用户名: 密码: 验证码:
非对称双相复合氧分离膜的相转化流延制备和透氧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
致密陶瓷氧分离膜有望将氧气生产成本降低30%左右,其构成的反应器集氧分离和化学反应于一体,更是具有很好的经济性。膜反应器应用不仅要求材料具有可观的氧渗透能力,而且能在高温、氧化性气氛和还原性气氛下都能保持结构和化学稳定。已有的研究表明:单相氧离子电子混合传导材料的氧渗透速率较高,但其稳定性无法满足要求。双相复合混合传导材料具有很好的稳定性,但其氧渗透速率偏低,通过将其制成非对称平板结构,减小致密氧分离层的厚度,可以提高其氧渗透能力。平板结构的一大优点是能利用日趋成熟的固体氧化物燃料电池堆的组建技术构建膜组件,便于氧分离膜技术的应用。本博士论文拟研究双相复合透氧膜的材料组成、相转化流延非对称结构平板膜制备方法、透氧性能和膜反应器应用。
     第一章简要介绍了陶瓷透氧膜的背景,原理以及相转化制备非对称膜工艺
     第二章研究了单相材料La0.8Sr0.2CrxFe1-xO3-δ(LSCrF)的稳定性和透氧性能。LSCrF在稀释的氢气气氛下失重0.5%,对应于晶格氧空位的增加。LSCrF粉体在950℃纯氢气氛下退火30h后,发生部分分解。热力学计算获得LSCrF的分解氧分压,在950℃为6.3×10-28atm。将致密片状样品LSCrF的一侧暴露在空气气氛中,另一侧采用CO吹扫,测得950℃的氧渗透速率为0.37mL·cm-2·min-1。氧渗透实验揭示该材料存在氧离子电导,950℃的氧离子电导率约为0.01S/cm,只有Zr0.84Y0.16O1.92(YSZ)的10%左右。氧渗透实验结束后,与CO接触的膜表面形成了多孔疏松层。本章还研究了由LSCrF与YSZ构成的双相复合材料,发现氧渗透速率略小于单相LSCrF,但是其稳定性得到明显改进。
     第三章研究了Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ (YSZ-LSCrF)非对称结构平板膜的制备方法和氧渗透性能。我们将相转化流延新方法用于YSZ-LSCrF复合材料的制备,所制得的平板膜为非对称结构,由一个厚度120gm的致密层和厚度880μm的多孔支撑层组成。将平板膜的多孔支撑层暴露在空气中,致密层用He气吹扫,在900℃时测得氧渗透速率为0.14mL·cm-2·min-1。采用CO作为吹扫气,氧渗透速率升高到0.41mL·cm-2·min-1,这是因为渗透的氧与CO反应,导致渗透侧的氧分压大幅降低,膜两侧的氧分压差增大;在致密层表面涂覆一层同质多孔层,氧渗透速率达到1.57mL·cm-2·min-1。
     第四章研究了基于YSZ-LSCrF非对称平板膜的甲烷部分氧化(POM)反应。采用的平板膜面积为4.5×4.5cm2,在其致密层表面涂覆了Ni/LSCrF催化剂。将膜的多孔侧暴露在空气中,在致密侧引入甲烷,与渗透的氧发生POM反应。在875℃、甲烷通入速率为30mL/min时,甲烷转化率达92.3%,CO和H2的选择性分别为92.2%和93.9%,H2/CO比例为2.0。膜反应器具有优异的POM反应性能,有望用作SOFC的前端燃料重整器,在天然气制氢和费托工艺制液体燃料中也有良好的应用前景。
     第五章研究了Zr0.84Y0.16O1.92-La0.8Sr0.2MnO3.δ(YSZ-LSM)双相复合平板膜的制备方法和氧渗透性能。采用相转化流延成型方法制备了非对称结构平板膜,其致密层厚度为150μm,多孔支撑体厚度为850μm。将平板膜的多孔支撑层暴露在空气中,致密层用He气吹扫,在900℃时测得氧渗透速率为0.26mL·cm-2·min-1,而采用常规双层流延方法制备的非对称平板膜的透氧速率只有0.05mL·cm-2·min-1。两种膜的透氧性能的差别很可能与其多孔支撑层的孔结构有关。两种膜的致密层厚度一样,多孔支撑层的厚度也差别不大,但是孔结构有显著差别。对于相转化法的平板膜,其支撑层含有沿厚度方向生长的指状孔,孔径为数十微米,有利于气体分子的传输。而对于常规双层流延法制备的平板膜,孔径为是10μm左右,孔的趋向随机,不利于气体分子的传输。
     第六章研究了Ce0.8Sm0.2O1.9-La0.8Sr0.2MnO3.δ(SDC-LSM)双相复合平板膜的制备和氧渗透性能。采用相转化流延成型方法制备了非对称结构平板膜,其致密层厚度为150μm,多孔支撑体厚度为850gm。将平板膜的多孔支撑层暴露在空气中,致密层用He气吹扫,在900。C时氧渗透速率0.19mL·cm-2·min-1,比同样温度下的YSZ-LSM要大得多(0.07mL·cm-2·min-1)。SDC-LSM非对称平板膜在中低温具有相当可观的透氧速率,在纯氧制备方面有良好的应用前景。
     第七章对本论文进行了总结,并对非对称平板膜的相转化流延制备方法的优化、结构表征、膜组件制备和应用等后续研究提出了建议。
The dense ceramic oxygen-permeable membranes hold promise to reduce the oxygen production cost by30%. The chemical reactors made from the membranes also hold huge economic potential through integration of oxygen separation and chemical reactions into a single space. For successful applications, the membranes are required to possess both high oxygen permeability and satisfactory stability under stringent operation conditions. It has been found that some perovskite transition metal oxides exhibit mixed oxide ionic and electronic conductivity and thus allow oxygen to permeate through, but the stability of these single-phase membranes is problematic especially for the membrane reactor applications. It has also been found that composite membranes made from an oxygen-ionic conductor and an electronic conductor demonstrate much better stability, but their oxygen permeability is poorer. The oxygen permeation performance of the dual-phase composite membranes can be improved significantly by fabrication of the membranes into an asymmetric planar structure in which a thin and dense oxygen separation layer is mechanically supported by a thick and porous layer. This planar membrane structure has another advantage in the membrane module can be built using the existing techniques developed for construction solid oxide fuel cells. This thesis is intended to investigate the dual-phase composite membrane materials, phase-inversion tape casting and oxygen permeation property of the supported membranes and their applications in membrane reactors.
     Charter1introduces the background of the dense ceramic oxygen-permeable membranes. A new variant of tape-casting method involving phase-inversion is also introduced for preparation of supported ceramic membranes.
     In Charter2, the stability and oxygen permeability of La0.8Sr0.2CrxFeo.5O3-δ (LSCrF) and Zro.84Y0.16O1.92-Lao.8Sro.2Cr0.5FeO.503.s (YSZ-LSCrF) are investigated. LSCrF powder exposed to diluted hydrogen was found to loss a weight of only-0.5%, corresponding to the formation of oxygen vacancies in the lattice.LSCrF powder exposed to flowing concentrated hydrogen for30h was found to decompose partially. The decomposition oxygen partial pressure of LSCrF was calculated to be6.3x10-28atm from the thermodynamic data. The stability of LSCrF under an oxygen chemical potential gradient was also examined by exposing a disk-shaped dense sample to air at one side and to reducing atmosphere (CO) at the other side at elevated temperatures. A thin, porous layer was formed on the low oxygen pressure side (CO). An oxygen permeation flux of0.37mL·cm-2·min-1was observed at950℃under given air/CO gradient. The occurrence of oxygen permeation revealed the presence of mixed oxygen ionic and electronic conductivity. The oxygen ionic conductivity was estimated to be-0.01S/cm at950℃, which is less10%of YSZ. The composite membrane made of LSCrF and YSZ exhibited smaller oxygen permeabiliy than the single-phase LSCrF but the stability was significantly improved.
