用户名: 密码: 验证码:
丙烯氨氧化合成丙烯腈催化剂氧化/还原行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯腈是三大合成材料——合成纤维、合成橡胶、合成塑料的基础原料。丙烯氨氧化法合成丙烯腈是一个典型的烃类选择氧化过程,产品丙烯腈是连串反应的中间产物。该反应遵循“氧化-还原”机理。这种选择氧化反应是以复合金属氧化物为催化剂、催化剂中的晶格氧参与氧化还原过程的多相催化反应。晶格氧参与主反应生成目的产物,气相或吸附氧导致副反应生成有机副产物和COx。
     近年来,烃类晶格氧选择氧化新工艺备受关注,其原理实质上是人为地使催化剂的还原和氧化再生过程在两个分开的反应器中进行,以达到控制反应进程、提高选择性、节约资源和保护环境的目的。对于晶格氧氨氧化合成丙烯腈新工艺,前人已经做了一些研究。该工艺在还原阶段,催化剂中的晶格氧作为氧化剂选择性氧化丙烯和氨生成丙烯腈,此时催化剂被还原;在催化剂氧化再生阶段,使催化剂和热空气接触,发生氧化反应,补充前一阶段损失的晶格氧,从而构成完整的催化循环过程。因此,分别考察催化剂的还原和氧化再生阶段的反应特性,了解每个阶段的反应机理及其动力学特征,对于改进晶格氧氨氧化合成丙烯腈新工艺具有重要意义。
     本文针对目前国内工业装置中广泛使用的一种钼铋系催化剂MB98,利用X-射线衍射、激光拉曼光谱、光电子能谱和热分析等手段,研究了它的氧化/还原反应特性,计算了其动力学参数,推断了该催化剂的氧化/还原反应机理。
     首先,设计了一套实验装置使催化剂的还原和氧化再生过程分开进行。在微型固定床反应器中,分别采用丙烯/氨气,氢气作为还原剂,还原新鲜催化剂至不同还原程度;再应用XRD、Laser Raman和XPS的方法表征新鲜的和不同还原程度的催化剂。结果表明:在无氧的条件下还原新鲜催化剂,还原过程分4步反应序贯进行。还原过程中,Fe2Mo3O12和(Fe/Co/Ni)MoO4中的晶格氧通过体相扩散向钼酸铋迁移;催化剂的储氧能力不仅与钼酸铋有关,还与Fe2Mo3O12和(Fe/Co/Ni)MoO4有关。还原生成的FeMoO4,MoO2和Bi主要分布于催化剂体相;还原过程中,元素Mo,Bi首先在催化剂表面富集,然后向体相迁移,Fe,Co,Ni由体相向表面扩散。被氢气还原的催化剂与被丙烯/氨气还原的催化剂具有相似的晶相组成和表面组成。
     其次,采用热重分析法研究该催化剂的还原本征动力学。应用Achar-Sharp微分和Coats-Redfern积分对照的方法,获得了该催化剂还原反应的动力学三因子:活化能(E)为142.0kJ/mol,指前因子(A)为9.84×109min-1,动力学模型函数的积分式为g(α)=(1-α)-1-1,表明催化剂还原反应遵循“化学反应级数控制(n=2)”的机理。
     再次,以还原态催化剂为研究对象,结合催化剂再氧化后XRD与XPS结果,采用热重分析法原位考查催化剂的氧化反应行为,结果表明:还原态催化剂补氧过程中,在280℃、340℃、440℃时分别先后补充与Bi、Fe、Mo结合的体相晶格氧,然后在510℃时补充表面晶格氧;沉积的炭在370℃左右开始剧烈燃烧,直到460℃结束;最佳的再氧化温度大约在440℃左右。
     最后,采用热重分析法研究了还原态催化剂的氧化反应本征动力学。应用热分析动力学方法中的等转化率和主曲线法,获得了还原态催化剂氧化反应的动力学三因子:结果表明:活化能(E)为140.01kJ/mol,指前因子(1nA)为21.527min-1,氧化动力学模型函数积分式为g(α)=[-ln(1-α)]1/0.922,表明还原态催化剂氧化反应遵循成核生长的反应机理。
Acrylonitrile (AN) is a versatile petrochemical intermediate used extensively in the production of acrylic fibers, resins, rubbers and specialty products. Propylene ammoxidation into AN is a typical selective catalytic oxidation process of hydrocarbons, and the AN is the intermediate product of the consecutive reaction, which obeys "Redox" mechanism, i.e., the lattice oxygen in the muticomponent metal oxide catalyst reacts with propylene/ammonia to generate AN, and the reduced catalyst is continuously reoxidized by gaseous oxygen, while the gaseous or adsorbed oxygen lead into COx and the other organic byproducts.
