用户名: 密码: 验证码:
XIAP及CASPASE-3在年龄相关性听力减退C57BL/6J小鼠初级听皮层中的表达及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     老年性聋( presbycusis )是由于年龄增长引起的听觉器官衰老、退变而出现的双耳对称、缓慢进行性感音神经性听力减退。临床研究显示老年性聋可能是外周听觉系统和中枢系统功能联合降低衰变的结果,听力生理学的研究提示中枢的改变参与了老年性聋的发展。随着研究的深入,发现老年性聋与听觉细胞的凋亡有关。在细胞凋亡的过程中,半胱氨酸基天冬氨酸-特异性蛋白酶3(Cysteinyl aspartate specific proteinase-3, Caspase-3)被认为是此过程的必经之路,是细胞凋亡中的关键酶,在细胞凋亡分子机制网络中居核心地位。而凋亡抑制蛋白家族(Inhibitor of apoptosis protein, IAP)是哺乳动物体内唯一的内源性凋亡抑制因子,IAP通过抑制CASPASE等多种途径而发挥抗凋亡作用。其中X染色体连锁凋亡抑制蛋白( X-linked inhibitor of apoptosis protein, XIAP )的结构最典型,作用最强,功能最全面。本实验旨在通过测定年龄相关性听力减退小鼠听皮层XIAP、Caspase-3含量的变化及对初级听皮层细胞凋亡情况的检测,初步探讨老年性聋与听皮层细胞凋亡的关系及初级听皮层细胞凋亡与XIAP、Caspase-3之间的关系,深入认识老年性耳聋发病机制,并为老年性耳聋的临床治疗提供新的思路。
     材料和方法:
     1、分别选取15只2月龄C57BL/6J小鼠(15-20克)和15只10月龄C57BL/6J小鼠(50-60克),检测两组C57BL/6J小鼠听性脑干反应(Auditory brainstem response,ABR)。
     2、采用免疫组织化学法,分别染色检测两组C57BL/6J小鼠初级听皮层XIAP、Caspase-3的表达情况。
     3、采用末端转移酶介导的原位缺口末端标记(Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling,TUNEL)染色技术与透射电镜技术检测两组实验动物初级听皮层细胞凋亡状况。
     结果:
     1、2月龄组小鼠ABR检测2KHz、4KHz听力阈值分别为64.33±8.49dB SPL、58.33±8.80dB SPL,10月龄组小鼠ABR检测相同频率听力阈值分别为76.33±7.89dB SPL、74.67±5.16dB SPL,10月龄组较2月龄组听力阈值有所提高。与此同时2月龄组小鼠ABR检测8KHz、16KHz、32KHz听力阈值平均为17.33±4.95dB SPL、25.67±2.28dB SPL、36.33±7.67dB SPL,10月龄组小鼠ABR检测相同频率听力阈值平均为68.00±9.78dB SPL、52.67±7.53dB SPL、80.33±6.11dB SPL。两组的听力阈值在各频率都有明显差异(P<0.05),但是在高频部分10月龄龄组听力阈值提高较低频部分更明显一些。
     2、在2月龄组中凋亡抑制蛋白XIAP的表达数目较多,经图像分析系统计数,2月龄组中凋亡抑制蛋白XIAP的表达数目为476.33±57.35,10月龄组中凋亡抑制蛋白XIAP的表达数目为402.00±23.75,两者比较有统计学意义(P<0.01)。在2月龄组中,可见Caspase-3的表达数目略少,经图像分析系统计数,2月龄组中Caspase-3表达阳性细胞个数为856.67±62.60,10月龄组中Caspase-3表达阳性细胞个数为937.13±81.01,两者比较有统计学意义(P<0.01)
     3、与2月龄组C57BL/6J小鼠相比,10月龄组C57BL/6J小鼠初级听皮层中细胞凋亡数目明显增多。经图像分析系统计数,2月龄组中初级听皮层中细胞凋亡数为997.60±66.62,10月龄组中初级听皮层细胞凋亡数为1978.13±101.76,两者比较有统计学意义(P<0.01)。
     4、透射电镜下形态学观察,10月龄组C57BL/6J小鼠初级听皮层细胞细胞核,较多出现凋亡改变,表现为染色体破碎、边集;2月龄组C57BL/6J小鼠初级听皮层神经元细胞核完整,较少表现出凋亡改变
     结论:
     1、随年龄增长C57BL/6J小鼠的听力减退,同时C57BL/6J小鼠大脑初级听皮层细胞凋亡数量增多,小鼠初级听皮层细胞的凋亡,可能是老年性耳聋的发病机制中一个重要因素。
     2、随年龄增长C57BL/6J小鼠大脑初级听皮层中Caspase-3的表达显著增多,凋亡抑制蛋白XIAP的表达减少,XIAP、Caspase-3的表达可能在小鼠老年性耳聋的发生、发展过程中起重要作用,它们可能参与了小鼠初级听皮层神经元的凋亡调控过程。
Objective
     Presbycusis, or age-related hearing loss, is the cumulative effect of aging on hearing. Also known as presbycusis, it is defined as a progressive bilateral symmetrical age-related sensorineural hearing loss. The hearing loss is most marked at higher frequency. The clinical research demonstrate presbycusis possibly was the result of the peripheral auditory system and the center auditory system function reduces the decay jointly, the hearing physiology research promptly center's change participated in presbycusis development. Along