用户名: 密码: 验证码:
配位聚合物的设计调控及对称性破缺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1989年Richard Robson报导的第一例金刚石结构配位聚合物[Cu~Ⅰ(C(C_6H_4CN)_4)]~(n+)以来,配位聚合物在配位化学、物理化学、固态化学、化学拓扑学等多个领域成为广泛研究的热点。以配位键为主、分子间作用力或主客体相互作用为辅的组装方式赋予了配位聚合物具有可调控性强、结构丰富多样、性质可控空间大等特点。然而该组装方式也使得配位聚合物的结构调控变数很大,往往同个体系可具有多种结构、不同的对称性。本论文正是在此背景下,以手性配位聚合物的对称性破缺为目标,从配位聚合物的结构调控出发,逐步掌握其组装机制,再以此为设计依据,研究解决手性配位聚合物的构筑及对称性破缺问题。
     首先,选择二元配体体系——Cu~Ⅱ/苯甲酸/4,4'-联吡啶为研究对象,调节反应体系pH值得到了从零维到二维的化合物1-5,反映出从简单配合物到复杂网络结构的配位聚合组装进程受控于pH值调节的配体配位能力。
     第二,选择类似的二元配体体系——Cu~Ⅱ/邻苯二甲酸(o-pht)/咪唑(Him)为研究体系,该体系较之体系Ⅰ增加了桥联配体的自由度,用于考察配位聚合过程中亚单元的组装机制。固定反应体系pH值,得到一维亚单元[Cu(Him)_2(o-pht)]_n。在此基础上,通过调节二元溶剂——乙醇/水的比例,得到了从一维到二维、从中心对称到非心对称的化合物6-8·2H_2O,反映出二元溶剂对化合物维度及对称性的选择作用。此外,对上述三个化合物之间的结构关系、转化关系等进行了系统研究,发现一维结构7可脱去一个水分子转化为二维结构8·2H_2O,后者可在保持单晶形貌透明度的前提下脱去所有水分子转为8,完成单晶-单晶的转化,并体现出磁性质从反铁磁-铁磁-反铁磁的有趣变化。
     第三,与2,2'-联二萘酚的轴手性相类比,2,2'-联二苯酚仅具有潜在的轴手性,由于2,2'-位易出现的无序现象极易发生内消旋化。因此,本章节用2,2'-位修饰与未修饰的2,2'-联二苯酚基四羧酸配体与二价铜离子、锌离子反应,构筑三维大孔配位聚合物9-12。然而,由于9-11为低密度高孔容率结构,2,2'-联二苯酚位的无序问题并未得到解决。化合物12中,由于2,2'-位取代冠醚与水解反应引入的钠离子配位得以克服无序性,仅实现了局部的对称性破缺,总体体现为外消旋化合物。另外,该章节还在体系中引入手性小分子——反式-1,2-环己二胺与2,2'-位乙氧基取代的四羧酸配体反应,得化合物13、14,考察氢键组装的超分子结构中手性小分子对整体氢键结构的对称性作用。
     在第三步尝试打破2,2'-联二苯酚的内消旋化并未取得很好的效果后,本论文结合前两步有关配位聚合物结构及对称性调控的实验结果,选择二元配体体系——Cu~Ⅱ/丁二酸/4,4'-联吡啶为研究对象,在固定二元溶剂乙醇/水比例条件下,调节体系pH值,得到三维手性配位聚合物15及三维外消旋配位聚合物16。其中15为单一手性配位聚合物,其单晶具有光学活性,但整体产物易出现外消旋化。因此,本论文对15的反应及结晶进程进行了系统考察,发现氨水浓度∝pH值∝(反应速度)~(-1)∝(结晶速度)~(-1)。因此,在反应体系中加入过量氨水,通过氨水与其他配体的竞争配位作用,有效控制了反应速度,从而减少结晶体系的初级成核数。根据统计分布规律,初级成核的手性分布与成核数目有着极其微妙的关系。本论文正是依据此关系,打破自然的统计分布规律,实现初级成核的对称性破缺。再通过二级成核的手性自催化作用,实现结晶产物的对称性破缺。这是首例化学方法成功实现配位聚合物的手性对称性破缺。
Since Richard Robson synthesized and described the first coordination polymer[Cu~Ⅰ(C(C_6H_4CN)_4)]~(n+) in 1989,the research of coordination polymers have attracted numerous attention in the field of coordination chemistry,physical chemistry, solid state chemistry,chemical topology,etc.Coordination polymers were mainly assembled with coordination bonds,and some molecular interactions or host-guest interactions as well.The corresponding bond energies are relatively low,compared to the covalent bonds,which makes coordination polymers have incredible large amount of architectures and flexible framework.In that case,various structures might easily exist under subtle change of synthesis condition.Herein,the subject of this dissertation is to fully understand the intrinsic assemble of coordination polymers, so as to construct chiral coordination polymers and realized the chiral symmetry breaking.
     First of all,the role of pH in binary ligands system has been studied.In the Cu~Ⅱ/benzoate/4,4'-bipyridine system,five compounds 1-5 ranged from 0D to 2D structures were obtained by merely increasing the pH value from 5.5 to 8.0.By analyzing the details of the structure,the coordination ability of 4,4'-bipyridine which is controlled by pH value is the key of assemble mechanism.
     Secondly,the role of solvent in similar binary ligands system was taken into consideration.Instead of 4,4'-bipyridine,the o-phthalic acid was chosen to increase the freedom of connectivity.In the Cu~Ⅱ/ o-phthalate/imidazole system,the 1D substructure[Cu(Him)_2(o-pht)]_n was obtained by constraining the reaction pH value. Based on the substructure,1D coordination polymers 6,7 were generated in binary solvents EtOH/H_2O,while 2D coordination polymer 8·2H_2O was obtained in pure water.Furthermore,adjusting the proportion of the binary solvent could generate centrosymmetric 6 and acentric 7,showing the solvent-dependent symmetric assemble.
     Thirdly,new tetracarboxylate ligands with dihydroxyl(L_1) and crown ether (L_2) functionalities have been synthesized and treated with Cu~Ⅱ,Zn~Ⅱions and diaminocyclohexane to generate 3D coordination polymers 9-12 and supramolecular 13,14.Considering the potential axial chirality of 2,2'-biphenol unit, coordination-bonded assemble as well as chiral induction were both tried to realize the structural symmetry breaking.However,the 2,2'-biphenol unit are easily disorded,which always result in centrosymmetric structure.
     Based on the three steps illustrated above,Cu~Ⅱ/succinate/4,4'-bipyridine system was chosen to construct 3D chiral coordination polymers.By adjusting the reaction pH value,two phases were obtained in binary solvent system:enantiomeric helix-based structure 15,and racemic pillared structure 16.Further investigation of the chiral resolution over 15 revealed a relationship:ammonia concentration∝pH value∝(reaction speed)~(-1)∝(crystallization speed)~(-1).Thus,excess ammonia was added into the system to compete with the binary ligands,in order to slow down the reaction speed and crystallization speed.In that case,the primary nucleation was greatly limited.On the other hand,the statistical fluctuation of coin flipping shows that flipping a coin many times naturally resulted in 50-50 ratio of heads and tails, while flipping a coin once resulted in a single outcome,either a head of a tail.So, would It be nice if isolating a single-enantiomer form of 15 were as simple as flipping a coin? When the primary nucleation was greatly limited by simply adding excess ammonia,it is easy to make it happen! For more details,please read the whole story in the dissertation.
引文
(1) Abrahams,B.F.;Hoskins,B.F.;Michail,D.M.,et al.Assembly of porphyrin building blocks into network structures with large channels.Nature 1994,369,727-729.
    (2) Abrahams,B.F.;Moylan,M.;Orchard,S.D.,et al.Zinc saccharate:A robust,3D coordination network with two types of isolated,parallel channels,one hydrophilic and the other hydrophobic.Angew.Chem.Int.Ed.2003,42,1848-1851.
    (3) Banerjee,R.;Phan,A.;Wang,B.,et al.High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.Science 2008,319,939-943.
    (4) Rosi,N.L.;Eckert,J.;Eddaoudi,M.,et al.Hydrogen storage in microporous metal-organic frameworks.Science 2003,300,1127-1129.
    (5) Seo,J.S.;Whang,D.;Lee,H.,et al.A homochiral metal-organic porous material for enantioselective separation and catalysis.Nature 2000,404,982-986.
    (6) Chae,H.K.;Siberio-Perez,D.Y.;Kim,J.,et al.A route to high surface area,porosity and inclusion of large molecules in crystals.Nature 2004,427,523-527.
    (7) Serre,C.;Mellot-Draznieks,C.;Surble,S.,et al.Role of solvent-host interactions that lead to very large swelling of hybrid frameworks.Science 2007,315,1828-1831.
    (8) Zhao,X.B.;Xiao,B.;Fletcher,A.J.,et al.Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks.Science 2004,306,1012-1015.
    (9) Kitagawa,S.;Kitaura,R.;Noro,S.Functional porous coordination polymers.Angew.Chem.Int.Ed.2004,43,2334-2375.
    (10) Li,H.;Eddaoudi,M.;O'Keeffe,M.,et al.Design and synthesis of an exceptionally stable and highly porous metal-organic framework.Nature 1999,402,276-279.
    (11) Cooper,E.R.;Andrews,C.D.;Wheatley,P.S.,et al.Ionic liquids and eutectie mixtures as solvent and template in synthesis of zeolite analogues.Nature 2004,430,1012-1016.
    (12) van den Berg,A.W.C.;Arean,C.O.Materials for hydrogen storage:current research trends and perspectives.Chem.Commun.2008,668-681.
    (13) Latroche,M.;Surble,S.;Serre,C.,et al.Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101.Angew.Chem.lnt.Ed.2006,45,8227-8231.
    (14) Kesanli,B.;Cui,Y.;Smith,M.R.,et al.Highly interpenetrated metal-organic frameworks for hydrogen storage.Angew.Chem.Int.Ed.2005,44,72-75.
    (15) Dinca,M.;Long,J.R.Strong H-2 binding and selective gas adsorption within the microporous coordination solid Mg-3(O2C-C10H6-CO2)(3).J.Am.Chem.Soc.2005,127,9376-9377.
    (16) Bradshaw,D.;Prior,T.J.;Cussen,E.J.,et al.Permanent microporosity and enantioselective sorption in a chiral open framework.J.Am.Chem.Soc.2004,126,6106-6114.
    (17) Xiong,R.G.;You,X.Z.;Abrahams,B.F.,et al.Enantioseparation of racemic organic molecules by a zeolite analogue.Angew.Chem.Int.Ed.2001,40,4422-+.