     In recent years, selective oxidation of hydrocarbons using lattice oxygen of catalyst has been attempted, the theory of which is that reduction and reoxidation of the catalyst are performed in the two reactors, respectively. There are many advantages in the new technology, such as controlling the reaction degree, increasing the selectivity of reaction, saving resource and protecting environment. The new technology of propylene ammoxidation using lattice oxygen of catalyst has been studied, where lattice oxygen of catalyst and propylene/ammonia react in a reactor, and catalyst reoxidation is performed in another separate regenerator, the whole catalytic process is completed. Therefore, the study on the performance of the reduction and reoxidation process respectively is very important for improving the new technology of propylene ammoxidation using lattice oxygen of catalyst.
     In this work, the kinetics and mechanism of reoxidation/reduction of MB-98 catalyst, which is used widely in industry in China, was studied by XRD, Laser Raman, XPS and thermal analysis methods.
     Firstly, an experimental setup was built for separating reduction and reoxidation process of the catalyst. The fresh catalyst was reduced to different degrees in a fixed bed reactor by propylene/ammonia or hydrogen; and then the fresh and reduced catalysts were characterizated by using X-ray powder diffraction, Laser Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that there are four reactions happened sequentially during the reduction processes and the lattice oxygen migrates from iron/cobalt/nickel molybdates to bismuth molybdate through bulk diffusion. The oxygen storage capacity of catalyst is not only related to the content of bismuth molybdate, but also to the content of Fe2Mo3O12 and (Fe/Co/Ni)MoO4. FeMoO4. MoO2 and Bi are mainly existed in the bulk phase in the catalyst. Mo and Bi are concentrated on the surface and then migrate from the surface to the bulk phase. Fe, Co and Ni diffuse from the bulk phase to the surface during the ammoxidation reaction. The catalyst partially reduced by hydrogen has the similar lattice and surface structure as the catalyst partially reduced by propylene/ammonia.
     Secondly, intrinsic kinetics of reduction of the catalyst was studied by thermogravimetric analysis method. The kinetic triplet of this reaction is obtained by comparison method of Achar-Sharp differential and Coats-Redfern integral equation. The activation energy and pre-exponential factor (A) are 142.0kJ/mol and 9.84×109min-1, respectively. The kinetic model is best expressed by Avrami-Erofeyev equation, i.e., g(a)=(1-α)-1-1, suggesting Chemical Reaction mechanism (n=2).
     Thirdly, along with XRD and XPS used to detect the structure of the catalyst after reoxidation, the results of the thermogravimetric analysis showed that the reoxidation of the catalyst is attributed to the replenishment of the bulk lattice oxygen in the lower temperature which is respectively combined with Bi (280℃), Fe (340℃) and Mo (440℃), and the replenishment of the surface lattice oxygen in the higher temperature (510℃). Combustion of the deposited carbon started tempestuously around 370℃and finished before 460℃. The favorable reoxidation temperature is around 440℃.
     Finally, intrinsic kinetics of reoxidation of the catalyst was obtained by Kissinger-Akahira-Sunose isoconversional and master-plot method. The activation energy and pre-exponential factor (1nA) are 140.01kJ/mol and 21.527 min-1, respectively. The kinetic model is best expressed by Avrami-Erofeyev equation, i.e., g(α)=[-ln(1-α)]1/(0.922), suggesting a nucleation and growth mechanism.