     In Charter3, phase-inversion tape casting and oxygen permeation properties of Zro.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ (YSZ-LSCrF) are investigated. A supported planar membrane was prepared by phase-inversion tape-casting technique. The as-prepared membrane consists of a dense layer of thickness120μm supported by a porous layer of thickness880μm. The membrane with this asymmetric structure showed an improved oxygen permeation performance. An oxygen permeation flux of0.14mL·cm-2·min-1was obtained at900℃by exposing the porous support layer side to air and the dense layer to flowing helium. And the oxygen permeation flux was increased to0.41mL·cm-2·min-1when CO was used as sweep gas. Modification of permeate side of the membrane with a porous YSZ-LSCrF layer further raised the oxygen permeation flux to1.57mL·cm-2·min-1.
     In Charter4, the applicability of the YSZ-LSCrF membrane in partial oxidation of methane (POM) reaction is examined. The POM reaction was facilitated at elevated temperature with the porous side of the membrane exposed to air and the dense side methane. The membrane used had an area of4.5x4.5cm2, and to catalyze the POM reaction, the dense side of the membrane was coated with Ni-LSCrF catalyst. At875℃and CH4feed rate of30ml/min, the CH4conversion was92.3%, CO selectivity92.2%and H2selectivity93.9%, the H2/CO ratio2.0. The membrane reactor demonstrates excellent POM performance, and thus may find applications in methane pre-reforming for solid oxide fuel cells and conversion of methane to synthesis gas (a H2and CO mixture) required for production of hydrogen and liquid fuels.
     In Charter5, the fabrication method and oxygen permeation properties of the supported planar membranes composite with Zr0.84Y0.16O1.92-La0.8Sr0.2Mn03-δ (YSZ-LSM) dual phase are investigated. A supported planar membrane was prepared by phase-inversion tape casting technology, a dense layer with thickness of150μm supported on a thick porous layer with thickness of850μm. When the support layer was exposed to air and the dense layer was swept by helium, an oxygen permeation flux as large as0.26mL cm-2min-1was obtained at900℃, which is much larger than the supported membrane (0.05mL cm-2 min-1) prepared by conventional tape casting of the same composition and thickness. This may be due to the gas transport properties of the two support layers, the porous layer prepared by phase-inversion tape casting contains finger-like pores along the thickness direction, with an average diameter of a few tens of micrometers, and showed higher gas transport property. The pore of the other sample had a size of10micrometers, but pores were randomly distributed, the pore paths were tortuous, also unfavorable for gas transport.
     In Charter6, the phase-inversion tape casting and oxygen permeation properties of Ce0.8Sm0.2O1.9-La0.8Sr0.2MnO3-δ (SDC-LSM) composite planar membrane are reported. A supported planar membrane was prepared by phase-inversion tape casting technology, a dense layer with thickness of150μm supported on a thick porous layer with thickness of850μm.When the support layer was exposed to air and the dense layer was swept by helium, an oxygen permeation flux as large as0.188mL cm-2min-1was obtained at800℃, which is much larger than the supported YSZ-LSM membrane (0.07mL·cm-2·min-1).The supported planar SDC-LSM membrane shows appreciable oxygen permeability at intermediate temperatures, thus holds promises for application in production of oxygen.
     In Chapter7, the summary of this thesis is presented, and further research needs are identified including the optimization of the phase-inversion tape casting, characterization of the as-formed membrane,and the fabrication of membrane module.
引文
[1]Y. Teraoka, H. M. Zhang, S. Funrukawa, Oxygen permeation through perovskite-type oxides, Chem. Lett.,167 (1985) 1743.
    [2]Y. Teraoka, T. Nobunaga, N. Yamazoe, Effect of cation substitution on the oxygen semipermeability of perovskite oxides, Chem. Lett., (1988) 503.
    [3]Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics,48 (1991) 207.
    [4]Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, G. Xiong, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.203-δ oxygen membrane, J. Membr. Sci.,172(2000)177.
    [5]H. J. M. Bouwmeester, H. Kruidhof, A. J. Burggraaf, P. J. Gellings, Oxygen semipermeability of erbia-stabilized bismuth oxide, Solid State Ionics,460. (1992)53
    [6]L. Qiu, T. H. Lee, L. M. Liu, Y. L. Yang and A. J. Jacobson, Oxygen permeation studies of SrCo0.8Fe0.203-δ, Solid State Ionics,76 (1995) 321.
    [7]C. S. Chen, S. Ran, W. Liu, P. H. Yang, D. K. Peng, H. J. M. Bouwmeester, YBa2Cu3O6+δ as an oxygen separation membrane, Angew. Chem. Int. Ed.,40 (2001) 784.
    [8]Jens R. Rostrup-Nielsen "Activity of nickel catalysts for steam reforming of hydrocarbons". J. Catal.,31 (1973) 173
    [9]J. Haggin, "Direct conversion of methane to fuels, chemicals still intensely sought", Chem. Eng. News,17 (1992) 33
    [10]T. Sundset, J. Sogge, T. Stnpm, Evaluation of natural gas based synthesis gas production technologies, Catal. Today,21 (1994) 269
    [11]J. R. Rostrup-Nielsen, J. H. Back-Hansen, CO2 reforming of methane over transition metal, J. Catal.,1 (1993) 38
    [12]T. Hayakawa, S. Suzuki, J. Nakamura, CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method, Appl Catal A,2 (1999) 273
    [13]Z. L. Xu, M. Zhen, Y. L. Bi and K. J. Zhen, Carbon dioxide reforming of methane to synthesis gas over hexaaluminate AniAl11O19-δ(A=Ca, Sr, Ba and La) catalysts, Catal. Lett.,64 (2000) 157
    [14]A. T. Ashcroft, A. K. Cheetham, J. S. Foord, M. L. H. Green, C. P. Grey, A. J. Murrell, Selective oxidation of methane to synthesis gas using transition metal catalysis, Nature,334 (1990) 319
    [15]D. Dissanayake, M. P. Rosynek, K. C. C. Kharas, J. H. Lunsford, "Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst", J. Catal.,132 (1991)117
    [16]D. A. Hickman, L. D. Schmidt, Production of syngas by direct catalytic oxidation of methane, Science,259 (1993) 343
    [17]A. Slagterm, U. Olsbye, Partial oxidation of methane to synthesis gas using La-M-0 catalysts, Appl. Catal. A,110 (1994) 99
    [18]R. H. Jones, A. T. Aschcroft et al., Catalytic conversion of methane to synthesis gas over Europium Iridate, Eu2lr2O7-An in situ study by x-ray diffraction and mass spectrometry, Catal. Lett.,8 (1991) 169
    [19]K. Kuulmori, S. Umeda, et al., Partial oxidation to synthesis gas over rhodium vanadate RhVO4:redispersion of Rn metal during the reaction, Chem. Soc. Jpn., 65 (1992) 2562
    [20]P. Torniainen, X. Chu, and L. D. Schmidt, Comparison of monolith-supported metals for the direct oxidation of methane to syngas, J.Catal.,146 (1994) 1
    [21]S. S. Bharadwaj and L. D. Schmidt, Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors, J. Catal.,146 (1994) 11
    [22]X. H. Liu, X. L. Li, Y. Miao, P. H. CAO, R. S. Hu, Promotion effect of rare earth additives onNi-based methanation catalysts, J. Natural Gas Chem.,4 (1994) 468
    [23]X. Gao, J. Y. Cheng, X. Y. Fu, H. M. Wang, R. B. Yao, Effect of Y2O3 on the property of NiO/Al2O3 catalyst for partial oxidation of methane, J. Natural Gas Chem.,4(1994)453
    [24]Y. H. Hu and E. Ruckenstein, Trasient kinetic studies of partial oxidation of CH4, J.Catal.,158(1996)260
    [25]K. Otsuka, Y. Wang, E. Sunada, and I. Yamanaka, Direct partial oxidation of methane to synthesis gas by cerium oxide, J.Catal.,175 (1998) 152
    [26]P. T. Ishihara, T. Yamada, T. Akbay, and Y. Takita, "Partial oxidation of methane over fuel cell type reactor for simultaneous generation of synthesis gas and electric power", Chem. Eng. Sci.,54 (1999) 1535
    [27]K. Nakagawa, N. Ikenaga, Y. H. Teng, T. Kobayashi, and T. Suzuki, "Trasient response of catalyst bed temperature in the pulsed reaction of partial oxidation of methane to synthesis gas over supported rhodium and iridium catalysts", J.Catal., 186(1999)405
    [28]S. Ozturk, I. Onal, and S. Senkan, Partial oxidation of methane on the SiO2 surface-a quantum chemical study, Ind. Eng. Chem. Res.,39 (2000) 250
    [29]L. Majocchi, G. Groppi, C. Cristiani, P. Forzatti, L. Basini, and A. Guarinoni, Partial oxidation of methane to synthesis gas over Rh-hexaaluminate-based catalysts, Catal. Lett.,65 (2000) 49
    [30]M. Fathi, F. Monnet, Y. Schuurman, A. Holmen, and C. Mirodatos, Reactive oxygen species on platinum gauzes during partial oxidation of methane into synthesis gas, J. Catal.,190 (2000) 439
    [31]U. Balachandran, et al. Dense ceramic membranes for partial oxidation of methane to syngas, Appl. Catal. A:General 133 (1995) 19
    [32]U. Balatrandran, J. T. Duesk, P. S. Maiya, B. Ma, R. L. Mieville, M. S. Kleefisch, C. A. Udovich, Ceramic membrane reactor for converting methane to syngas, Catal. Today,36 (1997) 265
    [33]H. H. Wang, Y. Cong, W. S. Yang, "Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane", Catal. Today,82 (2003) 157
    [34]H. Dong, G. X. Xiong, Z. P. Shao, S. L. Liu, W. S. Yang, "Partial oxidation of methane to syngas in a mixed-conducting oxygen permeable membrane reactor", Chinese Sci. Bull.,45 (2000) 224
    [35]H. Dong, Z. P. Shao, G. X. Xiong, J. H. Tong, S. S. Sheng, W. S. Yang, Investigation on POM reaction in a new perovskite membrane reactor, Catalysis Today,67(2001)3
    [36]H. H. Wang, Y. Cong, W. S. Yang, Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ membrane reactor, Catalysis Today,82 (2003) 157
    [37]E. D. Wachsman, T. L. Clites, Stable Mixed-Conducting Bilayer Membranes for Direct Conversion of Methane to Syngas, J. Electrochem. Soc.,149 (2002) A242
    [38]B. Wang, D. C. Zhu, M. C. Zhan, W. Liu, C. S. Chen, Combustion of Coal-derived CO with membrane-supplied oxygen enabling CO2 Capture, AIChE Journal,53 (2007) 2481.