    (18) Lin,W.Metal-organic frameworks for asymmetric catalysis and chiral separations.MRS Bulletin 2007,32,544-548.
    (19) Liu,Y.;Xu,X.;Zheng,T.,et al.Chiral octupolar metal-oraganoboran NLO frameworks with(14,3) topology.Angew.Chem.Int.Ed.2008,47,4538-4541.
    (20) Zhou,W.W.;Chen,J.T.;Xu,G.,et al.Nonlinear optical and ferroelectric properties of a 3-D Cd(Ⅱ) triazolate complex with a novel(6(3))(2)(6(10).8(5)) topology.Chem.Commun.2008,2762-2764.
    (21) Li,Y.;Xu,G.;Zou,W.O.,et al.A novel metal-organic network with high thermal stability:Nonlinear optical and photoluminescent properties.Inorg.Chem.2008,47,7945-7947.
    (22) Ye,Q.;Li,Y.H.;Song,Y.M.,et al.A second-order nonlinear optical material prepared through in situ hydrothermal ligand synthesis.Inorg.Chem.2005,44,3618-3625.
    (23) Maury,O.;Le Bozec,H.Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes.Acc.Chem.Res.2005,38,691-704.
    (24) Evans,O.R.;Lin,W.B.Crystal engineering of NLO materials based on metal-organic coordination networks.Acc.Chem.Res.2002,35,511-522.
    (25) Lacroix,P.G.Second-order optical nonlinearities in coordination chemistry:The case of bis(salicylaldiminato)metal Schiffbase complexes.Eur.J.Inorg.Chem.2001,339-348.
    (26) Evans,O.R.;Lin,W.B.Rational design of nonlinear optical materials based on 2D coordination networks.Chem.Mater 2001,13,3009-3017.
    (27) Evans,O.R.;Lin,W.B.Crystal engineering of nonlinear optical materials based on interpenetrated diamondoid coordination networks.Chem.Mater.2001,13,2705-2712.
    (28) Lin,W.B.;Wang,Z.Y.;Ma,L.A novel octupolar metal-organic NLO material based on a chiral 2D coordination network.J.Am.Chem.Soc.1999,121,11249-11250.
    (29) Evans,O.R.;Xiong,R.G.;Wang,Z.Y.,et al.Crystal engineering of acentric diamondoid metal-organic coordination networks.Angew.Chem.Int.Ed.1999,38,536-538.
    (30) Tanaka,K.;Oda,S.;Shiro,M.A novel chiral porous metal-organic framework:asymmetric ring opening reaction of epoxide with amine in the chiral open space.Chem.Commun.2008,820-822.
    (31) Wu,C.D.;Lin,W.B.Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks:Network-structure-dependent catalytic activity.Angew.Chem.Int.Ed.2007,46,1075-1078.
    (32) Lin,W.B.Metal-organic frameworks for asymmetric catalysis and chiral separations.Mrs Bulletin 2007,32,544-548.
    (33) Wu,C.D.;Hu,A.;Zhang,L.,et al.Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis.J.Am.Chem.Soc.2005,127,8940-8941.
    (34) Wang,X.W.;Ding,K.L.Self-supported heterogeneous catalysts for enantioselective hydrogenation.J.Am.Chem.Soc.2004,126,10524-10525.
    (35) Wu,C.-D.;Hu,A.;Zhang,L.,et al.A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis.J.Am.Chem.Soc.2005,127,8940-8941.
    (36) Kesanli,B.;Lin,W.B.Chiral porous coordination networks:rational design and applications in enantioselective processes.Coord.Chem.Rev.2003,246,305-326.
    (37) Dybtsev,D.N.;Nuzhdin,A.L.;Chun,H.,et al.A homochiral metal-organic material with permanent porosity,enantioselective sorption properties,and catalytic activity.Angew.Chem.Int.Ed.2006,45,916-920.
    (38) Ohmori,O.;Fujita,M.Heterogeneous catalysis of a coordination network:cyanosilylation of imines catalyzed by a Cd(Ⅱ)-(4,4 '-bipyridine) square grid complex.Chem.Commun.2004,1586-1587.
    (39) Fujita,M.;Kwon,Y.J.;Washizu,S.,et al.Preparation,Clathration Ability,and Catalysis of a 2-Dimensional Square Network Material Composed of Cadmium(Ii) and 4,4'-Bipyridine.J.Am.Chem.Soe.1994,116,1151-1152.
    (40) Han,J.W.;Hill,C.L.A coordination network that catalyzes O-2-based oxidations.J.Am.Chem.Soc.2007,129,15094-+.
    (41) Hasegawa,S.;Horike,S.;Matsuda,R.,et al.Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand:Selective sorption and catalysis.J.Am.Chem.Soc.2007,129,2607-2614.
    (42) Rhule,J.T.;Neiwert,W.A.;Hardcastle,K.I.,et al.AgSPV2Mol0040,a heterogeneous catalyst for air-based selective oxidation at ambient temperature.J.Am.Chem.Soc.2001,123,12101-12102.
    (43) Alkordi,M.H.;Liu,Y.L.;Larsen,R.W.,et al.Zeolite-like metal-organic frameworks as platforms for applications:On metalloporphyrin-based catalysts.J.Am.Chem.Soc.2008,130,12639-+.
    (44) Fu,D.W.;Zhang,W.;Xiong,R.G.Isotope effect on SHG response and ferroelectric properties of a homochiral zinc coordination compound containing tetrazole ligand.Cryst.Growth Des.2008,8,3461-3464.
    (45) Fu,D.W.;Zhang,W.;Xiong,R.G.The first metal-organic framework(MOF) of Imazethapyr and its SHG,piezoelectric and ferroelectric properties.Dalton Trans.2008,3946-3948.
    (46) Ye,Q.;Song,Y.M.;Wang,G.X.,et al.Ferroelectric metal-organic framework with a high dielectric constant.J.Am.Chem.Soc.2006,128,6554-6555.
    (47) Ferbinteanu,M.;Miyasaka,H.;Werusdorfer,W.,et al.Single-chain magnet (NEt4)[Mn-2(5-MeOsalen)(2)Fe(CN)(6)]made of Mn-Ⅲ-Fe-Ⅲ-Mn-Ⅲ trinuclear single-molecule magnet with an ST =(9)/(2) spin ground state.J.Am.Chem.Soc.2005,127,3090-3099.
    (48) Maspoch,D.;Ruiz-Molina,D.;Veciana,J.Magnetic nanoporous coordination polymers.J.Mater.Chem.2004,14,2713-2723.
    (49) Batten,S.R.;Murray,K.S.Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide.Coord.Chem.Rev.2003,246,103-130.
    (50) Liu,T.F.;Fu,D.;Gao,S.,et al.An azide-bridged homospin single-chain magnet:[Co(2,2'-bithiazoline)(N-3)(2)](n).J.Am.Chem.Soc.2003,125,13976-13977.
    (51) Clerac,R.;Miyasaka,H.;Yamashita,M.,et al.Evidence for single-chain magnet behavior in a Mn-Ⅲ-Ni-Ⅱ chain designed with high spin magnetic units:A route to high temperature metastable magnets.J.Am.Chem.Soc.2002,124,12837-12844.
    (52) Liang,Y.C.;Cao,R.;Su,W.P.,et al.Syntheses,structures,and magnetic properties of two gadolinium(Ⅲ)-copper(Ⅱ) coordination polymers by a hydrothermal reaction.Angew.Chem.Int.Ed.2000,39,3304-+.
    (53) Coronado,E.;Galan-Mascaros,J.R.;Gomez-Garcia,C.J.,et al.Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound.Nature 2000,408,447-449.
    (54) Collman,J.P.;McDevitt,J.T.;Leidner,C.R.,et al.Synthetic,Electrochemical,Optical,and Conductivity Studies of Coordination Polymers of Iron,Ruthenium,and Osmium Octaethylporphyrin.J.Am.Chem.Soc.1987,109,4606-4614.
    (55) Alvaro,M.;Carbonell,E.;Ferrer,B.,et al.Semiconductor behavior of a metal-organic framework(MOF).Chem.Eur.J2007,13,5106-5112.
    (56) Rieter,W.J.;Pott,K.M.;Taylor,K.M.L.,et al.Nanoscale coordination polymers for platinum-based anticancer drug delivery.J.Am.Chem.Soc.2008,130,11584-+.
    (57) Allendorf,M.D.;Houk,R.J.T.;Andruszkiewicz,L.,et al.Stress-Induced Chemical Detection Using Flexible Metal−Organic Frameworks.J.Am.Chem.Soc.2008,130,14404-14405.
    (58) Rieter,W.J.;Taylor,K.M.L.;Lin,W.B.Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing.J.Am.Chem.Soc.2007,129,9852-+.
    (59) Rieter,W.J.;Taylor,K.M.L.;An,H.Y.,et al.Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents.J.Am.Chem.Soc.2006,128,9024-9025.
    (60) Oh,M.;Mirkin,C.A.Chemically tailorable colloidal particles from infinite coordination polymers.Nature 2005,438,651-654.
    (61) Olea,D.;Alexandre,S.S.;Amo-Ochoa,P.,et al.From coordination polymer macrocrystals to nanometric individual chains.Adv.Mater.2005,17,1761-+.
    (62) Nuzhdin,A.L.;Dybtsev,D.N.;Bryliakov,K.P.,et al.Enantioselective chromatographic resolution and one-pot synthesis of enantiomerieally pure sulfoxides over a homochiral Zn-organic framework.J.Am.Chem.Soc.2007,129,12958-+.
    (63) Holliday,B.J.;Mirkin,C.A.Strategies for the construction of supramolecular compounds through coordination chemistry.Angew.Chem.Int.Ed.2001,40,2022-2043.
    (64) Withersby,M.A.;Blake,A.J.;Champness,N.R.,et al.Anion control in bipyridylsilver(Ⅰ)networks:A helical polymeric array.Angew.Chem.lnt.Ed.1997,36,2327-2329.
    (65) Gale,P.A.Anion coordination and anion-directed assembly:highlights from 1997 and 1998.Coord.Chem.Rev.2000,199,181-233.
    (66) Kim,H.J.;Zin,W.C.;Lee,M.Anion-directed self-assembly of coordination polymer into tunable secondary structure.J.Am.Chem.Soc.2004,126,7009-7014.
    (67) Hoger,S.;Morrison,D.L.;Enkelmann,V.Solvent triggering between conformational states in amphiphilic shape-persistent macrocycles.J.Am.Chem.Soc.2002,124,6734-6736.