引文
[1]罗保军,周子平,王美云.丙烯腈的生产现状与发展趋势[J].化工科技市场,2003,(10):11-14
    [2]白尔铮.丙烷氨氧化制丙烯腈催化剂及工艺进展[J].工业催化,2004,12(7):1-6
    [3]韩秀山.丙烯腈的应用.四川化工与腐蚀控制[J].2000,3(6):52-53
    [4]韩秀山,稽缓,朱伟平.丙烯腈生产技术现状及发展趋势[J].化工生产与技术,2000,3(7):15-17
    [5]张廷深.国内外丙烯腈供需概况[J].石油化工技术经济,1999,(3):27-32
    [6]于豪瀚.丙烯腈生产技术进展[J].石油化工设什,1995,12(1):1-24
    [7]张文钲.氨氧化催化剂研发进展[J].中国钼业,2004,28(3):3-6
    [8]张惠民,赵震,徐春明.丙烷直接氨氧化制丙烯腈催化剂的研究进展[J].化学通报,2005,68(11):832-838
    [9]《化工百科全书》编辑委员会.《化工百科全书第一卷》[M].北京:化学工业出版社,1997.806-810
    [10]韩秀山,朱伟平.丙烯腈生产技术现状和发展趋势[J].化工生产与技术,2000,7(3):15-17
    [11]Hanna T A. The role of bismuth in the SOHIO process[J]. Coordination Chemistry Reviews,2004,248(5):429-440
    [12]Grasselli R K. Advances and future trends in selective oxidation and ammoxidation catalysis[J]. Catalysis Today,1999,49(1/3):141-153
    [13]Albonettia S, Blanchardb G, Burattinb P. Propane ammoxidation to acrylonitrile over a tin-based mixed-oxide catalyst[J]. Catalysis Today,1998,42(1/2):283-295
    [14]张惠民,赵震,徐春明.C3烃氨氧化制丙烯腈研究进展[J].石油化工,2005,34(2):181-187
    [15]孙玉声.丙烯腈生产及副产品综合利用技术途径[J].兰化科技,1995,13(1):53-57
    [16]乔映宾.我国丙烯腈工业的发展[J].石油化工,1997,26(6):408-411
    [17]安炜.丙烯氨氧化合成丙烯腈[J].石油化工,1998,27(2):139-146
    [18]陈涛.丙烯腈装置氨氧化反应器改造方案比较[J].石化技术与应用,2003,21(4):273-276
    [19]杨杏生.制备丙烯腈的新工艺[J].合成纤维工业,1994,17(3):41-48
    [20]谢方友.丙烷氨氧化制丙烯腈催化剂设计进展[J].工业催化,2003,11(8):38-42
    [21]侯昭胤,戴擎镰,张勤鑫.丙烷氨氧化制丙烯腈的催化剂研究[J].化学反应工程与工艺,1998,14(3):229-235
    [22]韩秀山.丙烷法制丙烯腈技术分析[J].化工时刊,2003,(10):51-53
    [23]Xiong G, Sullivan V S, Stair P C. Effect of titanium substitution on the structure of VSbO4 catalysts for propane ammoxidation[J]. Journal of Catalysis,2005,230(2): 317-326
    [24]Yoon Y S, Fujikawa N, Ueda W. Propane oxidation over various metal molybdate catalysts[J]. Catalysis Today,1995,24(3):327-333
    [25]赵震,张惠民,徐春明.丙烯氨氧化催化剂研究进展[J].黑龙江大学自然科学学报,2005,22(2):237-240
    [26]吴粮华,陈欣,汪国军.Mo-Bi-Fe多组分丙烯腈催化剂的研制及工业应用[J].石油化工,2004,33:1619-1622
    [27]Burrington J D, Kartisek C T, Grasselli R K. Surface intermediates in selective propylene oxidation and ammoxidation over heterogeneous molybdate and antimonate catalysts [J]. Journal of Catalysis,1984,87(2):363-380
    [28]Grasselli R K. Selectivity and activity factors in bismuth-molybdate oxidation catalysts[J]. Applied Catalysis A:General,1985,15:127
    [29]Brazdil J F, Suresh Div D, Grasselli R K, Redox kinetics of bismuth molybdate ammoxidation catalysts[J]. Journal of Catalysis,1980,66(2):347-367
    [30]Belgacem J, Kress J, Osbom J A. Catalytic oxidation and ammoxidation of propylene. modelling studies on well-defined molybdenum complexes[J]. Journal of Molecular Catalysis,1994,86(1/3):267-285
    [31]Burrington J D, Grasselli R K. Aspects of oxidation and ammoxidation mechanisms over bismuth molybdate catalysts[J]. Journal of Catalysis,1979,59(1):79-99