    [39]IE A Greenhouse Gas R&D Programme, Putting carbon back into the ground, 2001, ISBN 1898373280
    [40]H. J. M. Bouwmeester and A. J. Burggraaf, Dense ceramic membranes for oxygen separation, in:CRC Handbook of Solid State Electrochemistry, Eds. P. J. Gellings and H.J.M. Bouwmeester, CRC Press, Boca Raton 1997
    [41]T. Nozaki, K. Fujimoto, Oxide ion transport for selective oxidative coupling of methane with new membrane reactor, AIChE J.,40 (1994) 870-77.
    [42]C. S. Chen, et al. Conversion of methane to syngas by a membrane-based oxidation-reforming process, Angew. Chem. Int. Ed.42 (2003) 5196
    [43]W. Wang, Y. S. Lin, Analysis of oxidative coupling in dense oxide membrane reactors, J. Mem. Sci.,103, (1995) 219
    [44]Bouwmeester, H. J. M., Kruidhof, H., Burggraaf, A. J., Importance of the Surface Exchange Kinetics as Rate-Limiting Step in Oxygen Permeation through Mixed-Conducting Oxides, Solid State Ionics,72(1994)185
    [45]Norby, T.,2007. Membrane Technology Vol.2:Membranes for Energy Conversion. Wiley-VCH, Weinheim
    [46]Virkar, A. V., Transport through mixed proton, oxygen ion and electron/hole conductors:Analysis of fuel cells and electrolyzer cells using Onsager equations, Int. J. Hydrogen Energy,37 (2012),12609
    [47]L. Qiu, T. H. Lee, L. M. Liu, Y. L. Yang, A. J. Jacobson, Oxygen permeation studies of SrCo0.8Fe0.2O3-δ, Solid State Ionics,76 (1995) 321
    [48]J. Tong, W. Yang, B. Zhu, R. Cai, Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation, J. Membr. Sci.,203 (2002) 175.
    [49]F. Prado, N. Grunbaum, A. Caneiro, A. Manthiram, Effect of La3+ doping on the perovskite-to-brownmillerite transformation in Sr1-xLaxCo0.8Fe0.2O3-δ (0    [50]T. Ishihara, T. Yamada, H. Arikawa, H. Nishiguchi, Y. Takita, Mixed electronicoxide ionic conductivity and oxygen permeating property of Fe-, Co-or Ni doped LaGaO3 perovskite oxide, Solid State Ionics,135 (2000) 631
    [51]W. Yang, H. Wang, X. Zhu, L. Lin, Development and application of oxygen permeable membrane in selective oxidation of light alkanes, Topics Catal.,35 (2005)155.
    [52]P. Zeng, R. Ran, Z. Chen, W. Zhou, H. Gu, Z. Shao, S. Liu, Efficient stabilization of cubic perovskite SrCoO3-δ by B-site low concentration scandium doping combined with sol-gel synthesis, J. Alloys Compd.,455 (2008) 465.
    [53]S. W. Li, Y. Cong, L. Q. Fang, W. Yang, L. W. Lin, J. Meng, Y. F. Ren, Oxygen permeating properties of the mixed conducting membrane without cobalt, Mater. Res. Bull.,33 (2) (1998) 183.
    [54]H. Wang, C. Tablet, A. Feldhoff, J. Caro, A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ, Adv. Mater.,17(2005)1785.
    [55]X. Zhu, H. Wang, W. Yang, Novel cobalt-free oxygen permeable membrane, Chem. Commun., (2004) 1130
    [56]V. V. Kharton, A. P. Viskup, A. V. Kovalevsky, J. R. Jurado, E. N. Naumovich, A. A. Vecher, J. R. Frade, Oxygen ionic conductivity of Ti-containing strontium ferrite, Solid State Ionics,133 (2000) 57.
    [57]H. Schmalzried, W. Laqua, and P. L. Lin, Crystallic Oxide Solid Solutions in Oxygen Potential Gradients, Z. Naturforsch.,34a (1979) 192
    [58]T. J. Mazanec, T. L. Cable and J. G. Frye, jr., Electrocatalytic cells for chemical reaction, Solid State Ionics,53-56 (1992) 111
    [59]C. S. Chen, H. Kruidhof, H. J. M. Bouwmeester, H. Verweij and A. J. Burggraaf, Oxygen permeation through oxygen ion oxide-noble metal dual phase composites, Solid State Ionics,86-88 (1996) 569.
    [60]Y. Shen, M. Liu, D. Taylor, S. Bolagopal, A. Joshi and K. Krist, Mixed ionic-electronic conductors based on Bi-Y-O-Ag metal-ceramic system, Proc. 2nd Intl. Symp. on Ionic and mixed conducting ceramics, ed. T. A. Ramanarayanan, W. L. Worrell and H. L. Tuller, Proc. vol.94-12, The Electrochemical Society, Pennington, NJ,1994, p.574-597.
    [61]C. S. Chen, H. Kruidhof, H. J. M. Bouwmeester, H. Verweij and A. J. Burggraaf, Oxygen permeation through oxygen ion oxide-noble metal dual phase composites, Solid State Ionics,86 (1996) 569
    [62]C. S. Chen, Ph.D. thesis, Fine Grained Zirconia-Metal Dual Phase Composites: Oxygen Permeation and Electrical Properties, University of Twente, The Netherlands,1994.
    [63]V. V. Kharton, A. V. Kovalevsky, A. P. Viskup, F. M. Figueiredo, A. A. Yaremchenko, E. N. Naumovich, F. M. B. Marques, Oxygen permeability of Ce0.8Gd0.2O2-δ-La0.8Sr0.3MnO3-δ composite membranes, J. Electrochem Soc.,147 (2000)2814.