with research thorough, discovered the presbycusis with the Apoptosis of hearing cell concerns. The cell presbycusis is a highly coordinated process, in which cysteinyl aspartate specific proteinase-3 (Caspase-3) was considered is road which must be taken in this process, is the key enzyme in the cell Apoptosis, Apoptosis in the cell in the molecular machine network to occupy the core status. But Inhibitor of apoptosis protein (IAP) is the mammal in vivo only apoptosis the inhibiting factor, IAP through suppresses Caspase and many other kinds of ways to display anti-Apoptosis the function. Among them, the structure of X-linked inhibitor of apoptosis protein (XIAP) is most typical, the function is strongest, is most comprehensive. This experiment is for the purpose of through the determination XIAP、Caspase-3、Apoptosis in Primary auditory cortex of age relevant hearing decrease mouse, discusses the relation between presbycusis with Apoptosis of cell in Primary auditory cortex and relations between Apoptosis of cell in Primary auditory cortex with XIAP、CASPASE-3, knew thoroughly the pathogenesis of presbycusis, and provides the new mentality for the presbycusis treatment.
     Materials and methods
     1. separately selects 15 in February age C57BL/6J mouse (15-20 gram) and 15 in October age C57BL/6J mouse (50-60 gram), examines two group of C57BL/6J mice to Auditory brainstem response(ABR).
     2. useing the immunohistochemical method to check out the expression of XIAP、CASPASE-3 in two group Primary auditory cortex of C57BL/6J mice.
     3. useing Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) dye technical and Transmission electron microscope (TEM) technology to examines the condition of apoptosis in two group of experimental animals in Primary auditory cortex.
     Results
     1. in February age group mouse, ABR examines 2KHz, the 4KHz hearing threshold value the results respectively be 64.33±8.63dB SPL, 58.33±8.80dB SPL, in October age group mouse, ABR examines the same frequency hearing threshold value, the result respectively be 76.33±7.89dB SPL, 74.67±5.16dB SPL, in October age group compares in February age group hearing threshold value to have the enhancement. At the same time in February age group mouse, ABR examines 8KHz, 16KHz, the 32KHz hearing threshold value, the result is average for 17.33±4.95dB SPL, 25.67±7.28dB SPL, 36.33±7.67dB SPL, in October age group mouse, ABR examines the same frequency hearing threshold value, the result is average for 68.00±9.78dB SPL, 52.67±7.53dB SPL, 80.33±6.11dB SPL. Two group of hearing threshold values all have the obvious difference in various frequencies (P<0.05).