    (68) Bhattacharyya,K.Solvation dynamics and proton transfer in supramolecular assemblies.Acc.Chem.Res.2003,36,95-101.
    (69) Bu,X.H.;Xie,Y.B.;Li,J.R.,et al.Adjusting the frameworks of silver(Ⅰ) complexes with new pyridyl thioethers by varying the chain lengths of ligand spacers,solvents,and counteranions.Inorg.Chem.2003,42,7422-7430.
    (70) Ma,L.;Lin,W.Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metal-Organic Frameworks.J.Am.Chem.Soe.2008,130,13834-13835.
    (71) Wang,F.K.;Yang,S.Y.;Huang,R.B.,et al.Control of the topologies and packing modes of three 2D coordination polymers through variation of the solvent ratio of a binary solvent mixture.CrystEngComm 2008,10,1211-1215.
    (72) Apporloo,J.J.;Janssen,R.A.J.;Malenfant,P.R.L.,et al.Concentration-dependent thermochromism and supramolecular aggregation in solution of tribloek copolymers based on lengthy oligothiophene cores and poly(benzyl ether) dendrons.Macromolecules 2000,33,7038-7043.
    (73) Borovkov,V.V.;Lintuluoto,J.M.;Fujiki,M.,et al.Temperature effect on supramolecular chirality induction in bis(zinc porphyrin).J.Am.Chem.Soc.2000,122,4403-4407.
    (74) Masaoka,S.;Tanaka,D.;Nakanishi,Y.,et al.Reaction-temperature-dependent supramolecular isomerism of coordination networks based on the organometallic building block[Cu-2(Ⅰ)(mu(2)-BQ)(mu(2)-OAc)(2)].Angew.Chem.Int.Ed.2004,43,2530-2534.
    (75) Sun,D.F.;Ke,Y.X.;Mattox,T.M.,et al.Temperature-dependent supramolecular stereoisomerism in porous copper coordination networks based on a designed carboxylate ligand.Chem.Commun.2005,5447-5449.
    (76) Mahata,P.;Prabu,M.;Natarajan,S.Role of temperature and time in the formation of infinite -M-O-M- linkages and isolated clusters in MOFs:a few illustrative examples.Inorg Chem 2008,47,8451-63.
    (77) Matsumoto,N.;Motoda,Y.;Matsuo,T.,et al.pH-dependent monomer <-> oligomer interconversion of copper(Ⅱ) complexes with N-(2-R-imidazol-4-ylmethylidene)-2-aminoethylpyridine(R = methyl,phenyl),Inorg.Chem.1999,38,1165-1173.
    (78) Zheng,P.Q.;Ren,Y.P.;Long,L.S.,et al.pH-dependent assembly of Keggin-based supramolecular architecture.Inorg.Chem.2005,44,1190-1192.
    (79) Zhou,S.L.;Matsumoto,S.;Tian,H.D.,et al.pH-Responsive shrinkage/swelling of a supramolecular hydrogel composed of two small amphiphilic molecules.Chem.Eur.J 2005,11,1130-1136.
    (80) Qi,Z.P.;Bai,Z.S.;Yuan,Q.,et al.pH-dependent self-assembly of copper(II) complexes with a new imidazole-containing polyamine ligand:Synthesis,structure and magnetic property.Polyhedron 2008,27,2672-2680.
    (81) Forster,P.M.;Stock,N.;Cheetham,A.K.A high-throughput investigation of the role of pH,temperature,concentration,and time on the synthesis of hybrid inorganic-organic materials.Angew.Chem.Int.Ed.2005,44,7608-7611.
    (82) Robson,R.Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers(aka MOFs):a personal view.Dalton Trans.2008,5113-5131.
    (83) Hoskins,B.F.;Robson,R.Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments.J.Am.Chem.Soc.1989,111,5962-5964.
    (84) Robson,R.A net-based approach to coordination polymers.Dalton Trans.2000,3735-3744.
    (85) Abrahams,B.F.;Hoskins,B.F.;Robson,R.,et al.alpha-Polonium coordination networks constructed from bis(imidazole) ligands.CrystEngComm 2002,478-482.
    (86) Abrahams,B.F.;Batten,S.R.;Grannas,M.J.,et al.Ni(tpt)(NO3)(2) - A three-dimensional network with the exceptional(12,3) topology:A self-entangled single net.Angew.Chem.Int.Ed.1999,38,1475-1477.
    (87) Batten,S.R.;Jensen,P.;Moubaraki,B.,et al.Structure and molecular magnetism of the mille-related compounds M(dca)(2),M = Co-Ⅱ,Ni-Ⅱ,Cu-Ⅱ,dca = dicyanamide,N(CN)(2).Chem.Commun.1998,439-440.
    (88) Hoskins,B.F.;Robson,R.;Slizys,D.A.A hexaimidazole ligand binding six octahedral metal ions to give an infinite 3D alpha-Po-like network through which two independent 2D hydrogen-bonded networks interweave.Angew.Chem.Int.Ed.1997,36,2752-2755.
    (89) Hoskins,B.F.;Robson,R.;Slizys,D.A.An infinite 2D polyrotaxane network in Ag-2(bix)(3)(NO3)(2)(bix equals 1,4-bis(imidazol-1-ylmethyl)benzene).J.Am.Chem.Soc.1997,119,2952-2953.
    (90) Zhang,J.P.;Lin,Y.Y.;Huang,X.C.,et al.Copper(Ⅰ) 1,2,4-triazolates and related complexes:Studies of the solvothermal ligand reactions,network topologies,and photoluminescence properties.J.Am.Chem.Soc.2005,127,5495-5506.
    (91) Zhang,J.P.;Lin,Y.Y.;Huang,X.C.,et al.Molecular chairs,zippers,zigzag and helical chains:chemical enumeration of supramolecular isomerism based on a predesigned metal-organic building-block.Chem.Commun.2005,1258-1260.
    (92) Zhang,J.-P.;Chen,X.-M.Crystal engineering of binary metal imidazolate and triazolate frameworks.Chem.Commun.2006,1689-1699.
    (93) Zhang,X.M.;Tong,M.L.;Chen,X.M.Hydroxylation of N-heterocycle ligands observed in two unusual mixed-valence Cu-Ⅰ/Cu-Ⅱ complexes.Angew.Chem.Int.Ed.2002,41,1029-+.
    (94) Tong,M.L.;Li,L.J.;Mochizuki,K.,et al.A novel three-dimensional coordination polymer constructed with mixed-valence dimeric copper(Ⅰ,Ⅱ) units.Chem.Commun.2003,428-429.
    (95) Huang,X.C.;Zhang,J.P.;Lin,Y.Y.,et al.Triple-stranded helices and zigzag chains of copper(Ⅰ) 2-ethylimidazolate:solvent polarity-induced supramolecular isomerism.Chem.Commun.2005,2232-2234.
    (96) Huang,X.C.;Lin,Y.Y.;Zhang,J.P.,et al.Ligand-directed strategy for zeolite-type metal-organic frameworks:Zinc(Ⅱ) imidazolates with unusual zeolitic topologies.Angew.Chem.Int.Ed.2006,45,1557-1559.
    (97) Huang,X.C.;Zhang,J.P.;Lin,Y.Y.,et al.Two mixed-valence copper(Ⅰ,Ⅱ) imidazolate coordination polymers:metal-valence tuning approach for new topological structures.Chem.Commun.2004,1100-1101.
    (98) Yang,C.;Chen,X.M.;Lu,X.Q.,et al.First metal-encapsulating star polysulfoxide incorporating 2-amino-1,3,4-thiadiazole.Chem.Commun.1997,2041-2042.
    (99) Rowsell,J.L.C.;Yaghi,O.M.Metal-organic frameworks:a new class of porous materials. Microporous and Mesoporous Materials 2004,73,3-14.
    (100) Wong-Foy,A.G.;Matzger,A.J.;Yaghi,O.M.Exceptional H-2 saturation uptake in microporous metal-organic frameworks.J.Am.Chem.Soc.2006,128,3494-3495.
    (101) Yaghi,O.M.;O'Keeffe,M.;Ockwig,N.W.,et al.Reticular synthesis and the design of new materials.Nature 2003,423,705-714.
    (102) Eddaoudi,M.;Kim,J.;Rosi,N.,et al.Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage.Science 2002,295,469-472.
    (103) Abrahams,B.F.;Haywood,M.G.;Robson,R.Guanidinium ion as a symmetrical template in the formation of cubic hydrogen-bonded borate networks with the boracite topology.J.Am.Chem.Soc.2005,127,816-817.
    (104) Abrahams,B.F.;Hawley,A.;Haywood,M.G.,et al.Serendipity and design in the generation of new coordination polymers:An extensive series of highly symmetrical guanidinium-templated,carbonate-based networks with the sodalite topology.J.Am.Chem.Soc.2004,126,2894-2904.
    (105) Abrahams,B.F.;Haywood,M.G.;Robson,R.,et al.New tricks for an old dog:The carbonate ion as a building block for networks including examples of composition [Cu-6(CO3)(12)-{C(NH2)(3)}(8)](4-) with the sodalite topology.Angew.Chem.Int.Ed.2003,42,1112-1115.
    (106) Ouellette,W.;Prosvirin,A.V.;Chieffo,V.,et al.Solid-state coordination chemistry of the Cu/triazolate/X system(X = F-,Cl-,Br-,I-,OH-,and SO42-).Inorg.Chem.2006,45,9346-9366.
    (107) Janiak,C.;Uehlin,L.;Wu,H.-P.,et al.Co-ordination engineering:when can one speak of an \"understanding\"? Case study of the multidentate ligand 2,2'-dimethyl-4,4'-bipyrimidine.Journal of the Chemical Society,Dalton Transactions:Inorganic Chemistry 1999,3121-3131.
    (108) Withersby,M.A.;Blake,A.J.;Champness,N.R.,et al.Anion control in bipyridylsilver(Ⅰ)networks:a helical polymeric array.Angewandte Chemie,International Edition in English 1997,36,2327-2329.
    (109) Dong,B.X.;Peng,J.;Gomez-Garcia,C.J.,et al.High-dimensional assembly depending on polyoxoanion templates,metal ion coordination geometries,and a flexible bis(imidazole)ligand.Inorg.Chem.2007,46,5933-5941.
    (110) Schottel,B.L.;Chifotides,H.T.;Shatruk,M.,et al.Anion-π Interactions as Controlling Elements in Self-Assembly Reactions of Ag(Ⅰ) Complexes with x-Acidic Aromatic Rings.J.Am.Chem.Soc.2006,128,5895-5912.