    [64]J. X. Yi, Y. B. Zuo, W. Liu, L. Winnubst, C. S. Chen, Oxygen permeation through a Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ membrane dual-phase composite membrane, J. Alloys Comp.,408 (2006) 1084
    [65]B. Wang, J. X. Yi, L. Winnubst, C. S. Chen, Stability and oxygen permeation behavior of Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ composite membrane under large partial pressure gradients, Journal of Membrane Science,280 (2006) 849
    [66]J. J. Liu, T. Liu, W. D. Wang, J. F. Gao, C. S. Chen, Stable Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ Hollow Fiber Membrane Targeting Chemical Reactor Applications, J.Membrane Sci.,389 (2012) 435.
    [67]A. V.Kovalevsky, V.V.Kharton, V.N. Tikhonovich, E.N. Naumovich, A. A. Tonoyan, O. P. Reut, L. S. Boginsky, Oxygen permeation through Sr(Ln)CoO3-δ(Ln= La, Nd,Sm, Gd) ceramic membranes, Mater. Sci.Eng. B,52 (1998)105-116.
    [68]J. W. Zhai, X. Yao, L. Y. Zhang, and B. Shen, Dielectric nonlinear characteristics of Ba(Zr0.35Ti0.65)O3 thin films grown by a sol-gel process, Appl. Phys. Lett,84, (2004)3136
    [69]V. V. Kharton, A. P. Viskup, E. N. Naumovich, N. M. Lapchuk, Mixed electronic and ionic conductivity of LaCo(M)O3-δ(M= Ga, Cr, Fe or Ni). I. Oxygen transport in perovskites LaCoO3-δ-LaGaO3-δ, Solid State Ionics,104 (1997)67
    [70]J. C. C. Chen, H. Hen, R. Prasad, G. Whichard, Plasma sprayed oxygeb transport membrane coating, US patent 6 638575(2003)
    [71]H. J. M.Bouwmeester, H. Kruidhof, A. J. Burggraaf, Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed conducting oxides, Solid State Ionics,72(1994)185
    [72]O. B. Uchler, J. M. Serra, W. A. Meulenberg, D. Sebold, H. P. Buchkremer, preparation and properties of thin La1-xSrxCo1-yO3-δ perovskitic membranes supported on tailored ceramic substrates, Solid State Ionics,178(2007)91
    [73]H. Fang, C. L. Ren, Y. G. Liu, D. T. Lu, L. Winnubst, C. S. Chen, Phase-inversion tape casting and synchrotron-radiation computed tomography ananlysisi of porous alumina, Journal of the European Ceramic Society, 33(2013)2049
    [74]S. Loeb, S. Sourirajan, High Flow porous membranes for separating water from saline solutions[P], USP:3 133 132,1964-05-12.
    [75]左丹英.溶液相转化法制PVDF微孔膜过程中的结构控制及其性能研究[D].浙江大学博士论文,2005.
    [76]R. E. Kesting, Cellulose and cellulose derivatives, [M], New York: Wiley-Interscience,1971.
    [77]F. Altens, Phase separation phenomena in cellulose acetate solutions in relation to asymmetric membrane formation. PHD dissertation, Twente University of Technology Netherlands,1982.
    [78]陈立新,沈新元,相转换法的湿法成膜机理,膜科学与技术,17,(1997)1-6
    [79]C. A. Smolder, A. J. Reuvers, R. M. Boom, I. M. Wienk, Microstructures in phase-inversion membranes part I:Formation of macrovoids, J.Membrane Sci, 73, (1992) 259
    [80]Z. Li, C. Jiang, Investigation of the dynamics of poly (ether sulfone) membrane formation by immersion precipitation, Journal of Polymer Science Part B: Polymer Physics,43 (2005),498
    [81]Luyten, J.et al. preparation of LaSrCoFeO3-x membranes. Solid State Ionics 135,(2000)637
    [82]H. H. Wang, S. Werth, T. Schiestel, J. Caro, Perovskite hollow fiber membranes for the production of oxygen-enriched air, Angew. Chem. Int. Ed.,44 (2005) 6906.
    [83]J. Caro, H. H. Wang, C. Tablet, A. Kleinert, A. Feldhoff, T. Schiestel, M. Kilgus, P. Kolsch, S. Werth, Evaluation of perovskites in hollow fiber and disk geometry in catalytic membrane reactors and in oxygen separations, Catalysis Today,118 (2006) 128.
    [84]H. Q. Jiang, H. H. Wang, F. Y. Liang, S. Werth, T. Schiestel, J. Caro, Direct decomposition of nitrous oxide to nitrogen by in situ oxygen removal with a perovskite membrane, Angew. Chem. Int. Ed,48 (2009) 1.
    [85]X. Y. Tan, K. Li, Oxidative coupling of methane in a perovskite hollow fiber membrane reactor, Ind. Eng. Chem. Res.,45 (2006) 142.
    [86]A. Thursfield, I. S. Metcalfe, Methane oxidation in a mixed ionic-electronic conducting ceramic hollow fiber reactor module, J Solid State Electrochem, 2005.
    [87]A. Kleinert, A. Feldhoff, T. Schiestel, J. Caro, Novel hollow fiber membrane reactor for the partial oxidation of methane, Catalysis Today 118 (2006) 44.
    [88]H. H. Wang, C. Tablet, T. Schiestel, J. Caro, Hollow fiber membrane reactors for the oxidative activation of ethane, Catalysis Today,118 (2006) 98.
    [89]X. Y. Tan, K. Li, A. Thursfield, I. S. Metcalfe, Oxyfuel combustion using a catalytic ceramic membrane reactor, Catalysis Today,131 (2008) 292
    [90]H. H. Wang, C. Tablet, T. Schiestel, S. Werth, J. Caro, Partial oxidation of methane to syngas in a perovskite hollow fiber membrane reactor, Catalysis Communications,7 (2006) 907.
    [91]W. Li, J.J. Liu, C. S. Chen, Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation, Journal of Membrane Science,340 (2009) 266-271
    [92]J. Banhart, Manufacture, characterization and application of cellular metals and metal foams, Progress in Materials Science,2001,46:559-632.
    [93]任刚,许如清,韩立等,利用扫描电镜和原子力显微镜测量纳米微孔阳极氧化铝膜,物理,2003,3(1):36-41.
    [94]L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. J. Blandin, J. Y. Buffiere, W. Ludwig, E. Boller, D. Bellet, C. Josserond, X-ray micro-tomography an attractive characterisation technique in materials science, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,200(2003) 273
    [95]Y. C. Li, F. Xu, X. F. Hu, H. Y. Qu, Z. Zhang, T. Q. Xiao, The development of a novel SR-CT technique-originated equipment for microwave sintering, Procedia Engineering,7(2010) 72
    [96]H. Y. Qu, F. Xu, X. F. Hu, H. Miao, T. Q. Xiao, Z. Zhang, SR-CT filter-back-projection algorithm and application in detection of microstructure evolution, Procedia Engineering,7(2010) 63
    [97]F. Xu, X. F. Hu, Y. Niu, J. H. Zhao, Q. X. Yuan, In situ observation of grain evolution in ceramic sintering by SR-CT technique, Transactions of Nonferrous Metals Society of China,19(2009) 684.
    [98]Y. C. Li, F. Xu, X. F. Hu, H. Y. Qu, H. Miao, Z. Zhang, T. Q. Xiao, In situ investigation of SiC powder's microwave sintering by SR-CT technique, SCIENCE CHINA Technological Sciences,54(2011) 1382
    [99]吴问全,李伟,李文杰,关勇,杨云昊,周杰,俞希跃,宋香霞,田扬超,陈初升,基于Nano-CT技术研究多孔陶瓷材料的三维结构,核技术,2010,33:241-245.
    [100]G. T. Herman, Image reconstructed from projections:The fundamentals of computerized Tomography, New York-London, Academic Press,1980
    [101]E. Maire, A. Fazekas, L. Salvo, R. Dendievel, S. Youssef, P. Cloetens, J. M. Letang, X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems, Composites Science and Technology, 63(2003)2431
    [102]S. H. Lau, W. K. S. Chiu, F. Garzon, H. Y. Chang, A. Tkachuk, M. Feser, W. B. Yun, Non invasive, multiscale 3D X-Ray characterization of porous functional composites and membranes, with resolution from MM to sub 50 NM, Journal of Physics:Conference Series 152(2009)12059
    [1]Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature,431 (2004) 170
    [2]L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M.L. Liu, Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ, Science,326 (2009) 126
    [3]Q.X. Fu, F. Tietz, D. Stover, Lao.4Sro.6Ti1-xMnxP3-δ perovskites as anode materials for solid oxide fuel cells, J Electrochem Soc,153 (2006) D74-D83.