     2. in February age group the XIAP expression number to be more weakly, after the image analysis system counting, in February age group,the XIAP expression number for 476.33±57.35, in October age group,the XIAP expression number for 402.00±23.75, both comparison has statistics significance (P<0.01). In February age group, obviously Caspase-3 expression number slightly few, after the image analysis system counting, in February age group,the Caspase-3 expression number for 856.67±62.60, in October age group the Caspase-3 expression number for 937.13±81.01, both comparison has statistics significance (P<0.01)
     3. compares with October age group C57BL/6J mouse, in February age group C57BL/6J mouse,the number of the cell apoptosis in the Primary auditory cortex obviously weakly. After the image analysis system counting, in February age group,the number of the cell apoptosis in the Primary auditory cortex is for 997.60±66.62, in October age group,the number of the cell apoptosis in the Primary auditory cortex is for 1978.13±101.76, both comparison has statistics significance (P<0.01).
     Conclusions
     1. the C57BL/6J mouse's hearing decrease along with the age, simultaneously the number of the cell apoptosis in the Primary auditory cortex of the C57BL/6J mouse increase obviously, the cell apoptosis in the Primary auditory cortex possibly is an important attribute.
     2. in the C57BL/6J mouse along with the age-related hearing impairment, the Caspase -3 expression obviously to increase, the XIAP expression reduction in the Primary auditory cortex. the expression of XIAP and Caspase-3 possibly in the presbycusis occurrence, the developing process the vital role, they possibly participated in the regulative process of the cell apoptosis in the Primary auditory cortex of the mouse.
引文
1. George A Gates, John H Mills. Presbycusis. Lancet 2005; 366:1111-20.
    2. Mazelova J, Popelar J, Syka J. Auditory function in presbycusis:peripheral vs. central changes. Exp Gerontol, 2003; 38(1-2):87-94.
    3. Tremblay KL , Piskosz M, Souza P. Effects of age and age-related hearing loss on the neural representation of speech cues. Clin Neurophysional 2003, Jul, 114(7):1332-1343.
    4. Patrick C.M. Wong, James Xumin Jin, Geshri M. Gunasekera, et al. Aging and cortical mechanisms of speech perception in noise. Neuropsychology. 2009(47):693-703.
    5. Hwang JH, Li CW, Wu CW, et al. Aging effects on the activation of the auditory cortex during binaural speech listening in white noise: an fMRI study. Audiol Neruootol. 2007; 12(5):285-294.
    6. Sadamitsu Asoh, Shigeo Ohta. PTD-mediated delivery of anti-cell death proteins/peptides and therapeutic enzymes. Advanced Drug Delivery Reviews, 2008; 60(4-5):499-516.
    7. R.M. Friedlander. Apoptosis and Caspases in Neurodegenerative Diseases. N. Engl. J. Med., April 3, 2003; 348(14): 1365– 1375.
    8. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science, 1998 Aug 28; 281(5381):1312-1316.
    9. Tsujimoto Y, Finger LR, Yunis J, et al. Cloning of the chromosome break point of neoplastic B cells with the t(14:18) chromosome translocation. Science, 2004 Nov 30; 226(4678):1097-1099.
    10.金伯泉.细胞和分子免疫学.第2版.北京:科学出版社,2001.702-703
    11. Huesmann GR, Clayton DF. Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron. 2006 Dec 21; 52(6):1061-1072.
    12. Straten G, Schmeer C, Kretz A, et al. Potential synergistic protection of retinal ganglion cells from axotomy-induced apoptosis by adenoviral administration of glial cell line-derived neurotrophic factor and X-chromosome-linked inhibitor of apoptosis. Neurobiol Dis 2002; 11(1):123-133.
    13. Korhonen L, Belluardo N, Lindholm D. Regulation of X-chromosome-linked inhibitorof apoptosis protein in Kainic acid-induced neuronal death in the rat hippocampus. Mol Cell Neurosci 2001; 17(2):364-372.