    (111) Joualti,A.;Jullien,V.;Hosseini,M.W.,et al.Controlling the formation of discrete complexes or a 1-D directional coordination network by the binding ability of anions.Chemical Communications(Cambridge,United Kingdom) 2001,1114-1115.
    (112) Blake,A.J.;Champness,N.R.;Cooke,P.A.,et al.Multi-modal bridging ligands;effects of ligand functionality,anion and crystallization solvent in silver(Ⅰ) coordination polymers.Dalton 2000,3811-3819.
    (113) Carlucci,L.;Ciani,G.;Macchi,P.,et al.Complex interwoven polymeric frames from the self-assembly of silver(Ⅰ) cations and sebaconitrile.Chem.Eur.J.1999,5,237-243.
    (114) Brooks,N.R.;Blake,A.J.;Champness,N.R.,et al.Anion influence on co-ordination polymers of Ag(Ⅰ) with 1,4-dithiacyclohexane.Journal of the Chemical Society,Dalton Transactions 2001,2530-2538.
    (115) Hirsch,K.A.;Wilson,S.R.;Moore,J.S.Coordination Networks of 3,3'-Dicyanodiphenylacetylene and Silver(Ⅰ) Salts:Structural Diversity through Changes in Ligand Conformation and Counterion.Inorg.Chem.1997,36,2960-2968.
    (116) Noro,S.;Kitaura,R.;Kondo,M.,et al.Framework engineering by anions and porous functionalities of Cu(Ⅱ)/4,4 '-bpy coordination polymers.J.Am.Chem.Soc.2002,124,2568-2583.
    (117) Zhang,J.;Liu,R.;Feng,P.Y.,et al.Organic cation and chiral anion templated 3D homochiral open-framework materials with unusual square-planar {M-4(OH)} units.Angew.Chem.Int.Ed.2007,46,8388-8391.
    (118) Xu,H.B.;Wang,Z.M.;Liu,T.,et al.Synthesis,structure,and magnetic properties of (A)[Fe-Ⅲ(oxalate)C1-2](A = alkyl ammonium cations) with anionic 1D [Fe-Ⅲ(oxalate)C1-2](-) chains.Inorg.Chem.2007,46,3089-3096.
    (119) 康清清.手性配位聚合物的合成及性质研究.厦门大学硕士学位论文 2004.
    (120) Lin,Z.J.;Wragg,D.S.;Warren,J.E.,et al.Anion control in the ionothermal synthesis of coordination polymers.J.Am.Chem.Soc.2007,129,10334-+.
    (121) Pamham,E.R.;Morris,R.E.Ionothermal synthesis using a hydrophobic ionic liquid as solvent in the preparation of a novel aluminophosphate chain structure.J.Mater.Chem.2006,16,3682-3684.
    (122) Xu,L.;Choi,E.-Y.;Kwon,Y.-K.Ionothermal Syntheses of Six Three-Dimensional Zinc Metal-Organic Frameworks with 1-Alkyl-3-methylimidazolium Bromide Ionic Liquids as Solvents.Inorg.Chem.2007,46,10670-10680.
    (123) Pamham,E.R.;Morris,R.E.Ionothermal synthesis of zeolites,metal-organic frameworks,and inorganic-organic hybrids.Acc.Chem.Res.2007,40,1005-1013.
    (124) Tong,M.L.;Kitagawa,S.;Chang,H.-C.,et al.Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co_3(OH)_2 ferrimagnetic chains.Chem.Commun.2004,418-419.
    (125) Forster,P.M.;Burbank,A.R.;Livage,C.,et al.The role of temperature in the synthesis of hybrid inorganic-organic materials:the example of cobalt succinates.Chem.Commun.2004,368-369.
    (126) Zhang,J.;Bu,X.H.Temperature dependent charge distribution in three-dimensional homochiral cadmium camphorates.Chem.Commun.2008,444-446.
    (127) Go,Y.B.;Wang,X.;Anokhina,E.V.,et al.Influence of the Reaction Temperature and pH on the Coordination Modes of the 1,4-Benzenedicarboxylate(BDC) Ligand:A Case Study of the NiⅡ(BDC)/2,2'-Bipyridine System.Inorg.Chem.2005,44,8265-8271.
    (128) Zhang,G.;Yang,G.;Ma,J.S.Versatile Framework Solids Constructed from Divalent Transition Metals and Citric Acid:Syntheses,Crystal Structures,and Thermal Behaviors.Cryst.Growth Des.2006,6,375-381.
    (129) Lu,W.-G.;Jiang,L.;Feng,X.-L.,et al.Three 3D Coordination Polymers Constructed by Cd(Ⅱ) and Zn(Ⅱ) with Imidazole-4,5-Dicarboxylate and 4,4'-Bipyridyl Building Blocks. Cryst.Growth Des.2006,6,564-571.
    (130) Zhou,Z.-H.;Deng,Y.-E;Wan,H.-L.Structural Diversities of Cobalt(Ⅱ) Coordination Polymers with Citric Acid.Cryst.Growth Des.2005,5,1109-1117.
    (131) Zheng,P.-Q.;Ren,Y.-P.;Long,L.-S.,et al.pH-Dependent Assembly of Keggin-Based Supramolecular Architecture.Inorg.Chem.2005,44,1190-1192.
    (132) Dalgamo,S.J.;Hardie,M.J.;Raston,C.L.pH-Dependent Formation of Molecular Capsules and Coordination Polymers.Cryst.Growth Des.2004,4,227-234.
    (133) Battistuzzi,G.;Borsari,M.;Menabue,L.,et al.Amide Group Coordination to the Pb2+Ion.lnorg.Chem.1996,35,4239-4247.
    (134) Suh,M.P.;Shim,B.Y.;Yoon,T.-S.Template Syntheses and Crystal Structures of Nickel(Ⅱ) Complexes of Hexaaza Macrocyclic Ligands with Pendant Functional Groups:Formation of a Coordination Polymer.Inorg.Chem.1994,33,5509-14.
    (135) Anokhina,E.V.;Go,Y.B.;Lee,Y.,et al.Chiral Three-Dimensional Microporous Nickel Aspartate with Extended Ni-O-Ni Bonding.J.Am.Chem.Soc.2006,128,9957-9962.
    (136) Forster,P.M.;Stock,N.;Cheetham,A.K.A high-throughput investigation of the role of pH,temperature,concentration,and time on the synthesis of hybrid inorganic-organic materials.Angewandte Chemie,International Edition 2005,44,7608-7611.
    (137) Eisenberg,A.H.;Ovchinnikov,M.V.;Mirkin,C.A.Stepwise Formation of Heterobimetallic Macrocycles Synthesized via the Weak-Link Approach.J.Am.Chem.Soc.2003,125,2836-2837.
    (138) Braga,D.;Maini,L.;Polito,M.,et al.Design of hydrogen bonded networks based on organometallic sandwich compounds.Coord.Chem.Rev.2003,246,53-71.
    (139) Withersby,M.A.;Blake,A.J.;Champness,N.R.,et al.Solvent Control in the Synthesis of 3,6-Bis(pyridin-3-yl)-1,2,4,5-tetrazine-Bridged Cadmium(Ⅱ) and Zinc(Ⅱ) Coordination Polymers.Inorg.Chem.1999,38,2259-2266.
    (140) Wu,T.;Li,D.;Ng,S.W.Solvent control in the hydrothermal synthesis of two copper(Ⅰ)iodide-benzimidazole coordination polymers.CrystEngComm 2005,7,514-518.
    (141) Yang,J.;Li,G.D.;Cao,J.J.,et al.Structural variation from 1D to 3D:Effects of ligands and solvents on the construction of lead(Ⅱ)-organic coordination polymers.Chem.Eur.J 2007,13,3248-3261.
    (142) Chen,B.L.;Fronczek;F.R.;Maverick,A.W.Solvent-dependent 4(4) square grid and 6(4).8(2) NbO frameworks formed by Cu(Pyac)(2)(bis[3-(4-pyridyl)pentane-2,4-dionato]copper(Ⅱ)).Chem.Commun.2003,2166-2167.
    (143) Ma,L.;Lin,W.Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metal−Organic Frameworks.J.Am.Chem.Soc.2008,130,13834-13835.
    (144) Heo,J.;Jeon,Y.M.;Mirkin,C.A.Reversible interconversion of homochiral triangular macrocycles and helical coordination polymers.J.Am.Chem.Soc.2007,129,7712-+.
    (145) Ngo,H.K.;Lin,W.B.Hybrid organic-inorganic solids for heterogeneous asymmetric catalysis.Topics in Catalysis 2005,34,85-92.
    (146) Lin,W.Homochiral porous metal-organic frameworks:why and how? J.Solid State Chem.2005,178,2486-2490.
    (147) Evans,O.R.;Ngo,H.L.;Lin,W.Chiral Porous Solids Based on Lamellar Lanthanide polyoxometalate-based polythreaded framework consisting of an achiral ligand.Chem.Commun.2008,58-60.
    (165) Jiang,L.;Feng,X.L.;Su,C.Y.,et al.Interchain-solvent-induced chirality change of 1D helical chains:From achiral to chiral crystallization.Inorg.Chem.2007,46,2637-2644.
    (166) He,C.;Zhao,Y.G.;Guo,D.,et al.Chirality transfer through helical motifs in coordination compounds.Eur.J.Inorg.Chem.2007,3451-3463.
    (167) Gu,X.J.;Xue,D.F.Spontaneously resolved homochiral 3D lanthanide-silver heterometallic coordination framework with extended helical Ln-O-Ag subunits.Inorg.Chem.2006,45,9257-9261.
    (168) Wang,Y.T.;Tong,M.L.;Fan,H.H.,et al.Homochiral crystallization of helical coordination chains bridged by achiral ligands:can it be controlled by the ligand structure?Dalton Trans.2005,424-426.
    (169) Chen,X.D.;Du,M.;Mak,T.C.W.Controlled generation of heterochiral or homochiral coordination polymer:helical conformational polymorphs and argentophilicityinduced spontaneous resolution.Chem.Commun.2005,4417-4419.
    (170) Balamurugan,V.;Mukherjee,R.Homochiral 1D-helical metal-organic frameworks from achiral components.Formation of chiral channel via C-H center dot center dot center dot Cl interaction.CrystEngComm 2005,7,337-341.
    (171) Shi,X.;Zhu,G.S.;Qiu,S.L.,et al.Zn-2[(S)-O3PCH2NHC4H7CO2](2):A homochiral 3D zinc phosphonate with helical channels.Angew.Chem.Int.Ed.2004,43,6482-6485.
    (172) Bradshaw,D.;Claridge,J.B.;Cussen,E.J.,et al.Design,chirality,and flexibility in nanoporous molecule-based materials.Acc.Chem.Res.2005,38,273-282.