    [4]S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nat Mater,2 (2003) 320
    [5]S.M. Plint, P.A. Connor, S. Tao, J.T.S. Irvine, Electronic transport in the novel SOFC anode material La1-xSrxCr0.5Mno.5O3-δ, Solid State Ionics,177 (2006) 2005
    [6]S.W. Tao, J.T.S. Irvine, Synthesis and characterization of (Lao.75Sro.25)Cro.5Mno.503-s, a redox-stable, efficient perovskite anode for SOFCs, J Electrochem Soc,151 (2004) A252.
    [7]S.W. Tao, J.T.S. Irvine, Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-δ in relation to its potential as a solid oxide fuel cell anode material, Chem Mater,16 (2004) 4116
    [8]P.N. Dyer, R.E. Richards, S.L. Russek, D.M. Taylor, Ion transport membrane technology for oxygen separation and syngas production, Solid State Ionics,134 (2000)21
    [9]V.V. Kharton, A.A. Yaremchenko, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, P.F. Kerko, Perovskite-type oxides for high-temperature oxygen separation membranes, J Membrane Sci,163 (1999) 307
    [10]T. Schiestel, M. Kilgus, S. Peter, K.J. Caspary, H. Wang, J. Caro, Hollow fibre perovskite membranes for oxygen separation, J Membrane Sci,258 (2005) 1
    [11]H. Arai, T. Yamada, K. Eguchi, T. Seiyama, Catalytic Combustion of Methane over Various Perovskite-Type Oxides, Appl Catal,26 (1986) 265
    [12]J. Shu, S. Kaliaguine, Well-dispersed perovskite-type oxidation catalysts, Appl Catal B-Environ,16 (1998) L303
    [13]J.J. Liu, T. Liu, W.D. Wang, J.F. Gao, C.S. Chen, Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3.5 dual-phase composite hollow fiber membrane targeting chemical reactor applications, J Membrane Sci,389 (2012) 435
    [14]J.J. Liu, S.Q. Zhang, W.D. Wang, J.F. Gao, W. Liu, C.S. Chen, Partial oxidation of methane in a Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.503-δ hollow fiber membrane reactor targeting solid oxide fuel cell applications, J Power Sources,217 (2012) 287
    [15]H.U. Anderson, C.C. Chen, L.W. Tai, M.M. Nasrallah, Proceedings of the 2nd international symposium on ionic and mixed conducting oxide ceramics, The Electrochemical Society, Pennington, (1994) 376.
    [16]C.S. Chen, W. Liu, S. Xie, G.G. Zhang, H. Liu, G.Y. Meng, D.K. Peng, A novel intermediate-temperature oxygen-permeable membrane based on the high-T-c superconductor Bi2Sr2CaCu2O8, Adv Mater,12 (2000) 1132
    [17]J.O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi, B. Sundman, THERMO-CALC & DICTRA, computational tools for materials science, Calphad,26 (2002) 273
    [18]E. Povoden-Karadeniz, M. Chen, T. Ivas, A.N. Grundy, L.J. Gauckler, Thermodynamic modeling of La2O3-SrO-Mn2O3-Cr2O3 for solid oxide fuel cell applications, J Mater Res,27 (2012) 1915
    [19]K. Wu, S. Xie, G.S. Jiang, W. Liu, C.S. Chen, Oxygen permeation through (Bi2O3)(0.74)(SrO)(0.26)-Ag (40% v/o) composite, J Membrane Sci,188 (2001) 189
    [20]C.S. Chen, Z.P. Zhang, G.S. Jiang, C.G. Fan, W. Liu, H.J.M. Bouwmeester, Oxygen permeation through La0.4Sr0.6Co0.2Fe0.8O3-δ membrane, Chem Mater,13 (2001) 2797
    [21]Y.X. Li, Y. Wang, W. Doherty, K. Xie, Y.C. Wu, Perovskite Chromates Cathode with Exsolved Iron Nanoparticles for Direct High-Temperature Steam Electrolysis, Appl. Mater. Interfaces,5 (2013) 8553.
    [22]S.J. Xu, W.J. Thomson, Oxygen permeation rates through ion-conducting perovskite membranes, Chem Eng Sci,54 (1999) 3839
    [23]P.Y. Zeng, Z.H. Chen, W. Zhou, H.X. Gu, Z.P. Shao, S.M. Liu, Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite as oxygen semi-permeable membrane, J Membrane Sci,291 (2007) 148
    [24]A. Martin, Materials in thermodynamic potential gradients, J Chem Thermodyn, 35 (2003)1291
    [25]B. Wang, B. Zydorczak, Z.T. Wu, K. Li, Stabilities of La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen separation membranes-Effects of kinetic demixing/decomposition and impurity segregation, J Membrane Sci,344 (2009) 101
    [1]U. Balachandran, et al. Dense ceramic membranes for partial oxidation of methane to syngas, Appl. Catal. A:General 133 (1995) 19.
    [2]U. Balatrandran, J. T. Duesk, P. S. Maiya, B. Ma, R. L. Mieville, M. S. Kleefisch, C. A. Udovich, Ceramic membrane reactor for converting methane to syngas, Catal. Today 36 (1997) 265.
    [3]S. Chen, et al. Conversion of methane to syngas by a membrane-based oxidation-reforming process, Angew. Chem. Int. Ed.42 (2003) 5196
    [4]H. H. Wang, Y. Cong, W. S. Yang, Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.5Fe0.2O3-delta membrane reactor, catalysis Today,82(2003)157
    [5]A. Kleinert, A. Feldhoff, T. Schiestel, J. G. Caro, Novel hollow fibre membrane reactor for the partial oxidation of methane, Catalysis Today,118(2005)44
    [6]H. H. Wang, C. Tablet, T. Schiestel, S. Werth, J. G. Caro, Partial oxidation of methane to syngas in a perovskite hollow fiber membrane reactor, Catalysis Communications 7(2006)907
    [7]Y. Teraoka, T. Fukuda, N. Miura, N. Yamazoe, Development of oxygen semipermeable membrane using mixed conductive perovskite-type oxides (part 2), J. Ceram. Soc. Jpn. Int. Ed.97 (1989) 523
    [8]X.F. Chang, C. Zhang,W.Q. Jin, N.P. Xu, Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes, J. Membr. Sci.285 (2006) 232.
