧比丙烯腈催化剂的研制开发[J].金山油化纤,1998,(1):1-9
    [60] Ueda W, Chen C L, Asakawa K. Catalytic properties of tri component metel oxides having the scheelite structure ⅱ. structural stability in the reduction-oxidation cycle[J]. Journal of Catalysis, 1986, 101: 369.
    [61] Krenzke L D, Keulks G W. The catalytic oxidation of propylene vi. mechanistic studies utilizing isotopic tracers[J]. Journal of Catalysis, 1980, 61: 316
    [62] Glaeser L C, Brazdil J F, Hazle M A. Identification of active oxide ions in a bismuth molybdate selective oxidation catalyst[J]. Journal of the Chemical Society, Faraday Transactions I, 1985, 81:2903
    [63] Moro-oka Y, Ueda W. Multicomponent bismuth molybdate catalyst: a highly functionalized catalyst system for the selective oxidation of olefin[J]. Advances in catalysis, 1995, 40: 233.
    [64] Matsuura I. Successful design of catalysts-reactivity and structure of multi-system molybdate catalysts[J]. Studies in Surface Science and Catalysis, 1989, 44: 111.
    [65] Weng L T, Delmon B. Phase rooperation and remote control effects in selective oxidation catalysts[J]. Applied Catalysis A: General, 1992, 81: 141.
    [66] Weng L T, Ma S Y, Delmon B. Cooperation between moo3 and other metal oxides in selevtive oxidation of isobutene to methacrolein[J]. Journal of Molecular Catalysis, 1990, 61:99
    [67] 汪洋,陈丰秋,詹晓力等.多相选择氧化/氨氧化催化中活性位分离和相间协同作用[J].化学进展,2006,18(1):7-18
    [68] Ponceblane H, Millet J M M, Coudurier G. Study of multiphasic molybdate-based catalysts Ⅰ. electrical conductivity study of valenec states and solubility limits in mixed iron and cobalt molybdates[J]. Journal of Catalysis, 1993, 142: 373.
    [69] Millet J M M, Ponceblane H, coudurier G. Study of multiphasic molybdate-based catalysts Ⅱ. synergy effect between bismuth molybdates and mixed iron and cobalt molybdates in mild oxidation propene[J]. Journal of Catalysis, 1993, 142: 381.
    [70] Vannier R N, Abraham F. New structural and electrical data on bi-mo mixed oxides with a structure based on [Bil_2O_(14)]_8 columns[J]. Journal of Solid State Chemistry, 1999, 142: 294-304
    [71] Tomasi C, Spinolo G, Chiodelli G. Phase equilibria in the Bi-rich part of the Bi, Mo/O system[J]. Solid State Ionics, 1997, 99:263-268
    [72] Takehiko O, Kazuya U, Masakazu K, et. A study of active sites for partial oxidation on a-Bi_2Mo_3O_(12) and B-Bi_2Mo_2O_9 catalysts using crystal structure visualization. Catalysis Today, 2004, 91:181-184
    [73] Grasselli R K. Selectivity issues in ammoxidation catalysis. Catalysis Today, 2005, 99: 23-31
    [74] 安炜.多组分Mo-Bi-Fe-O催化剂上丙烯氨氧化研究进展[J].化学研究,2002,13(3):55-60
    [75] 刘梅红.丙烯氨氧化催化剂开车条件研究[J].应用化工,2003,32(2):32-34
    [76] 廖巧丽,米镇涛.化学工艺学[M].北京:化学工业出版社,2001.89-90
    [77] Poulston S, Price N J., Weeks C, et. Surface redox characteristics of mixed oxide catalysts used for selective oxidation[J]. Journal of Catalysis, 1998, 178:658-667
    [78] 严仲明.催化剂流化高度与丙烯腈反应器的优化运行[J].石油化工,2002,31(2):118-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700