    (173) Biradha,K.;Seward,C.;Zaworotko,M.J.Helical coordination polymers with large chiral cavities.Angew.Chem.Int.Ed.1999,38,492-495.
    (174) Zang,S.Q.;Su,Y.;Li,Y.Z.,et al.One dense and two open chiral metal-organic frameworks:Crystal structures and physical properties.Inorg.Chem.2006,45,2972-2978.
    (175) Zang,S.Q.;Su,Y.;Li,Y.Z.,et al.Assemblies of a new flexible multicarboxylate ligand and d(10) metal centers toward the construction of homochiral helical coordination polymers:Structures,luminescence,and NLO-active properties.Inorg.Chem.2006,45,174-180.
    (176) Deak,A.;Megyes,T.;Tarkanyi,G.,et al.Synthesis and solution- and solid-state characterization of gold(Ⅰ) rings with short Au center dot center dot center dot Au interactions.Spontaneous resolution of a gold(Ⅰ) complex.J Am.Chem.Soc.2006,128,12668-12670.
    (177) Asakura,K.;Kobayashi,K.;Mizusawa,Y.,et al.Generation of an optically active octahedral cobalt complex by a chiral autocatalysis.Physica D 1995,84,72-78.
    (178) Kondepudi,D.K.;Asakura,K.Chiral Autocatalysis,Spontaneous Symmetry Breaking,and Stochastic Behavior.Acc.Chem.Res.2001,34,946-954.
    (179) Asakura,K.;Kondepudi,D.K.;Martin,R.Mechanism of Chiral Asymmetry Generation by Chiral Autocatalysis in the Preparation of Chiral Octahedral Cobalt Complex.Chirality 1998,10,343-348.
    (180) Avalos,M.;Babiano,R.;Cintas,P.,et al.Chiral autocatalysis:where stereochemistry meets the origin of life.Chem.Commun.2000,887-892.
    (181) Katsuld,I.;Motoda,Y.;Sunatsuki,Y.,et al.Spontaneous Resolution Induced by
    (1) Hof,F.;Craig,S.L.;Nuckolls,C.;Rebek,J.Molecular encapsulation.Angew.Chem.Int.Ed.2002,41,(9),1488-1508.
    (2) Percec,V.;Glodde,M.;Beta,T.K.;Miura,Y.;Shiyanovskaya,I.;Singer,K.D.;Balagurusamy,V.S.K.;Heiney,P.A.;Schnell,I.;Rapp,A.;Spiess,H.W.;Hudson,S.D.;Duan,H.Self-organization of supramolecular helical dendrimers into complex electronic materials.Nature 2002,419,(6905),384-387.
    (3) Yaghi,O.M.;O'Keeffe,M.;Ockwig,N.W.;Chae,H.K.;Eddaoudi,M.;Kim,J.Reticular synthesis and the design of new materials.Nature 2003,423,(6941),705-714.
    (4) Park,S.;Lim,J.H.;Chung,S.W.;Mirkin,C.A.Self-assembly of mesoscopic metal-polymer amphiphiles.Science 2004,303,(5656),348-351.
    (5) Liu,Y.L.;Eubank,J.F.;Cairns,A.J.;Eckert,J.;Kravtsov,V.C.;Luebke,R.;Eddaoudi,M.Assembly of metal-organic frameworks(MOFs) based on indium-trimer building blocks:A porous MOF with soc topology and high hydrogen storage.Angew.Chem.Int.Ed.2007,46,(18),3278-3283.
    (6) Zhang,X.;Chen,H.;Zhang,H.Y.Layer-by-layer assembly:from conventional to unconventional methods.Chem.Commun.2007,(14),1395-1405.
    (7) Kim,H.J.;Zin,W.C.;Lee,M.Anion-directed self-assembly of coordination polymer into tunable secondary structure.J.Am.Chem.Soc.2004,126,(22),7009-7014.
    (8) Slagt,V.F.;Roder,M.;Kamer,P.C.J.;van Leeuwen,P.;Reek,J.N.H.Supraphos:A supramolecular strategy to prepare bidentate ligands.J.Am.Chem.Soc.2004,126,(13),4056-4057.
    (9) Hofmeier,H.;Schubert,U.S.Combination of orthogonal supramolecular interactions in polymeric architectures.Chem.Commun.2005,(19),2423-2432.
    (10) Arico,F.;Chang,T.;Cantrill,S.J.;Khan,S.I.;Stoddart,J.F.Template-directed synthesis of multiply mechanically interlocked molecules under thermodynamic control.Chem.Eur J 2005,11,(16),4655-4666.
    (11) Stang,P.J.Molecular architecture:Coordination as the motif in the rational design and assembly of discrete supramolecular species - Self-assembly of metallacyclic polygons and polyhedra.Chem.Eur.J 1998,4,(1),19-27.
    (12) Leininger,S.;Olenyuk,B.;Stang,P.J.Self-assembly of discrete cyclic nanostructures mediated by transition metals.Chem.Rev.2000,100,(3),853-907.
    (13) Holliday,B.J.;Mirkin,C.A.Strategies for the construction of supramolecular compounds through coordination chemistry.Angew.Chem.Int.Ed.2001,40,(11),2022-2043.
    (14) Steed,J.W.Should solid-state molecular packing have to obey the rules of crystallographic symmetry? Crystengcomm 2003,169-179.
    (15) Holman,K.T.;Pivovar,A.M.;Ward,M.D.Engineering crystal symmetry and polar order in molecular host frameworks.Science 2001,294,(5548),1907-1911.
    (16) De Feyter,S.;De Schryver,F.C.Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy.Chem.Soc.Rev.2003,32,(3),139-150.
    (17) Hubin,T.J.;Busch,D.H.Template routes to interlocked molecular structures and orderly molecular entanglements.Coord.Chem.Rev.2000,200,5-52.
    (18) Zimmerman,S.C.;Corbin,F.S.Heteroaromatic modules for self-assembly using multiple hydrogen bonds.Molecular Self-Assembly 2000,96,63-94.
    (19) Holman,K.T.;Pivovar,A.M.;Swift,J.A.;Ward,M.D.Metric engineering of soft molecular host frameworks.Acc.Chem.Res.2001,34,(2),107-118.
    (20) Holman,K.T.;Martin,S.M.;Parker,D.P.;Ward,M.D.The generality of architectural isomerism in designer inclusion frameworks.J.Am.Chem.Soc.2001,123,(19),4421-4431.
    (21) Pivovar,A.M.;Holman,K.T.;Ward,M.D.Shape-selective separation of molecular isomers with tunable hydrogen-bonded host frameworks.Chem.Mater.2001,13,(9),3018-3031.
    (22) Desiraju,G.R.Supmmolecular Synthons in Crystal Engineering - a New Organic-Synthesis.Angew.Chem.lnt.Ed.1995,34,(21),2311-2327.
    (23) Cai,J.W.;Chen,C.H.;Feng,X.L.;Liao,C.Z.;Chen,X.M.A novel supramolecular synthon for H-bonded coordination networks:syntheses and structures of extended 2-dimensional cadmium(Ⅱ) arenedisulfonates.J.Chem.Soc.,Dalton Trans.2001,(16),2370-2375.
    (24) Desiraju,G.R.Crystal engineering.From molecules materials.J.Mole.Struct.2003,656,(1-3),5-15.
    (25) Desiraju,G.R.Crystal engineering:A holistie view.Angew.Chem.Int.Ed.2007,46,(44),8342-8356.
    (26) Forster,P.M.;Stock,N.;Cheetham,A.K.A high-throughput investigation of the role of pH,temperature,concentration,and time on the synthesis of hybrid inorganic-organic materials.Angew.Chem.Int.Ed.2005,44,(46),7608-7611.
    (27) Withersby,M.A.;Blake,A.J.;Champness,N.R.;Hubberstey,P.;Li,W.S.;Schroder,M.Anion control in bipyridylsilver(Ⅰ) networks:A helical polymeric army.Angew.Chem.Int.Ed.1997,36,(21),2327-2329.
    (28) Gale,P.A.Anion coordination and anion-directed assembly:highlights from 1997 and 1998.Coord.Chem.Rev.2000,199,181-233.
    (29) Bu,X.H.;Xie,Y.B.;Li,J.R.;Zhang,R.H.Adjusting the frameworks of silver(Ⅰ) complexes with new pyridyl thioethers by varying the chain lengths of ligand spacers,solvents,and counteranious.Inorg.Chem.2003,42,(23),7422-7430.
    (30) Bhattaeharyya,K.Solvation dynamics and proton transfer in supramolecular assemblies.Acc.Chem.Res.2003,36,(2),95-101.
    (31) Hoger,S.;Morrison,D.L.;Enkelmann,V.Solvent triggering between conformational states in amphiphilic shape-persistent maeroeyeles.J.Am.Chem.Soc.2002,124,(23),6734-6736.
    (32) Wang,F.K.;Yang,S.Y.;Huang,R.B.;Zheng,L.S.;Batten,S.R.Control of the topologies and packing modes of three 2D coordination polymers through variation of the solvent ratio of a binary solvent mixture.Crystengeomm 2008,10,(9),1211-1215.
    (33) Ma,L.;Lin,W.Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metal−Organic Frameworks.J.Am.Chem.Soc.2008,130,(42),13834-13835.
    (34) Apperloo,J.J.;Janssen,R.A.J.;Malenfant,P.R.L.;Freehet,J.M.J.Concentration-dependent thermochromism and supramoleeular aggregation in solution of triblock copolymers based on lengthy oligothiophene cores and poly(benzyl ether) dendrons.Macromolecules 2000,33,(19),7038-7043.
    (35) Borovkov,V.V.;Lintuluoto,J.M.;Fujiki,M.;Inoue,Y.Temperature effect on supramolecular chirality induction in bis(zinc porphyrin).J.Am.Chem.Soc.2000,122,(18),4403-4407.
    (36) Masaoka,S.;Tanaka,D.;Nakanishi,Y.;Kitagawa,S.Reaction-temperature-dependent supramoleeular isomerism of coordination networks based on the organometallie building block[Cu-2(Ⅰ)(mu(2)-BQ)(mu(2)-OAc)(2)].Angew.Chem.Int.Ed.2004,43,(19),2530-2534.
    (37) Sun,D.F.;Ke,Y.X.;Mattox,T.M.;Ooro,B.A.;Zhou,H.C.Temperature-dependent supramolecular stereoisomerism in porous copper coordination networks based on a designed carboxylate ligand.Chem.Commun.2005,(43),5447-5449.