    [9]By Ken Watenabe, Masayoshi Yuasa, Tetsuya Kida, Yasutake Teraoka, Noboru Yamazoe, and Kengo Shimanoe; High-Performance Oxygen-Permeable Membranes with an Asymmetric Structure Using Ba0.95La0.05FeO3-δ Perovskite-Type Oxide; Adv. Mater.22 (2010) 2367
    [10]Xianfeng Chang, Chun Zhang, Wanqin Jin, Nanping Xu; Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes; Journal of Membrane Science.285 (2006) 232
    [11]V. Kozhukharov,M.Machkova, N. Brashkova; Sol-gel route and characterization of supported perovskites for membrane application; J. Sol Gel Sci. Technol.26 (2003) 753
    [12]Wanqin Jin, Shiguang Li, Pei Huang, Nanping Xu, Jun Shi; Preparation of an asymmetric perovskite-type membrane and its oxygen permeability; Journal of Membrane Science 185 (2001) 237
    [13]M.-L. Fontaine, J.B. Smith, Y. Larring, R. Bredesen; On the preparation of asymmetric CaTi0.9Fe0.1O3-δ membranes by tape-casting and co-sintering process; Journal of Membrane Science 326 (2009) 310
    [14]G.N.Howatt, R.G.B reckenridge, J.M.Brownlow, Fabrication of Thin Ceramic Sheets for. Capacitors, J.Am.Ceram.Soc.30(1947) 237
    [15]C. Badini, P. Fino, A. Ortona, C. Amelio, High temperature oxidation of multilayered SiC processed by tape casting and sintering, Journal of the European Ceramic Society 22(2002)2071
    [16]Jones, F.G.E. and J.T.S. Irvine, Preparation of Thin Films Using the Tape-Casting Process for Use in the Solid Oxide Fuel Cell. Ionics,8 (2002) 339
    [17]H. Schmidt, et al., Ceramic nanoparticle technologies for ceramics and composites. Ceramic Nanomaterials and Nanotechnology Ii,148(2004) 173
    [18]S.H.Ding, et al., Tapped multilayer bandpass filter on Bi-based ceramics. Ferroelectrics,327(2005) 45
    [19]M.P. Albano, and L.B. Garrido, Drying of yttria stabilized zirconia cast-tapes: Effect of aging time and surfactant addition on cracking behavior. Materials Science and Engineering a-Structural Materials Properties Micro structure and Processing,45(2007).121
    [20]Z.Z.Yi, et al., Preparation and Performance of Ni-YSZ/YSZ Co-ceramic Using Multiple Gel-tape Casting. High-Performance Ceramics Vii, Pts 1 and 2, 512-515(2012)1555
    [21]Hong Fang, Chunlei Ren, Yaoge Liu, Detang Lu, Louis Winnubst, Chusheng Chen; Phase-inversion tape casting and synchrotron-radiation computed tomography ananlysisi of porous alumina, Journal of the European Ceramic Society 33 (2013) 2049
    [22]Otsu. N, A Threshoold Selection Method from Gray-Level Histograms, IEEE. Trans SMC,9(1979)62
    [23]J.X. Yi, S.J. Feng, Y.B. Zuo, W. Liu, C.S. Chen, Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3-δ in a CO2- and H2O-containing atmosphere, Chem.Mater.17 (2005) 5856.
    [24]L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. J. Blandin, J.Y. Buffiere, W. Ludwig, E. Boller, D. Bellet, C. Josserond, X-ray micro-tomography an attractive characterisation technique in materials science, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,200:273-286.
    [25]Y. C. Li, F. Xu, X. F. Hu, H. Y. Qu, Z. Zhang, T. Q. Xiao, The development of a novel SR-CT technique-originated equipment for microwave sintering, Procedia Engineering,7 (2010) 72
    [26]H. Y. Qu, F. Xu, X. F. Hu, H. Miao, T. Q. Xiao, Z. Zhang, SR-CTfilter-back-projectionalgorithm and application in detection of microstructureevolution, Procedia Engineering,7 (2010) 63
    [27]F. Xu, X. F. Hu, Y. Niu, J. H. Zhao, Q. X. Yuan, In situ observation of grain evolution in ceramic sintering by SR-CT technique, Transactions of Nonferrous Metals Society of China,19(2009) 684
    [28]Y. C. Li, F. Xu, X. F. Hu, H. Y. Qu, H. Miao, Z. Zhang, T. Q. Xiao, In situ investigation of SiC powder's microwave sintering by SR-CT technique, SCIENCE CHINA Technological Sciences,54 (2011) 1382
    [29]B. Wang, D. C. Zhu, M. C. Zhan, W. Liu, C. S. Chen, Combustion of Coal-derived CO with membrane-supplied oxygen enabling CO2 Capture, AIChE Journal 53 (2007) 2481
    [30]J. J, Liu, S. Q. Zhang, W. D. Wang, J. F. Gao, W. Liu, C. S. Chen, Partial oxidation of methane in a Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-deita hollow fiber membrane reactor targeting solid oxide fuel cell applications, Journal of Power Sources,217 (2012) 287
    [1]S. Chen, et al. Conversion of methane to syngas by a membrane-based oxidation-reforming process, Angew. Chem. Int. Ed.42 (2003) 5196.
    [2]U. Balachandran, et al. Dense ceramic membranes for partial oxidation of methane to syngas, Appl. Catal. A:General 133 (1995) 19
    [3]Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells, Science 312 (2006) 254
    [4]B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid state electrochemical reactors, Solid State Ionics 28-30 [part 2] (1988) 1547
    [5]J.H. Koh, Y.S. Yoo, J.W. Park, H.C. Lim, Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel, Solid State Ionics 149 (2002) 157
    [6]T. Kim, G. Liu, M. Boaro, J.M. Vohs, R.J. Gorte, O.H. Al-Madhi, B.O. Dabbousi, A study of carbon formation and prevention in hydrocarbon-fueled SOFC, Journal of Power Sources 155 (2006) 231.
    [7]S. Mclntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chem. Rev. 104(2004)4845
    [8]J.-H. Koh, B.-S. Kang, H.C. Lim, Y.-S. Yoo, Thermodynamic analysis of carbon deposition and electrochemical oxidation of methane for SOFC anodes, Electrochem. Solid-State Lett.4 (2001) A12
    [9]J.P. Trembly, R.S. Gemmen, D.J. Bayless, The effect of coal syngas containing AsH3 on the performance of SOFCs:Investigations into the effect of operational temperature, current density and AsH3 concentration, Journal of Power Sources 171(2007)818
    [10]T. Ostrowski, A. Giroir-Fendler, C. Mirodatos, L. Mleczko, Comparative study of the catalytic partial oxidation of methane to synthesis gas in fixed-bed and fluidized-bed membrane reactors:Part I:A modeling approach, Catal. Today 40 (1998)181.
    [11]W. Feng, P. Ji, D. Zheng, T. Tan, J. de Swaan Arons, Simulation and thermodynamic analysis of an integrated process with a two-membrane catalytic partial oxidation (CPO) reactor for producing pure hydrogen, Ind. Eng. Chem. Res.44(2005)9191.
    [12]Y.H. Hu, E. Ruckenstein, Catalyst temperature oscillations during partial oxidation of methane, Ind. Eng. Chem. Res.37 (1998) 2333.
    [13]K.-J. Marschall, L. Mleczko, Short-contact-time reactor for catalytic partial oxidation of methane, Ind. Eng. Chem. Res.38 (1999) 1813.
    [14]Y. Ji, W. Li, H. Xu, Y. Chen, Catalytic partial oxidation of methane to synthesis gas over Ni/[gamma]-Al2O3 catalyst in a fluidized-bed, Appl. Catal. A 213 (2001) 25.
    [15]Y. Ji, W. Li, H. Xu, Y. Chen, A study of carbon deposition on catalysts during the catalytic partial oxidation of methane to syngas in a fluidized bed, React. Kinet. Catal. Lett.73 (2001) 27.
    [16]S. Tang, J. Lin, K.L. Tan, Pulse-MS studies on CH4/CD4 isotope effect in the partial oxidation of methane to syngas over Pt/a-Al2O3, Catal. Lett.55 (1998) 83.
    [17]L.V. Mattos, E.R. de Oliveira, P.D. Resende, F.B. Noronha, F.B. Passos, Partial oxidation of methane on Pt/Ce-ZrO2 catalysts, Catal. Today 77 (2002) 245.
    [18]P. Pantu, G.R. Gavalas, Methane partial oxidation on Pt/CeO2 and Pt/Al2O3 catalysts, Appl. Catal. A 223 (2002) 253.
    [19]A. Beretta, P. Forzatti, Partial oxidation of light paraffins to synthesis gas in short contact-time reactors, Chem. Eng. J.99 (2004) 219.
    [20]P.P. Silva, F. de, A. Silva, A.G. Lobo, H.P. de Souza, F.B. Passos, C.E. Hori, L.V. Mattos, F.B. Noronha, Synthesis gas production by partial oxidation of methane on Pt/Al2O3, Pt/Ce-ZrO2 and Pt/Ce-ZrO2/Al2O3 catalysts, Stud. Surf. Sci. Catal. 147 (2004) 157.
    [21]S. Rabe, T.-B. Troung, F. Vogel, Low temperature catalytic partial oxidation of methane for gas-to-liquids applications, Appl. Catal. A 292 (2005) 177.
    [22]P.P. Silva, F.A. Silva, L.S. Portela, L.V. Mattos, F.B. Noronha, C.E. Hori, Effect of Ce/Zr ratio on the performance of Pt/CeZrO2/Al2O3 catalysts for methane partial oxidation, Catal. Today 107/108 (2005) 734.