    14. Trapp T, Korhonen L, Besselmann M, et al. Transgenic mice over expressing XIAP in neurons show better outcome after transient cerebral ischemia[J]. Mol Cell Neurosci, 2003, 23(2): 302-313.
    15.战梅,杨仁池凋亡抑制蛋白XIAP的研究进展国外医学.生理、病理科学与临床分册,2004,2,24(1)
    16. Laura A. Zadro-Lamoureux,David N. Zacks,et al. Effects on XIAP Retinal Detachment–Induced Photoreceptor Apoptosis. Investigative Ophthalmology and Visual Science. 2009; 50:1448-1453.
    17. Schnerson A, Dev Pujol R. Age-related changes in the C57BL/6J mouse cochlea. Physiological findings [J]. Brain Res, 1981, 2:65.
    18. Chole RA, Henry KR. Disparity in the cytocochleogram and the electrocochleogram in aging P/J and A/J inbred mice [J]. Audiology, 1983, 22:383.
    19. George P,Keith B. The Mouse Brain in stereotaxic coordinates. Second edition. Academic press, 2001.21-112.
    20. McFadden SL, Ding D, Salvi R. Anatomical metabolic and genetic aspects of age-related hearing loss in mice. Audiology, 2001, 40(6):313-321.
    21. Bao J, Lei D, Du Y, et al. Requirement of nicotinic acetylcholine receptor subunit beta2 in the maintenance of spiral ganglion neurons during aging. J Neuroscience 2005, 25(12): 3041-3045.
    22. Gaihede M, Koefoed-Nielsen B. Mechanics of the middle ear system: age-related changes in viscoelastic properties. Audiol Neurootol 2000, 5(2):53-58.
    23. Gates GA, Feeney MP, Higdon RJ. Word recognition and the articulation index in older Listeners with probable age-related auditory neuropathy. JAmAcadAudiol.2003 Dec;14(10):574-81
    24. Sastry PS, Rao KS. Apoptosis and the nervous system. J Neurochem, 2000, 74:1-20.
    25. Savitz SI, Rosenbaum DM. Apoptosis in neurological disease. Neurosurgy, 1998;42: 555-574.
    26. Honig LS, Rosenberg RN. Apoptosis and neurologic disease, physiology in medicine. Am J Med, 2000, 108: 317-330.
    27. Graham SH, Chen J. Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab, 2001, 21: 99-109.
    28. Pothana S, Zheng D, Valery M, et al. Apoptosis: definition, mechanisms and relevance to disease. Am J Med, 1999, 107: 489-506.
    29. Yamashima T. Implication of cysteine proteases calpain, catheps in and caspase in ischemic neuronal death of primates. Prog Neurobiol, 2000, 62:273-295.
    30. Zamzami N, Hirsch T, Dallaporta B, et al. Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Biomembr, 1997,29: 185-191.
    31. Green D, Kroemer G. The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol, 1998, 8: 267-271.
    32. Marani M,Tenev T,Hancock D,et al. Identification of noveliso forms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis [J] .Mol Ceil Biol, 2002;22 (11):3577-3589.
    33. Yan Zhang,Cynthia Goodyer,and Andren Le Blanc. Selective and protracted apoptosis in human primary neurons microinjection with active caspase-3,-6,-7 and -8 [J]. J Neurosci, 2000, 20:8384-8389.
    34. Cryns V,Yuan J. Protease to die for [J]. Genes Dev,1998;12(11):1551-1570.
    35. Harrison DC, Medhurst AD, Bond BC, et al. The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia—caspase-3 as a case study. Mol Brain Res, 2000, 75: 143-149.
    36. Schmidt-Kastner R, Truettner J, Zhao W, et al. Differential changes of bax, caspase-3 and p21 mRNA expression after transient focal brain ischemia in the rat. Mol Brain Res, 2000, 79: 88-101.