    [32]Burrington J D, Kartisek C T, Grasselli R K. Aspects of oxidation and ammoxidation mechanisms over bismuth molybdate catalysts Ⅱ. allyl alcohol as a probe for the allylic intermediate[J]. Journal of Catalysis,1980,63(1):235-254
    [33]Burrington J D, Kartisek C T, Grasselli R K. Aspects of oxidation and ammoxidation mechanisms over bismuth molybdate catalysts Ⅳ-allylamine as a probe for nitrogen insertion[J]. Journal of Catalysis,1982,75(2):225-232
    [34]Burrington J D, Kartisek C T, Grasselli R K. Mechanism of nitrogen insertion in ammoxidation catalysts[J]. Journal of Catalysis,1983,81(2):489-498
    [35]戴擎镰,俞坚,张虹,陈甘棠.丙烯氨氧化制丙烯腈的反应网络与动力学模型.化学反应工程与工艺[J],1993,9(4):345-52
    [36]Sancier K. M, Aoshima A, Wise H. Charge transfer during redox of bismuth molybdate catalysts[J]. Journal of Catalysis,1974,34(2):257-266
    [37]Ueda W, Asakawa K, Chen C L. Catalytic roerties of tricomonent metal oxides having the scheelite structure[J]. Journal of Catalysis,1986,101(2):360-375
    [38]Schuit G C A. Bismuth, Molybdates as oxidation catalysts. Journal of the Less-Common Metals[J],1974,36:329-338
    [39]Wragg R D, Ashmore G, Hockey J A. Selective oxidation of roene over bismuth molydate catalysts:the oixdation of roene using 18o labeled oxygen and catalyst[J]. Journal of Catalysis,1971,22(1):40-53
    [40]沈师孔,闵恩泽.烃类晶格氧选择氧化[J].化学进展,1998,10(2):137-145
    [41]Han Y H, Ueda W. Lattice oxide ion-transfer effect demonstrated in the selective oxidation of propene over silica-supported bismuth molybdate catalysts[J]. Applied Catalysis A:General 1999,176:11-16
    [42]Matsuura I. Adsorption equilibria of acrolein and ammonia on the bismuth molybdate koechlinite catalyst[J]. Journal of Catalysis,1974,33(3):420-433
    [43]Matsuura I. The adsorption of butene, butadiene and ammonia on U03-Sb203 catalysts[J]. Journal of Catalysis,1974,35(3):452-459
    [44]Matsuura I. Schuit G C A. Adsorption and reaction of adsorbed species on bi2moo6 catalyst influence on sintering and of temperature of reduction[J]. Journal of Catalysis, 1972,25(3):314-325
    [45]Matsuura I. Schuit G C A. Adsorption equilibria and rates of reactions of adsorbed compounds on reduced and oxidized Bi-Mo catalysts [J]. Journal of Catalyst,1971, 20(1):19-39
    [46]Haber J, Grzybowska B. Mechanism for the oxidation of olefins on mixed oxide catalysts[J]. Journal of Catalysis,1973,28(3):489-492
    [47]Grzybowska B, Haber J, Janas J. Interaction of allyl iodide with molybdate catalysts for the selective oxidation of hydrocarbons[J]. Journal of Catalysis,1977,49(2):150-163
    [48]Aykan K, Sleight A W, Rogers D S. Defect control in oxidation catalysts[J]. Journal of Catalysis,1973,29(1):185-187
    [49]Sleight A W. Advanced materials in catalysis[M]. New York:Academic Press,1977.