    [23]A. Bourane, C. Cao, K.L. Hohn, In situ infrared study of the catalytic ignition of methane on Pt/Al2O3, Appl. Catal. A 302 (2006) 224.
    [24]F.B. Passos, E.R. Oliveira, L.V. Mattos, F.B. Noronha, Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts, Catal. Lett. 110(2006) 161.
    [25]B. Li, K. Maruyama, M. Nurunnabi, K. Kunimori, K. Tomishige, Temperature profiles of alumina-supported noble metal catalysts in autothermal reforming of methane, Appl. Catal. A 275 (2004) 157.
    [26]P.D.F. Vernon, M.L.H. Green, A.K. Cheetham, A.T. Ashcroft, Partial oxidation of methane to synthesis gas, Catal. Lett.6 (1990) 181.
    [27]P.D.F. Vernon, M.L.H. Green, A.K. Cheetham, A.T. Ashcroft, Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion, Catal. Today 13 (1992) 417.
    [28]J.B. Claridge, M.L.H. Green, S.C. Tsang, A.P.E. York, A.T. Ashcroft, P.D. Battle, A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas, Catal. Lett.22 (1993) 299.
    [29]Y. Boucouvalas, Z. Zhang, X.E. Verykios, Partial oxidation of methane to synthesis gas via the direct reaction scheme over Ru/TiO2 catalyst, Catal. Lett.40 (1996)189.
    [30]J. Boucouvalas, A.M. Efstathiou, Z.L. Zhang, X.E. Verykios, Stud. Surf. Sci. Catal.107(1997)435.
    [31]I. Balient, A. Miyazaki, K.-i. Aika, The relevance of Ru nanoparticles morphology and oxidation state to the partial oxidation of methane, J. Catal.220 (2003) 74.
    [32]R. Lanza, P. Canu, Partial oxidation of methane over supported ruthenium catalysts, Appl. Catal. A 325 (2007) 57.
    [33]A. Slagtern, H.M. Swaan, U. Olsbye, I.M. Dahl, C. Mirodatos, Catalytic partial oxidation of methane over Ni-, Co-and Fe-based catalysts, Catal. Today 46 (1998) 107.
    [34]M.S. Va'zquez, A.R. Rojas, V. Collins-Marti'nez, A.L. Ortiz, Study of the stabilizing effect of Al2O3 and ZrO2 in mixed metal oxides of Cu for hydrogen production through REDOX cycles, Catal. Today 107/108 (2005) 831.
    [35]C.T. Au, H.Y. Wang, H.L. Wan, Methane Dissociation and Syngas Formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au:A Theoretical Study, J. Catal.158 (1996) 343.
    [36]K. Huszar, G. Racz, G. Szekely, Investigation of the partial catalytic oxidation of methane, conversion rates in a single-grain reactor, Acta Chim. Acad. Sci. Hung.70(1971)287
    [37]G.R. Gavalas, C. Phichitkul, G.E. Voecks, Structure and activity of NiO/[alpha]-A12O3 and NiO/ZrO2 calcined at high temperatures:I. Structure, J. Catal.88(1984)54.
    [38]G.R. Gavalas, C. Phichitkul, G.E. Voecks, Structure and activity of NiO/[alpha]-Al203 and NiO/ZrO2 calcined at high temperatures:II. Activity in the fuel-rich oxidation of methane, J. Catal.88 (1984) 65.
    [39]D. Dissanayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford, Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/Al2O3 catalyst, J. Catal. 132(1991) 117
    [40]K.O. Christensen, D. Chen, R. Lodeng, A. Holmen, Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming, Appl. Catal. A 314 (2006) 9.
    [41]F. Arena, F. Frusteri, A. Parmaliana, L. Plyasova, A.N. Shmakov, Effect of calcination on the structure of Ni/MgO catalyst:an X-ray diffraction study, J. Chem. Soc.Faraday Trans.92 (1996) 469.
    [42]N. Nichio, M. Casella, O. Ferretti, M. Gonza'lez, C. Nicot, B. Moraweck, R. Frety, Partial oxidation of methane to synthesis gas. Behaviour of different Ni supported catalysts, Catal. Lett.42 (1996) 65
    [43]H. Morioka, Y. Shimizu, M. Sukenobu, K. Ito, E. Tanabe, T. Shishido, K. Takehira, Partial oxidation of methane to synthesis gas over supported Ni catalysts prepared from Ni-Ca/Al-layered double hydroxide, Appl. Catal. A 215 (2001) 11.
    [44]T. Shishido, M. Sukenobu, H. Morioka, M. Kondo, Y. Wang, K. Takaki, K. Takehira, Partial oxidation of methane over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-A1 hydrotalcite-like precursors, Appl. Catal. A 223 (2002) 35.
    [45]S. Tang, J. Lin, K.L. Tan, Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2, Catal. Lett.51 (1998) 169.
    [46]A.M. Diskin, R.H. Cunningham, R.M. Ormerod, The oxidative chemistry of methane over supported nickel catalysts, Catal. Today 46 (1998) 147.
    [47]J. Requies, M.A. Cabrero, V.L. Barrio, J.F. Cambra, P.L. Arias, M. Ojeda, J.L.G. Fierro, Support effect in supported Ni catalysts on their performance for methane partial oxidation, Appl. Catal. A 289 (2005) 214.
    [48]Y.H. Hu, E. Ruckenstein, Pulse-MS study of the partial oxidation of methane over Ni/La2O3 catalyst, Catal. Lett.34 (1995) 41.
    [49]C.T. Au, Y.H. Hu, H.L. Wan, Methane activation over unsupported and La2O3-supported copper and nickel catalysts, Catal. Lett.36 (1996) 159.
    [50]Y. Zhang, Z. Li, X. Wen, Y. Liu, Partial oxidation of methane over Ni/Ce-Ti-O catalysts, Chem. Eng. J.121 (2006) 115.
    [51]Q.G. Yan, W.Z. Weng, H.L. Wan, H. Toghiani, R.K. Toghiani, C.U. Pittman Jr., Activation of methane to syngas over a Ni/TiO2 catalyst, Appl. Catal. A 239 (2003)43.
    [52]Ogbemi O. Omatete, Mark A. Janney & Stephen D. Nunn, Gelcasting:From Laboratory Development Toward Industrial Production, J. Eur. Ceram. Soc.17 (1997)407
    [53]Mark A. Janney, Ogbemi O. Omatete, Claudia A. Walls, Stephen D. Nunn, Randy J. Ogle, and Gary Westmoreland, Development of Low-Toxicity Gelcasting Systems, J. Am. Ceram. Soc.,81 (1998) 581
    [54]R. GilissenU, J.P. Erauwl, A. Smolders, E. Vanswijgenhoven, J. Luyten, Gelcasting, a near net shape technique, Materials and Design,21 (2000) 251
    [1]J. Tennant, S. Maley, D. Bennent, Development of Ion Transport Membrane (ITM) Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems, FC26-98FT40343, August 2013
    [2]Y. Teraoka, H. M. Zhang, S. Funrukawa, Oxygen permeation through perovskite-type oxides, Chem. Lett.167 (1985) 1743.
    [3]Y. Teraoka, T. Nobunaga, N. Yamazoe, Effect of cation substitution on the oxygen semipermeability of perovskite oxides, Chem. Lett. (1988) 503.
    [4]Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics,48 (1991) 207.
    [5]Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, G. Xiong, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane, J. Membr. Sci.,172(2000)177.
    [6]H. J. M. Bouwmeester, H. Kruidhof, A. J. Burggraaf, P. J. Gellings, Oxygen semipermeability of erbia-stabilized bismuth oxide, Solid State Ionics,53-56 (1992)460.
    [7]L. Qiu, T. H. Lee, L.-M. Liu, Y. L. Yang and A.J. Jacobson, Oxygen permeation studies of SrCo0.8Fe0.2O3.5, Solid State Ionics,76 (1995) 321.
    [8]C. S. Chen, S. Ran, W. Liu, P. H. Yang, D. K. Peng, H. J. M. Bouwmeester, YBa2Cu3O6+δ as an oxygen separation membrane, Angew. Chem. Int. Ed.40 (2001) 784.