    (38) Mahata,P.;Prabu,M.;Natarajan,S.Role of temperature and time in the formation of infinite -M-O-M- linkages and isolated clusters in MOFs:a few illustrative examples.Inorg Chem 2008,47,(19),8451-63.
    (39) Zhou,S.L.;Matsumoto,S.;Tian,H.D.;Yamane,H.;Ojida,A.;Kiyonaka,S.;Hamachi,I.pH-Responsive shrinkage/swelling of a supramolecular hydrogel composed of two small amphiphilic molecules.Chem.Eur.J 2005,11,(4),1130-1136.
    (40) Matsumoto,N.;Motoda,Y.;Matsuo,T.;Nakashima,T.;Re,N.;Dahan,F.;Tuehagnes,J.P.pH-dependent monomer <-> oligomer interconversion of eopper(Ⅱ) complexes with N-(2-R-imidazol-4-ylmethylidene)-2-aminoethylpyridine(R = methyl,phenyl).Inorg.Chem.1999,38,(6),1165-1173.
    (41) Zheng,P.Q.;Ren,Y.P.;Long,L.S.;Huang,R.B.;Zheng,L.S.pH-dependent assembly of Keggin-based supramolecular architecture.Inorg.Chem.2005,44,(5),1190-1192.
    (42) Qi,Z.P.;Bai,Z.S.;Yuan,Q.;Okamura,T.;Cai,K.;Su,Z.;Sun,W.Y.;Ueyama,N.pH-dependent self-assembly of copper(Ⅱ) complexes with a new imidazole-containing polyamine ligand:Synthesis,structure and magnetic property.Polyhedron 2008,27,(12),2672-2680.
    (43) Lu,J.;Paliwala,T.;Lira,S.C.;Yu,C.;Niu,T.Y.;Jaeobson,A.J.Coordination polymers of Co(NCS)(2) with pyrazine and 4,4'-bipyridine:Syntheses and structures.Inorg.Chem.1997,36,(5),923-929.
    (44) Noro,S.;Kitaura,R.;Kondo,M.;Kitagawa,S.;Ishii,T.;Matsuzaka,H.;Yamashita,M.Framework engineering by anions and porous functionalities of Cu(Ⅱ)/4,4'-bpy coordination polymers.J.Am.Chem.Soc.2002,124,(11),2568-2583.
    (45) Roesky,H.W.;Andruh,M.The interplay of coordinative,hydrogen bonding and pi-pi stacking interactions in sustaining supramolecular solid-state architectures.A study case of bis(4-pyridyl)-and bis(4-pyridyl-N-oxide) tectons.Coord.Chem.Rev.2003,236,(1-2),91-119.
    (46) Tan,J.;Tong,M.L.;Chen,X.M.Hydrothermal synthesis and crystal structures of three-dimensional co-ordination frameworks constructed with mixed terephthalate(tp) and 4,4 '-bipyridine(4,4 '-bipy) ligands:[M(tp)(4,4 '-bipy)](M = Co-Ⅱ,Cd-Ⅱ or Zn-Ⅱ).J.Chem.Soc.,Dalton Trans.2000,(20),3669-3674.
    (47) Eddaoudi,M.;Moler,D.B.;Li,H.L.;Chen,B.L.;Reineke,T.M.;O'Keeffe,M.;Yaghi,O.M.Modular chemistry:Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.Acc.Chem.Res.2001,34,(4),319-330.
    (48) Ye,B.H.;Tong,M.L.;Chen,X.M.Metal-organic molecular architectures with 2.2'-bipyridyl-like and carboxylate ligands.Coord.Chem.Rev.2005,249,(5-6),545-565.
    (49) Sheldrick,G.M.SADABS 2.05 University of G(o|¨)ttingen,Germany.
    (50) SHELXTL 6.10 2000,Bruker Analytical Instrumentation,Madison,WI.
    (51) Noro,S.i.;Miyasaka,H.;Kitagawa,S.;Wada,T.;Okubo,T.;Yamashita,M.;Mitani,T.Framework Control by a Metalloligand Having Multicoordination Ability:New Synthetic Approach for Crystal Structures and Magnetic Properties.Inorg.Chem.2005,44,(1),133-146.
    (52) Bickley,J.;Bonar-Law,R.P.;Martinez,M.A.B.;Steiner,A.Dinuclear and rnononuclear eopper(Ⅱ) carboxylate complexes with cis-ehelating diaeids.Inorg.Chim.Aeta 2004,357,(3),891-894.
    (53) Zhang,J.;Li,Z.J.;Kang,Y.;Cheng,J.K.;Yao,Y.G.Hydrothermal syntheses,crystal structures,and properties of a novel class of 3,3 ',4,4 '-benzophenone-tetmcarboxylate(BPTC)polymers.Inorg.Chem.2004,43,(25),8085-8091.
    (54) Ramanan,A.;Whittingham,M.S.How Molecules Turn into Solids:the Case of Self-Assembled Metal-Organic Frameworks.Cryst.Growth Des.2006,6,(11),2419-2421.
    (55) Kong,X.J.;Ren,Y.P.;Long,L.S.;Huang,R.B.;Zhang,L.S.Poly[[tris(mu(2)-4,4'-bipyridyl-kappa N-2:N ')bis(mu(2)-nitmto-kappa 0-2,0 ')hexamu (2)-oxo-dioxodimolybdenumtricopper(Ⅱ)]tetrahydrate]:a polymeric hybrid framework containing Cu2+,4,4-bipyridine,[MOO4](2-) and NO3- building units.Acta Crystallogr.,Sect.E 2005,61,M2346-M2347.
    (56) He,X.F.;Long,L.S.;Le,X.Y.;Chen,X.M.;Ji,L.N.;Zhou,Z.Y.Solid and solution studies of ternary copper(Ⅱ) complexes formed by heteroaromatic N bases and the anion of N,N-bis(2-hydroxyethyl)glycine(bicine).Inorg.Chim.Acta 1999,285,(2),326-331.
    (57) Gutierrez,L.;Alzuet,G.;Real,J.A.;Cano,J.;Borras,J.;Castineiras,A.Countercomplementarity and strong ferromagnetic coupling in a linear mixed mu-acetato, mu-hydroxo trinuclear copper(Ⅱ) complex.Synthesis,structure,magnetic properties,EPR,and theoretical studies.Inorg.Chem.2000,39,(16),3608-3614.
    (58) Izzet,G.;Akdas,H.;Hucher,N.;Giorgi,M.;Prange,T.;Reinaud,O.Supramolecular assemblies with calix[6]arenes and copper ions:from dinuclear to trinuclear linear arrangements ofhydroxo-cu(Ⅱ) complexes.Inorg.Chem.2006,45,(3),1069-1077.
    (59) Tong,M.L.;Wu,Y.M.;Tong,Y.X.;Chen,X.M.;Chang,H.C.;Kitagawa,S.Rational design of a ferromagnetic trinuclear copper(Ⅱ) complex with a novel in-situ synthesised metalloligand.Eur.J.Inorg.Chem.2003,(13),2385-2388.
    (60) Rajadurai,C.;Ostrovsky,S.;Falk,K.;Enkelmann,V.;Haase,W.;Baumgarten,M.Synthesis,crystal structure and magnetism of centrosymmetric linear trinuclear copper(Ⅱ)complex of pyridine nitronyl nitroxide derivative,Inorg.Chim.Acta 2004,357,(2),581-587.
    (61) Gonzalez-Alvarez,M.;Alzuet,G.;Borras,J.;Macias,B.;Castineiras,A.Oxidative cleavage of DNA by a new ferromagnetic linear trinuclear copper(Ⅱ) complex in the presence of H2O2/sodium ascorbate.Inorg.Chem.2003,42,(9),2992-2998.
    (62) Chivers,T.;Fu,Z.Y.;Thompson,L.K.Structure and magnetic properties of a novel copper halide framework {[(BuNH3)-Bu-t](2)[Cu-3(mu(3)-OH)(mu(2)-H20)C1-7]}(n) synthesized via in situ templation.Chem.Commun.2005,(18),2339-2341.
    (63) Ding,B.;Yi,L.;Cheng,P.;Liao,D.Z.;Yan,S.P.Synthesis and characterization of a 3D coordination polymer based on trinuclear triangular Cu-Ⅱ as secondary building units.Inorg.Chem.2006,45,(15),5799-5803.
    (64) Ouellette,W.;Yu,M.H.;O'Connor,C.J.;Hagrman,D.;Zubieta,J.Hydrothermal chemistry of the copper-triazolate system:A microporous metal-organic framework constructed from magnetic {Cu-3(mu(3)-OH)(triazolate)(3)}(2+) building blocks,and related materials.Angew.Chem.Int.Ed.2006,45,(21),3497-3500.
    (65) Korabik,M.;Matemy,M.;Surga,W.;Glowiak,T.;Mrozinski,J.Crystal structure,magnetism and spectroscopy of dimeric copper(II) complex with 2-methylpyrido[2,3-d]imidazole.J.Mole.Struct.1998,443,(1-3),255-263.
    (1) Bhattacharyya,K.Solvation dynamics and proton transfer in supramolecular assemblies.Acc. Chem.Res.2003,36,95-101.
    (2) Bu,X.H.;Xie,Y.B.;Li,J.R.,et al.Adjusting the frameworks of silver(Ⅰ) complexes with new pyridyl thioethers by varying the chain lengths of ligand spacers,solvents,and counteranions.Inorg.Chem,2003,42,7422-7430.
    (3) Hoger,S.;Morrison,D.L.;Enkelmann,V.Solvent triggering between conformational states in amphiphilic shape-persistent macrocycles.J.Am.Chem.Soc.2002,124,6734-6736.
    (4) Ma,L.;Lin,W.Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metal−Organic Frameworks.J.Am.Chem.Soc.2008,130,13834-13835.
    (5) Wang,F.K.;Yang,S.Y.;Huang,R.B.,et al.Control of the topologies and packing modes of three 2D coordination polymers through variation of the solvent ratio of a binary solvent mixture.Crystengcomm 2008,10,1211-1215.
    (6) Chen,B.L.;Fronczek,F.R.;Maverick,A.W.Solvent-dependent 4(4) square grid and 6(4).8(2) NbO frameworks formed by Cu(Pyac)(2)(bis[3-(4-pyridyl)pentane-2,4-dionato]copper(Ⅱ)).Chem.Commun.2003,2166-2167.
    (7) Heo,J.;Jeon,Y.M.;Mirkin,C.A.Reversible interconversion of homochiral triangular macrocycles and helical coordination polymers.J.Am.Chem.Soc.2007,129,7712-+.