    [50]许红兵,朱志焱,孙科强.晶格氧丙烯氨氧化催化剂的研究[J].石油炼制与化工,1998,29(5):23-25
    [51]李殿军.丙烯腈的技术概况和发展趋势[J].化工科技,2004,12(6):58-62
    [52]杨学萍.丙烯腈生产技术进展[J].上海化工,2000,(6):33-35
    [53]许红兵.低氧比丙烯腈催化剂的研制开发[J].金山油化纤,1998,(1):1-9
    [54]Hashiba H, Kanesaka M, Matsuura I. Shokubai 1985,27:434
    [55]Ueda W, Y. Moro-oka, T. Ikawa, I. Matsuura, Promotion Effect of Iron for the Multicomponent Bismuth Molybdate Catalysts as Revealed by 18O2 Trace[J]. Chem. Lett. 1982,1365
    [56]Moro-oka Y, He D H, Ueda W, Catalyst oxide support oxide interaction to prepare multifunction catalysts [M]. Stud. Surf. Sci. Catal.1991,67:57-66
    [57]Ueda W, Chen C L, Asakawa K. Catalytic properties of tri component metel oxides having the scheelite structure Ⅱ. structural stability in the reduction-oxidation cycle[J]. Journal of Catalysis,1986,101(2):369-375
    [58]Krenzke L D, Keulks G W. The catalytic oxidation of propylene Ⅵ. mechanistic studies utilizing isotopic tracers[J]. Journal of Catalysis,1980,61(2):316-325
    [59]Glaeser L C, Brazdil J F, Hazle M A. Identification of active oxide ions in a bismuth molybdate selective oxidation catalyst[J]. Journal of the Chemical Society, Faraday Transactions I,1985,81:2903
    [60]Moro-oka Y, Ueda W. Multicomponent bismuth molybdate catalyst:a highly functionalized catalyst system for the selective oxidation of olefin[J]. Advances in Catalysis,1994,40:233-273
    [61]Matsuura I. Successful design of catalysts-reactivity and structure of multi-system molybdate catalysts[M]. Studies in Surface Science and Catalysis,1989,44:111-121
    [62]Weng L T, Delmon B. Phase rooperation and remote control effects in selective oxidation catalysts[J]. Applied Catalysis A:General,1992,81(2):141-213
    [63]Weng L T, Ma S Y, Delmon B. Cooperation between MoO3 and other metal oxides in selevtive oxidation of isobutene to methacrolein[J]. Journal of Molecular Catalysis,1990, 61(1):99-112
    [64]汪洋,陈丰秋,詹晓力等.多相选择氧化/氨氧化催化中活性位分离和相间协同作用[J].化学进展,2006,18(1):7-18
    [65]Ponceblane H, Millet J M M, Coudurier G. Study of multiphasic molybdate-based catalysts I. electrical conductivity study of valenec states and solubility limits in mixed iron and cobalt molybdates[J]. Journal of Catalysis,1993,142(2):373-380
    [66]Millet J M M, Ponceblane H, coudurier G Study of multiphasic molybdate-based catalysts Ⅱ. synergy effect between bismuth molybdates and mixed iron and cobalt molybdates in mild oxidation propene[J]. Journal of Catalysis,1993,142(2):381-391
    [67]Vannier R N, Abraham F. New structural and electrical data on bi-mo mixed oxides with a structure based on [Bi12O14]∞ columns[J]. Journal of Solid State Chemistry,1999,142: 294-304
    [68]Tomasi C, Spinolo G, Chiodelli G Phase equilibria in the Bi-rich part of the Bi, Mo/O system[J]. Solid State Ionics,1997,99:263-268
    [69]Takehiko O, Kazuya U, Masakazu K, et. A study of active sites for partial oxidation on a-Bi2Mo3O12 and β-Bi2Mo2O9 catalysts using crystal structure visualization. Catalysis Today,2004,91:181-184