    [9]A.V. Kovalevsky, V.V. Kharton, V.N. Tikhonovich, E.N. Naumovich, A.A. Tonoyan, O.P. Reut, L.S. Boginsky, Oxygen permeation through Sr(Ln)CoO3-δ(Ln=La, Nd,Sm, Gd) ceramic membranes, Mater. Sci. Eng. B 52 (1998)105
    [10]V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, F.M. Figueiredo, J.R. Frade, A.A. Yaremchenko, E.N. Naumovich, Faradaic efficiency and oxygen permeability of Sr0.97Ti0.6oFe0.40O3-δ1, Solid State Ionics 128 (2000) 117
    [11]S.W. Li, Y. Cong, L.Q. Fang, W. Yang, L.W. Lin, J. Meng, Y.F. Ren, Oxygen permeating properties of the mixed conducting membrane without cobalt, Mater. Res.33 (1998) 183
    [12]V.V. Kharton, A.V. Kovalevsky, V.N. Tikhonovich, E.N. Naumovich, A.P. Viskup, Mixed electronic and ionic conductivity of LaCo(M)O3-δ(M= Ga, Cr, Fe or Ni). II. Oxygen permeation through Cr-and Ni-substituted LaCoO3, Solid State Ionics 110 (1998) 53
    [13]V.V. Kharton, A.P. Viskup, E.N. Naumovich, N.M. Lapchuk, Mixed electronic and ionic conductivity of LaCo(M)O3-δ(M= Ga, Cr, Fe or Ni). I. Oxygen transport inperovskites LaCoO3-δ-LaGaO3-δ, Solid State Ionics 104 (1997) 67
    [14]V.V. Kharton, A.P. Viskup, E.N. Naumovich, V.N. Tikhonovich, Oxygen permeability of LaFe1-xNixO3-δsolid solutions, Mater. Res. Bull.34 (1999) 1311.
    [15]Wei Li, Jian-Jun Liu, Chu-Sheng Chen, Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation, Journal of Membrane Science 340 (2009) 266.
    [16]C.S. Chen, B.A. Boukamp, H.J.M. Bouwmeester, G.Z. Cao, H. Kruidhof, A.J.A.Winnubst, A.J. Burggraaf, Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites, Solid State Ionics 76(1995) 23.
    [17]J.X. Yi, Y.B. Zuo, W. Liu, L. Winnubst, C.S. Chen, Oxygen permeation through a Ce0.8Sm0.2O1.9-La0.8Sr0.2CrO3-δ dual-phase composite membrane, J. Membr. Sci.280 (2006) 849.
    [18]H. Takamura, H. Sugai, M. Watanabe, T. Kasahara, A. Kamegawa, M. Okada, Oxygen permeation properties and surface modification of acceptor-doped CeO2/MnFe2O4 composites, J. Electroceram.17 (2006) 741.
    [19]X.F. Chang, C. Zhang,W.Q. Jin, N.P. Xu, Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes, J. Membr. Sci.285 (2006) 232.
    [20]By Ken Watenabe, Masayoshi Yuasa, Tetsuya Kida, Yasutake Teraoka, Noboru Yamazoe, and Kengo Shimanoe; High-Performance Oxygen-Permeable Membranes with an Asymmetric Structure Using Bao.95La0.05FeO3-δ Perovskite-Type Oxide; Adv. Mater.22 (2010) 2367
    [21]Xianfeng Chang, Chun Zhang, Wanqin Jin, Nanping Xu; Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes; Journal of Membrane Science.285 (2006) 232
    [22]V. Kozhukharov,M.Machkova, N. Brashkova; Sol-gel route and characterization of supported perovskites for membrane application; J. Sol Gel Sci. Technol.26 (2003) 753
    [23]Wanqin Jin, Shiguang Li, Pei Huang, Nanping Xu, Jun Shi; Preparation of an asymmetric perovskite-type membrane and its oxygen permeability; Journal of Membrane Science 185 (2001) 237
    [24]M.-L. Fontaine, J.B. Smith, Y. Larring, R. Bredesen; On the preparation of asymmetric CaTi0.9Fe0.1O3-δ membranes by tape-casting and co-sintering process; Journal of Membrane Science 326 (2009) 310
    [25]Hong Fang, Chunlei Ren, Yaoge Liu, Detang Lu, Louis Winnubst, Chusheng Chen; Phase-inversion tape casting and synchrotron-radiation computed tomography ananlysisi of porous alumina, Journal of the European Ceramic Society 33 (2013) 2049
    [26]Otsu. N, A Threshoold Selection Method from Gray-Level Histograms, IEEE. Trans SMC,9 (1979) 62
    [27]J.X. Yi, S.J. Feng, Y.B. Zuo, W. Liu, C.S. Chen, Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3-δ in a CO2- and H2O-containing atmosphere, Chem.Mater.17 (2005) 5856
    [28]Y.S. Lin, A.J. Burggraaf, Experimental studies on pore-size change of porous ceramic membranes after modification, J. Membr. Sci.79 (1993) 65
    [29]X. F. Chang, C. Zhang, X. L. Dong, C. Yang,W. Q. Jin, N. P. Xu, Experimental and modeling study of oxygen permeation modes for asymmetric mixed-conducting membranes, Journal of Membrane Science 322 (2008) 429
    [30]Y. Vural, L. Ma, D. B. Ingham, M. Pourkashanian, Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes, Journal of Power Sources 195 (2010)4893
    [31]C. A. Smolders, a. J. Reuvers, R. M. Boom and I. M. Wienk, Microstructures in phase-inversion membranes Part Ⅰ. Formation of macrovoids, Journal of Membrane Science 73 (1992) 259
    [32]B. Wang, Z.P. Lai, Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions, J. Membr. Sci,405-406(2012) 275
    [1]Y. Teraoka, H. M. Zhang, S. Funrukawa, Oxygen permeation through perovskite-type oxides, Chem. Lett.167 (1985) 1743.
    [2]Y. Teraoka, T. Nobunaga, N. Yamazoe, Effect of cation substitution on the oxygen semipermeability of perovskite oxides, Chem. Lett. (1988) 503.
    [3]Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability, Solid State Ionics 48 (1991) 207.
    [4]Y. Teraoka, H. M. Zhang, K. Okamoto, N. Yamazoe, Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ, Mater. Res. Bull.23 (1988) 51.
    [5]L. Qiu, T.H. Lee, L.-M. Liu, Y.L. Yang and A.J. Jacobson, Oxygen permeation studies of SrCo0.8Fe0.2O3-d, Solid State Ionics 76 (1995) 321
    [6]Z. Shao, W. Yang, Y. Cong, H. Dong, J. Tong, G. Xiong, Investigation of the permeation behavior and stability of a Bao.5Sro.5Co0.8Fe0.203-δ oxygen membrane, J. Membr. Sci.172 (2000) 177.
    [7]C.S. Chen, B.A. Boukamp, H.J.M. Bouwmeester, G.Z. Cao, H. Kruidhof, A.J.A.Winnubst, A.J. Burggraaf, Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites, Solid State Ionics 76(1995) 23.
    [8]J.X. Yi, Y.B. Zuo, W. Liu, L. Winnubst, C.S. Chen, Oxygen permeation through a Ce0.8Sm0.201.9-La0.8Sr0.2Cr03-δ dual-phase composite membrane, J. Membr. Sci.280 (2006) 849.
    [9]H. Takamura, H. Sugai, M. Watanabe, T. Kasahara, A. Kamegawa, M. Okada, Oxygen permeation properties and surface modification of acceptor-doped CeO2/MnFe2O4 composites, J. Electroceram.17 (2006) 741.
    [10]X.F. Chang, C. Zhang,W.Q. Jin, N.P. Xu, Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes, J. Membr. Sci.285 (2006) 232.
    [11]M.-L. Fontaine, J.B. Smith, Y. Larring, R. Bredesen; On the preparation of asymmetric CaTi0.9Fe0.1O3-δ membranes by tape-casting and co-sintering process; Journal of Membrane Science 326 (2009) 310
    [12]S. Sameshima, T. Ichikawa, M. Kawaminami, Y. Hirata, Thermal and mechanical properities of rare earth-doped ceria ceramics, Materials Chemical and Physics 61(1999)31
    [13]H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, Jounal of Applied Electrochemistry 18(1988)527

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700