    (8) Yang,J.;Li,G.D.;Cao,J.J.,et al.Structural variation from 1D to 3D:Effects ofligands and solvents on the construction of lead(Ⅱ)-organic coordination polymers.Chem.Eur.J 2007,13,3248-3261.
    (9) Vittal,J.J.Supramolecular structural transformations involving coordination polymers in the solid state.Coord.Chem.Rev.2007,251,1781-1795.
    (10) Braga,D.;Grepioni,E Making crystals from crystals:a green route to crystal engineering and polymorphism.Chem.Commun.2005,3635-3645.
    (11) Zhan,J.H.;Tseng,Y.H.;Chan,J.C.C.,et al.Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation.Advanced Functional Materials 2005,15,2005-2010.
    (12) Chen,P.K.;Che,Y.X.;Zheng,J.M.,et al.Heteropolynuclear metamaguet showing spin canting and single-crystal to single-crystal phase transformation.Chem.Mater.2007,19,2162-2167.
    (13) Hu,C.H.;Englert,U.Space filling versus symmetry:Two consecutive crystal-to-crystal phase transitions in a 2D network.Angew.Chem.Int.Ed.2006,45,3457-3459.
    (14) Hu,C.H.;Englert,U.Crystal-to-crystal transformation from a chain polymer to a two-dimensional network at low temperatures.Angew.Chem.Int.Ed.2005,44,2281-2283.
    (15) Kumar Maji,T.;Mostafa,G.;Matsuda,R.,et al.Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation.J.Am.Chem.Soc.2005,127,17152-17153.
    (16) Garcia-Garibay,M.A.Molecular crystals on the move:From single-crystal-to-single-crystal photoreactions to molecular machinery.Angew.Chem.Int.Ed.2007,46,8945-8947.
    (17) Takami,S.;Kuroki,L.;Irie,M.Photochromism of mixed crystals containing bisthienyl-,bisthiazolyl-,and bisoxazolylethene derivatives.J..Am.Chem.Soc.2007,129,7319-7326.
    (18) Toh,N.L.;Nagarathinam,M.;Vittal,J.J.Topochemical photodimerization in the coordination polymer[{(CF3CO2)(mu-O2CCH3)Zn)(2)(mu-bpe)(2)](n) through single-crystal to single-crystal transformation.Angew.Chem.Int.Ed.2005,44,2237-2241.
    (19) Papaefstathiou,G.S.;Zhong,Z.M.;Geng,L.,et al.Coordination-driven self-assembly directs a single-crystal-to-single-crystal transformation that exhibits photocontrolled fluorescence.J..Am.Chem.Soc.2004,126,9158-9159.
    (20) Yamamoto,S.;Matsuda,K.;Irie,M.Absolute asymmetric photocyclization of a photochromic diarylethene derivative in single crystals.Angew.Chem.Int.Ed.2003,42,1636-1639.
    (21) Ohba,S.;Hosomi,H.;Ito,Y.In situ X-ray observation of pedal-like conformational change and dimerization of trans-cinnamamide in cocrystals with phthalic acid.J.Am.Chem.Soc.2001,123,6349-6352.
    (22) Kim,J.H.;Hubig,S.M.;Lindeman,S.V.,et al.Diels-Alder topochemistry via charge-transfer crystals:Novel(Thermal) single-crystal-to-single-crystal transformations.J.Am.Chem.Soc.2001,123,87-95.
    (23) Kim,J.H.;Lindeman,S.V.;Kochi,J.K.Charge-transfer forces in the self-assembly of heteromolecular reactive solids:Successful design of unique(single-crystal-to-single-crystal)Diels-Alder cycloadditions.J.Am.Chem.Soc.2001,123,4951-4959.
    (24) Suzuki,T.;Fukushima,T.;Yamashita,Y.,et al.An Absolute Asymmetric-Synthesis of the [2+2]Cycloadduct Via Single Crystal-to-Single Crystal Transformation by Charge-Transfer Excitation of Solid-State Molecular-Complexes Composed of Arylolefins and Bis[1,2,5]Thiadiazolotetracyanoquinodimethane.J.Am.Chem.Soc.1994,116,2793-2803.
    (25) Neville,S.M.;Halder,G.J.;Chapman,K.W.,et al.Single-crystal to single-crystal structural transformation and photomagnetic properties of a porous iron(Ⅱ) spin-crossover framework.J.Am.Chem.Soc.2008,130,2869-2876.
    (26) Nihei,M.;Han,L.Q.;Oshio,H.Magnetic bistability and single-crystal-to-single-crystal transformation induced by guest desorption.J.Am.Chem.Soc.2007,129,5312-+.
    (27) Supriya,S.;Das,S.K.Reversible single crystal to single crystal transformation through Fe-O(H)Me/Fe-OH2 bond formation/bond breaking in a gas-solid reaction at an ambient condition.J..Am.Chem.Soc.2007,129,3464-+.
    (28) Kaneko,W.;Ohba,M.;Kitagawa,S.A flexible coordination polymer crystal providing reversible structural and magnetic conversions.J.Am.Chem.Soc.2007,129,13706-13712.
    (29) Cheng,X.N.;Zhang,W.X.;Lin,Y.Y.,et al.A dynamic porous magnet exhibiting reversible guest-induced magnetic behavior modulation.Advanced Materials 2007,19,1494-+.
    (30) Kurmoo,M.;Kumagai,H.;Chapman,K.W.,et al.Reversible ferromagnetic-antiferromagnetic transformation upon dehydration-hydration of the nanoporous coordination framework,[Co-3(OH)(2)(CAO4)(2)]center dot 3H(2)O.Chem.Commun.2005,3012-3014.
    (31) Wang,X.Y.;Scancella,M.;Sevov,S.C.Studies of the mechanism of a single-crystal-to-single-crystal reversible dehydration of a copper carboxylate framework.Chem.Mater.2007,19,4506-4513.
    (32) Braga,D.;Curzi,M.;Johansson,A.,et al.Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules.Angew.Chem.Int.Ed.2006,45,142-146.
    (33) Chae,H.K.;Siberio-Perez,D.Y.;Kim,J.,et al.A route to high surface area,porosity and inclusion of large molecules in crystals.Nature 2004,427,523-527.
    (34) Atwood,J.L.;Barbour,L.J.;Jerga,A.,et al.Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity.Science 2002,298,1000-1002.
    (35) Chang,H.C.P.-B.,R.;Lahav,M.;Leiserowitz,L.Mapping the molecular pathway during photoaddition of guest acetophenone and p-fluoroacetophenone to host deoxycholic acid as studied by X-ray diffraction in systems undergoing single-crystal-to-single-crystal transformation.J.Am.Chem.Soc.1987,109,3883-3893.
    (36) Dan,M.;Rao,C.N.R.A building-up process in open-framework metal carboxylates that involves a progressive increase in dimensionality.Angew.Chem.Int.Ed.2006,45,281-285.
    (37) Ghosh,S.K.;Zhang,J.P.;Kitagawa,S.Reversible topochemical transformation of a soft crystal of a coordination polymer.Angew.Chem.Int.Ed.2007,46,7965-7968.
    (38) Ranford,J.D.;Vittal,J.J.;Wu,D.Q.Topochemical conversion of a hydrogen-bonded three-dimensional network into a covalently bonded framework.Angew.Chem.Int.Ed.1998,37,1114-1116.
    (39) Ranford,J.D.;Vittal,J.J.;Wu,D.Q.,et al.Thermal conversion of a helical coil into a three-dimensional chiral framework.Angew.Chem.Int.Ed.1999,38,3498-3501.
    (40) Chandler,B.D.;Enright,G.D.;Udachin,K.A.,et al.Mechanical gas capture and release in a network solid via multiple single-crystalline transformations.Nature Materials 2008,7,229-235.
    (41) Cheng,X.N.;Zhang,W.X.;Chen,X.M.Single crystal-to-single crystal transformation from ferromagnetic discrete molecules to a spin-canting antiferromagnetic layer.J.Am.Chem.Soc.2007,129,15738-+.
    (42) Baca,S.G.F.,I.G.;Gherco,O.A.;Gdaniec,M.;Simonov,Y.A.;Gerbeleu,N.V.;Franz,P.;Basler,R.;Decurtins,S.Nickel(Ⅱ)-,cobalt(Ⅱ),copper(Ⅱ)-,and zinc(Ⅱ)-phthalate and 1-methylimidazole coordination compounds:synthesis,crystal structures and magnetic properties.Inorg.Chim.Acta 2004,357,3419-3429.
    (43) Baca,S.G.;Reetz,M.T.;Goddard,R.,et al.Coordination polymers constructed from o-phthalic acid and diamines:Syntheses and crystal structures of the phthalate-imidazole complexes {[Cu(Pht)(Im)(2)]center dot 1.5H(2)O}n and[Co(Pht)(Im)(2)](n) and their application in oxidation catalysis.Polyhedron 2006,25,1215-1222.
    (44) Fu,X.C.;Wang,X.Y.;Li,M.T.,et al.Poly[[aquatetraimidazoledi-mu-phthalato-dicopper(Ⅱ)]monohydrate].Acta Crystallogr.,Sect.C 2006,62,M343-M345.
    (45) Sheldrick,G.M.SADABS 2.05 University of G(o|¨)ttingen,Germany.
    (46) SHELXTL 6.10 2000,Bruker Analytical Instrumentation,Madison,WI.
    (47) Eddaoudi,M.;Moler,D.B.;Li,H.L.,et al.Modular chemistry:Secondary building units as a basis for the design of highly porous and robust metal-organic earboxylate frameworks.Acc.Chem.Res.2001,34,319-330.
    (48) Aslani,A.;Morsali,A.Crystal-to-crystal transformation from a chain polymer to a two-dimensional network by thermal desolvation.Chem.Commun.2008,3402-3404.
    (49) Mahmoudi,G.;Morsali,A.Crystal-to-crystal transformation from a weak hydrogen-bonded two-dimensional network structure to a two-dimensional coordination polymer on heating.Crystal Growth & Design 2008,8,391-394.
    (1) Gao,E.Q.;Yue,Y.F.;Bai,S.Q.,et al.From achiral ligands to chiral coordination polymers:Spontaneous resolution,weak ferromagnetism,and topological fcrrimagnctism.J.Am.Chem.Soc.2004,126,1419-1429.
    (2) MacQuarric,S.;Thompson,M.P.;Blanc,A.,et al.Chiral Periodic Mesoporous Organosilicates Based on Axially Chiral Monomers:Transmission of Chirality in the Solid State.J.Am.Chem.Soc.2008,130,14099-14101.