    [70]Callahan J L, Grasselli R K, Miberger E C, Strecker H A, Oxidation and ammoxidation of propylene over bismuth molybdate Catalyst[J]. Ind. Eng. Chem.,1970,9(2),134-142
    [71]Grasselli R K, Burrington J D. Selective oxidation and ammoxidation of propylene by heterogeneous catalysis[J]. Advances in Catalysis,1981,30:133-163
    [72]Mars P, Van Krevenlen D W. Oxidation carried out by means of vanadium oxide cataysis[J]. Chemical Engineering Science,1954,3(Suppl.):41-57
    [73]Haber J, Catalytic oxidation-state of the art and prospects[J]. Studies in Surface Science and Catalysis,1992,72:279-304
    [74]闵恩泽,陈家镛.绿色化学与技术——推进化工生产可持续发展的途径[Z].中国科学院院士咨询报告总(1998)C003(化06号)
    [75]Fujimoto K, New uses of methane[J]. Studies in Surface Science and Catalysis,,1994,81: 73-84
    [76]Schwendeman M N, McBrige R, Reuter D, Isaacs M, Porous metal filters prevent fluid bed catalyst loss. Chem. Process,1983, (Jul),100-127
    [77]Emig G, Martin F, Economics of maleic anhydride production from C-4 feedstocks[J]. Catalysis Today,1987,1(5):477-498
    [78]Contractor R M, Bergna H E, Horowitz H S, Blackstone C M, Malone B, Torardi C C, Griffiths B, Chowdhry U, Sleight A W. Butane oxidation to maleic anhydride over vanadium phosphate catalysts[J]. Catalysis Today,1987,1(1-2):49-58
    [79]Contractor R M, Sleight A W. Selective oxidation in riser reactor[J]. Catalysis Today,1988,3(2/3):175-184
    [80]Contractor R M, Garnett B I, Horowitz H S, Bergna H E, Patience G S, Schwartz J T, Sisler G M, A New Commercial Scale Process for n-Butane Oxidation to Maleic Anhydride Using a Circulating Fluidized Bed Reactor[J]. Studies in Surface Science and Catalysis,1994,82:233-242
    [81]Haggin J, Innovations in catalysis create environmentally friendly THF process[J]. Chem. &Eng. News,1995,73(Apr.3):21
    [82]Keller G E, Bhasin M M, Synthesis of ethylene via oxidation couping of methane I. determination of active catalysts[J], J.Catal.,1982,73(1):9-19
    [83]Lunsford J H, The catalytic conversion of methane to higher hydrocarbons[J]. Catalysis Today,1990,6(3):235-259
    [84]Fox III J M, The Different Catalytic Routes for Methane Valorization:An Assessment of Processes for Liquid Fuels [J]. Catal.Rev.-Sci.Eng.,1993,35(2),169-122
    [85]Sofranko J A, Leonard J J, Jones C A, The oxidative conversion of methane to higher hydrocarbons[J]. Journal of Catalysis,1987,103(2):302-310
    [86]Jones C A, Leonard J J, Sofranko J A, The oxidative conversion of methane to higher hydrocarbons over alkali-promoted Mn/SiO2[J]. Journal of Catalysis,1987,103(2): 311-319
    [87]Sofranko. Boron-Promoted Reducible Metal Oxides and Methods of Their Use[P]. John A Gastinger, Robert G Jones, Andrew C. US 4 777 313,1985-10-11
    [88]Emig G, Uihlein K, Hacker C J. Selective synthesis of maleic anhydride by spatial separation of n butane oxidation and catalyst reoxidation[M]. Stud. Surf. Sci. Catal, 1994,82:243-251
    [89]VEB Petro leum Chem Co. DD 160768 [P]
    [90]Crist R P. Chemical canister. US 4152392 [P].1979-05-01
    [91]#12
    [92]Heytger B, Innes R A, Swift H E. Process for preparing acrylonitrille. US,4102914 [P]. 1978-07-25