    37. Harrison DC, Davis RP, Bond BC, et al. Caspase mRNA expression in a rat model of focal cerebral ischemia. Mol Brain Res, 2001, 89: 133–146.
    38. Namura S, Zhu J, Fink K, et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci, 1998, 18: 3659-3668.
    39. Budihardjo I, Oliver H, Lutter M. et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999, 15: 69-290.
    40. Liu X, Zou H, Slaughter C, et al. DFF, a heterodimeric protein that functionsdownstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell, 1997, 89: 175-184.
    41. MacManus JP, Linnik MD. Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Blood Flow Metab, 1997, 17: 815-832.
    42. Velier JJ, Ellison JA, Kikly KK, et al. Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J Neurosci, 1999, 19: 5932-5941.
    43. Communal C,Sumandea M,De Tombe P,et al. Functional consequences of caspase activation in cardiac myocytes [J]. Proc NatlAcad Sci USA, 2002,99 (9):6252-6256.
    44. Enari M,Sakahira H,Yokoyama H,et al. A caspase-activated DNase that degrades DNA during apoptosis,and its inhibitor ICAD[J]. Nature, 1998, 391:43.
    45. Deveraux Q L, Reed J C. IAP family proteins-suppressors of apoptosis [J].Genes Dev, 1999, 13(3): 239-252.
    46. Gruslin A, Qiu Q, Tsang BK. Influence of maternal smoking on trophoblast apoptosis throughout development: possible involvement of Xiap regulation. Biol Reprod, 2001, 65(4): 1164-1169.
    47. Rajcan-Separavic E, Liston P, Lefebvre C, et a1. Assignment of human inhibitor of apoptosis protein(IAP)genes xiap, hiap-1, and hiap-2 to chromosomes Xq25 and 11q22-q23 by fluorescence in situ hybridization[J]. Genomics, 1996, 37(3):404-406.
    48. Shiozaki EN, Chai J, Rigotti DJ, et a1. Mechanism of XIAP-mediated inhibition of caspase-9[J]. Mol Cell, 2003, ll (2): 519-527.
    49. Zou H, Yang R, Hac J, et a1. Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP[J]. J Biol Chem, 2003, 278 (10): 809l-8098
    1. Mc Fadden SL, Ding D, Salvi R. Anatomical metabolic and genetic aspects of age-related hearing loss in mice. Audiology, 2001 40(6):313-321.
    2. Bao J, Lei D, Du Y, et al. Requirement of nicotinie acetylcholine receptor subunit beta2 in the maintenance of spiral ganglion neurons during aging. J Neurosci 2007,25(12): 3041-3045
    3. Gaihede M, Koefoed-Nielsen B. Mechanics so the middle ear system: age-related changes in viscoelastic properties. Audio Nerrotol 2003 5(2): 53-58.
    4. Ohlemiller KK. Age-related hearing loss: the status of Schuknecht's typology. CurrOpin Otolaryngol Head Neck Surg. 2004Oct;12(5):439-43
    5. Tremblay KL, Piskosz M, Souza P. Effects of age and age-related hearing loss on the neural changes in viscoelastic properties. Audio Nerrotol 2001 5(2): 53-58
    6. Haman J, Gleich L, Klump GM, et al . Age-dependent changes of gap detection in the mongolian gerbil. Jassoc Res Otolaryngol 2004 5(1); 49-57
    7. Espmark AK, Rosenhall U, Erlandsson S, The two faces of presbyacusis: hearing Impairment and psychosocial consequences. Int JAudiol. 2002 Mar;41(2):125-35)
    8. GatesGA, FeeneyMP, HigdonRJ. Word recognition and the articulation index in older Listeners with probable age-related auditory neuropathy. JAmAcadAudiol. 2003 Dec;14(10):574-81
    9. Namyslowski G, Morawski K, Urbaniec P et al. The 2f1-f2 DPOAE amplitudes and latencies in the groups of older people with presbyacusis and young people with normal hearing. OtolaryngolPol. 2000; 54(4):423-9.