    (3) Li,X.-Z.;Li,M.;Li,Z.,et al.Concomitant and Controllable Chiral/Racemic Polymorphs:From Achirality to Isotactic,Syndiotactic,and Hctcrotactic Chirality.Angewandte Chemie,International Edition 2008,47,6371-6374.
    (4) Eddaoudi,M.;Molcr,D.B.;Li,H.L.,ct al.Modular chemistry:Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.Acc.Chem.Res.2001,34,319-330.
    (5) Luan,X.J.;Cai,X.H.;Wang,Y.Y.,ct al.An investigation of the self-assembly of neutral, interlaced,triple-stranded molecular braids.Chem.Eur.J 2006,12,6281-6289.
    (6) Kongshaug,K.O.;Fjellvag,H.Coordination polymers constructed from paddle-wheel building units.Journal of Solid State Chemistry 2002,166,213-218.
    (7) Eddaoudi,M.;Kim,J.;Wachter,J.B.,et al.Porous metal-organic polyhedra:25 angstrom cuboctahedron constructed from 12 Cu-2(CO2)(4) paddle-wheel building blocks.J.Am.Chem.Soc.2001,123,4368-4369.
    (8) Eddaoudi,M.;Kim,J.;Rosi,N.,et al.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage.Science 2002,295,469-472.
    (9) Kim,J.;Chen,B.L.;Reineke,T.M.,et al.Assembly of metal-organic frameworks from large organic and inorganic secondary building units:New examples and simplifying principles for complex structures.J.Am.Chem.Soc.2001,123,8239-8247.
    (10) Cheetham,A.K.;Ferey,G.;Loiseau,T.Open-framework inorganic materials.Angew.Chem.Int.Ed.1999,38,3268-3292.
    (11) Miyaura,N.;Suzuki,A.Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds.Chem.Rev.1995,95,2457-2483.
    (12) Ma,L.;Lee,J.Y.;Li,J.,et al.3D Metal-Organic Frameworks Based on Elongated Tetracarboxylate Building Blocks for Hydrogen Storage.Inorg.Chem.2008,47,3955-3957.We incorrectly identified the network topology of these compounds as the distorted PtS net in this paper.
    (13) A.L.Spek..PLATON,A Multipurpose Crystallographic Tool,Utrecht University,Utrecht,The Netherlands.2008.
    (14) Blatov,V.A.;Shevchenko,A.P.;Serezhkin,V.N.Computer-aided crystalloehemieal analysis:TOPOS program package.Russian Journal of Coordination Chemistry 1999,25,453-465.http://www.topos.ssu.samara.ru.
    (15) Delgado-Friedrichs,O.;O'Keeffe,M.Identification of and symmetry computation for crystal nets.Acta Crystallographica Section A 2003,A59,351-360.http://www.gavrog.org.
    (16) Horváth,G.;Kawazoe,K.Method for the Calculation of Effective Pore-Size Distribution in Molecular-Sieve Carbon.Journal of Chemical Engineering of Japan 1983,16,470-475.
    (17) GómezLor,B.;Echavarren,A.M.;Santos,A.Palladium-catalyzed synthesis of tetraethynyl and tetmethenyl biphenyls:Elongated tetrahedral tectons.Tetrahedron Letters 1997,38,5347-5350.
    (18) Wipff,G.;Weiner,P.;Kollman,P.A Molecular Mechanics Study of 18-Crown-6 and Its Alkali Complexes - an Analysis of Structural Flexibility,Ligand Specificity,and the Macroeyclic Effect.J.Am.Chem.Soc.1982,104,3249-3258.
    (19) Steed,J.W.First- and second-sphere coordination chemistry of alkali metal crown ether complexes.Coord.Chem.Rev.2001,215,171-221.
    (20) Zhang,H.;Wang,X.M.;Zhang,K.C.,et al.Molecular and crystal engineering of a new class of inorganic cadmium-thiocyanate polymers with host-guest complexes as organic spacers,controllers,and templates.Coord.Chem.Rev.1999,183,157-195.
    (21) Chun,H.;Kim,D.;Dybtsev,D.N.,et al.Metal-organic replica of fluorite built with an eight-connecting tetranuclear cadmium cluster and a tetrahedral four-connecting ligand.Angew.Chem.Int.Ed.2004,43,971-974.
    (22) Kathryn M.L.Taylor;Athena Jin;Lin,W.Surfactant-Assisted Synthesis of Nanoscale Gadolinium Metal-Organic Frameworks:Coordination Isomerism and Potential in Multimodal Imaging.Angew.Chem.Int.Ed.2008,anie.200802911.
    (23) Zou,R.Q.;Zhong,R.Q.;Du,M.,et al.Highly-thermostable metal-organic frameworks (MOFs) of zinc and cadmium 4,4 '-(hexafluoroisopropylidene)diphthalates with a unique fluorite topology.Chem.Commun.2007,2467-2469.
    (24) Barthelet,K.;Marrot,J.;Riou,D.,et al.A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics.Angew.Chem.Int.Ed.2002,41,281-284.
    (25) Férey,G.;Mellot-Draznieks,C.;Serre,C.,et al.Crystallized frameworks with giant pores:Are there limits to the possible? Acc.Chem.Res.2005,38,217-225.
    (26) Serre,C.;Millange,F.;Thouvenot,C.,et al.Very large breathing effect in the first nanoporous chromium(Ⅲ)-based solids:MIL-53 or Cr-~Ⅲ(OH)center dot{O_2C-C_6H_4-CO_2}center dot{HO2C-C6H4-CO2H}(x)center dot H2Oy.J.Am.Chem.Soc.2002,124,13519-13526.
    (1) Kesanli,B.;Lin,W.B.Chiral porous coordination networks:rational design and applications in enantioselective processes.Coord.Chem.Rev.2003,246,305-326.
    (2) Wu,C.-D.;Hu,A.;Zhang,L.,et al.A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis.J.Am.Chem.Soc.2005,127,8940-8941.
    (3) Wu,C.D.;Lin,W.B.Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks:Network-structure-dependent catalytic activity.Angew.Chem.Inter.Ed.2007,46,1075-1078.
    (4) Tanaka,K.;Oda,S.;Shiro,M.A novel chiral porous metal-organic framework:asymmetric ring opening reaction of epoxide with amine in the chiral open space.Chem.Commun.2008,820-822.
    (5) Lee,S.J.;Hu,A.G.;Lin,W.B.First chiral organometallic triangle for asymmetric catalysis.J.Am.Chem.Soc.2002,124,12948-12949.
    (6) Zang,S.Q.;Su,Y.;Li,Y.Z.,et al.Assemblies of a new flexible multicarboxylate ligand and d(10) metal centers toward the construction of homochiral helical coordination polymers:Structures,luminescence,and NLO-active properties,Inorg.Chem.2006,45,174-180.
    (7) Liu,Y.;Xu,X.;Zheng,T.,et al.Chiral octupolar metal-oraganoboran NLO frameworks with (14,3) topology.Angew.Chem.Inter.Ed.2008,47,4538-4541.
    (8) Fu,D.W.;Zhang,W.;Xiong,R.G.Isotope effect on SHG response and ferroelectric properties of a homochiral zinc coordination compound containing tetrazole ligand.Crystal Growth & Design 2008,8,3461-3464.
    (9) Lin,W.B.;Wang,Z.Y.;Ma,L.A novel octupolar metal-organic NLO material based on a chiral 2D coordination network.J.Am.Chem.Soy 1999,121,11249-11250.
    (10) Nuzhdin,A.L.;Dybtsev,D.N.;Bryliakov,K.P.,et al.Enantioselective chromatographic resolution and one-pot synthesis of enantiomerically pure sulfoxides over a homochiral Zn-organic framework.J.Am.Chem.So 2007,129,12958-+.
    (11) Dybtsev,D.N.;Nuzhdin,A.L.;Chun,H.,et al.A homochiral metal-organic material with permanent porosity,enantioselective sorption properties,and catalytic activity.Angew.Chem.Inter.Ed.2006,45,916-920.
    (12) Seo,J.S.;Whang,D.;Lee,H.,et al.A homochiral metal-organic porous material for enantioselective separation and catalysis.Nature 2000,404,982-986.
    (13) Lin,W.Metal-organic frameworks for asymmetric catalysis and chiral separations.MRS Bulletin 2007,32,544-548.
    (14) Bradshaw,D.;Prior,T.J.;Cussen,E.J.,et al.Permanent microporosity and enantioselective sorption in a chiral open framework.J.Am.Chem.So 2004,126,6106-6114.
    (15) 吴艳嵘.利用配位聚合物进行水簇和手性对称性破缺的研究.厦门大学硕士学位论文2004.
    (16) Asakura,K.;Kurihara,K.;Ikumo,A.,et al.Chirally autocatalytic reaction performed in highly supersaturated conditions.Macromol.Symp.2000,160,7-13.
    (17) Kondepudi,D.K.;Asakura,K.Chiral Autocatalysis,Spontaneous Symmetry Breaking,and Stochastic Behavior.Acc.Chem.Res.2001,34,946-954.
    (18) Asakura,K.;Kondepudi,D.K.;Martin,R.Mechanism of Chiral Asymmetry Generation by Chiral Autocatalysis in the Preparation of Chiral Octahedral Cobalt Complex.Chirality 1998,10,343-348.
    (19) Ratke,L.;Voorhees,P.W.Growth and coarsening:Ostwald ripening in material processing.Springer 2002,ISBN 3540425632,117-118.
    (20) Sheldrick,G.M.SADABS 2.05 University of Grttingen,Germany.
    (21) SHELXTL 6.10 2000,Bruker Analytical Instrumentation,Madison,WI.
    (22) A.L.Spek..PLATON,A Multipurpose Crystallographic Tool,Utrecht University,Utrecht,The Netherlands.2008.
    (23) Blatov,V.A.;Shevchenko,A.P.;Serezhkin,V.N.Computer-aided crystallochemical analysis:TOPOS program package.Russian Journal of Coordination Chemistry 1999,25,453-465.http://www.topos.ssu.samara.ru.
    (24) Delgado-Friedrichs,O.;O'Keeffe,M.Identification of and symmetry computation for crystal nets.Acta Crystallographica Section A 2003,A59,351-360.http://www.gavrog.org.
    (25) Zheng,Y.Q.;Kong,Z.P.A novel 3D framework coordination polymer based on succinato bridged helical chains connected by 4,4 '-bipydidine:[Cu(bpy)(H2O)(2)(C4H4O4)]center dot 2H20.Zeitschrift Fur Anorganische Und Allgemeine Chemie 2003,629,1469-1471.
    (1) 康清清.手性配位聚合物的合成与性质研究.厦门大学硕士学位论文 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700