    [93]Hu Y Q, Zhao F Y, Wei F, Jin Y. Ammoxidation of propylene to acrylonitrile in a bench-scale circulating fluidized bed reactor[J]. Chemical Engineering and Processing 2007, 46:918-923
    [94]Toshio N, Hachiro A, Hideyuki I, Yamamoto H. Process for Producing Acrylonitrile:EP, 0842922 A1 [P].1998-05-20
    [95]Zhou L B, Dennler W P, Oroskar A R, Vora B V, Abrevaya H, Stine L O. Reaction Process in Hybrid Reactor for Propylene Ammoxidation:US,6143915[P],2000-11-07
    [96]Yong L K, Howe R F, Keulks G W, Hall W K, Oxygen depletion of bismuth molybdates[J]. Journal of Catalyst,1978,52(3):544-546
    [97]Ruckenstein E, Krishnan R, Rai K N. Oxygen depletion of oxide catalysts[J]. Journal of Catalyst,1976,45:270-273
    [98]Aykan K. Reduction of Bi2O3-MoO3 catalyst during the Ammoxidation of propylene in the absence of gaseous oxygen[J]. Journal of Catalysis,1968,12(3):281-290
    [99]Schrader G L, Cheng C P. Sulfiding of cobalt molybdate catalysts:characterization by Raman spectroscopy[J]. Journal of Catalysis,1984,85(2):488-498
    [100]Ozkan U, Schrader G L. NiMoO4 Selective oxidation catalysts containing excess MoO3 for the conversion of C4 hydrocarbons to Maleic Anhydride[J]. Journal of Catalysis, 1985,95(1):120-136
    [101]Matsuura I, Schut R, Hirakawa K. The surface structure of the active bismuth molybdate catalyst[J]. Journal of Catalysis,1980,63(1):152-166
    [102]马琳.65#丙烯腈催化剂的失活原因[J].石油化工,1987,16:292-296
    [103]孙锦宜.工业催化剂的失活与再生[M].第一版,北京:化学工业出版社,2006,221
    [104]Wolfs M W J, Batist PH A. The selective oxidation of 1-Butene over a multicomponent molybdate catalyst. Influences of various elements on structure and activity[J]. Journal of Catalysis,1974,32(1):25-36
    [105]Grasselli R K. Selectivity issues in (amm)oxidation catalysis[J]. Catalysis Today,2005, 99(1):23-31
    [106]Moro-oka Y, Ueda W, Lee K H. The role of bulk oxide ion in the catalytic oxidation reaction over metal oxide catalyst[J]. Journal of Molecular Catalysis A:Chemical.2003, 199(3):139-148
    [107]陈镜汉,李传儒.热分析及其应用[M],第一版,北京:科学出版社,1985,1-4
    [108]Elder J P. The'E-ln(A)-f(a)'triplet in non-isothermal reactlon kineties analysis[J]. ThermoChim. Acta,1998,318(1/2):229-238
    [109]Agrawal R K, Sivasubramanian M S. Integral Approximation for Nonisothermal Kineties[J]. AIChE Journal,1987,33(7):1212-1214
    [110]Narahari Achar B N, Bridley G W, Sharp J H. Thermal decomposition kinetics of some new unsaturated polyesters[C]. Proc Int Clay Conf, Jerusalem,1966,1:67
    [111]Sharp J H, Wendworth S A. Kinetic analysis of thermogravimetric data[J]. Anal Chem, 1969,41(14):2060-2062
    [112]Freeman E S, Carroll B. The Application of Thermoanalytical Techniques to Reaction Kinetics:The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate[J]. J. Phys. Chem.,1958,62(4):394-397
    [113]Newkirk A E. Thermogravimetric Measurements [J]. Aanal. Chem.,1960, 32(12):1558-1563
    [114]Vachuska J, Voboril M. Kinetic data computation from non-isothermal thermogravimetric curves of non-uniform heating rate[J]. Themochim. Acta,1971, 2(5):379-392
    [115]Staring M J. A new method for the derivation of activation energies from experiments performed at constant heating rate[J].Themochim. Acta,1996,288(1/2):97-104
    [116]Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964,201(4914):68-69
    [117]Phadnis A B, Deshpande V V. Determination of the kinetics and mechanism of a solid state reaction. A simple approach[J]. Themochim. Acta,1983,62(2/3):361-367
    [118]Zavkovic Z O. Determination of reaction kinetics based on a part of a differential thermal analysis or thermogravimetric curve[J]. Themochim. Acta,1979,32(1/2):205-211
    [119]Segal E. Fraction-time and fraction-temperature in nonisothermal kinetics[J]. Themochim. Acta,1982,53(3):365-367
    [120]Friedman H L. Kinetics of thermal degradation of char-forming plastic from thermogravimetry. Applieation to phenolic plastic[J]. J. Polylm. Sci.:C 1963,6:183-195
    [121]Kissinger H F. Reaction kinetics in differential analysis[J]. Anal.Chem.1957, 29(11):1702-1706
    [122]Flyrm J H, Wall L A. A quick, direct method for the determination of activation energy from Thermogravimetric data[J]. J. Polym. Sci. Part B1966,4:323-328
    [123]Ozawa T. A new method of analysis of thermogravimetric data[J]. Bull. Chem. Soc. Japan.1965,38:1881-1886
    [124]Vyazovkin, Altemative deseription of process klneties[J].Thermochim. Acta 1992, 211(1):181-187
    [125]Vyazovkin S. Alternative deseription of process kineties[J].Thermochim. Acta 1992, 211(1):181-187
    [126]Ortega A. Some suvcesses and failures of the methods based on several experiments [J]. Thermoehim. Aeta 1996,284(2):379-387
    [127]Ortega A. The kineties of solid-state reactions toward eonsensus-part 2:fitting kineties data in dynamic conventional thermal analysis [J]. Int. J. Chem. Kinet.2002,34:193-208
    [128]Vyazovkin S, Wight A. Isothermal and Nonisothermal Reaction Kineties in Solids:In Seareh ofWays toward Consensus[J].J. Phys. Chem.A 1997,101:8279-8284
    [129]Bagchi T P, Sen P K. Combined Differential and Integral Method for Analysis of Non-isothermal Kinetic Data[J]. Thermochimica Acta,1981,51(2/3):175-189
    [130]汪海东,李延团,曾宪诚.双水杨基缩乙二胺合铬(Ⅲ)配合物的非等温热分解动力学研究[J].四川大学学报:自然科学版,2002,39(3):500-504
    [131]李余增.热分析[M].北京:清华大学出版社,1987:74-107
    [132]Criado J M, Gonzalez M. The Method of Calculation of Kinetic Parameters as a Possible Cause of Apparent Compensation Effects[J]. Thermochimica Acta,1981,46(2):201-207
    [133]严仲明.催化剂流化高度与丙烯腈反应器的优化运行[J].石油化工,2002,31(2):118-120
    [134]Gotor E J, CriadoJ M, Malek J, Koga N. Kinetic analysis of solid-state reactions:The university of master plots for analyzing isothermal and nonisothermal experiments [J]. J. Phys.Chem.A 2000,104:10777-10782
    [135]Perez-Maqueda L A, Criado J M, Goto F J, Malek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile[J]. J. Phys. Chem. A 2002,106:2862-2868
    [136]Ozawa T. Non-isothennal kinetics and generalized time[J].Thermoehim. Acta 1986, 100:109-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700