    10. Shay JW, Wright WE. Telomerase activity in human cancer. CurrOpin Oncol, 1996, 8 (1): 66-71.
    11. Korsmeyer SJ, Yin XM, Oltvai ZN, et al. Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochem BiophysActa, 1995, 1271 (1): 63-66.
    12. Moon H, Baek D, Lee B, et al. Soybean ascorbate peroxidase suppresses Bax- induced apoptosis in yeast by inhibiting oxygen radical generation. Biochem Biophys Res Commun, 2002, 290 (1): 457-462.
    13. ZhengYI, kodak, nakamura, et al. Endonueleaseeleav age of DNA in the aged eoehleaof Mongolian gerbil. HearRes, 1998,126:11-18.
    14. C. Riva, M. Longuet, M. Luciano, J. Magnan and J.P. Lavieille, Implication of mitochondrial apoptosis in neural degeneration in a murine model for presbyacusis, Rev. Laryngol. Otol. Rhinol. 126 (2005), pp. 67–74.
    15. Nevado J, Sanz R, Casqueiro JC, etal. Ageing evokes an intrinsit ProaPoPtot- iesignalling Path way in rate coehlea. Aetaotolaryngol,2006,126:1134-1139.
    16. Ohemiller KK, Mc Fadden SL, Ding DL, et al. Targeted mutation of the gene for cellular gultathione peroxidase increase noise-induced hearing loss in mice. J Assoc Res Otolaryngol 2000 1(3): 243-254
    17. Dehne N, Rruen U,de Groot H, et al. Involvement of the mitochondrial permeability transition in gentamicin ototoxicity. Hera Res 2002 169(1-2): 47-55
    18. Zhang X, Han K, Ding D, et al. Deletions are easily detectable in cochlear mitochondrial DNA of Cu/Zn superoxide dismutase gene knockout mice. Chin Med J 2002 115(2):258-263
    19. Nakagawa T, Kin TS, Murai N, et al. A novel technique for inducing local inner ear damage. Hear Res 2003 176(1-2) 97-115
    20. Gorge A, Li L, Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res 2003(1-2): 122-127
    21. Kujoth GC, Hiona A, Pugh TD, et al. Mitochondiral DNA mutations oxidative stress, and apoptosis in mammalian aging. Science 2005 309 (5733): 481-488
    22. Ueda A, Oshima T, Ikeda K, et al. Mitochondrial DNA deletion is a predisposing- causes for sensorineural hearing loss. HearRes, 1998, 108:580-584.
    23. DaiP, YangW, JiangS, etal. Correlation of cochlear blood supply with mitochondrial- DNA common deletion in presbyacusis. ActaOtolaryngol, 2004, 124:130-136.
    24. Seidman MD, Bai U, Khan MJ, et al. Association of mitochondrial DNA deletions and cochlear pathology: a molecular biologic tool. Laryngoscope, 1996, 106(6): 777-783.
    25.戴朴,姜泗长,杨伟炎,等.人类颞骨火棉胶切片线粒体DNA的扩增及重组测序.中华耳鼻咽喉科杂志,1998,33(4):206.
    26.韩维举,韩东一,姜泗长,等.人听觉器官线粒体DNA977缺失与老年聋的关系.中华耳鼻咽喉科杂志,2000,35(6):416.
    27. Fischel-GhodsianN, PrezantTR, etal. Mitochondrial gene mutations: A common pred-isposing factor in aminoglycoside ototoxicity. American Journal of Otolaryngology, 1997, 18: 173-178.
    28. Zhang X, Han D, et al. Cochlear mitochondrial DNA 3867bp deletion in aged mice. Chinese Medical Journal, 2002, 115 (9): 1390-1393.
    29. Seidman MD, Bai U, Khan MJ, et al. Mitochondrial DNA deletions associated with ag- eing and presbyacusis. Arch Otolaryngol HeadNeckSurg, 1997, 123:1039-1045.
    30.刘俊,孔维佳,刘贞荣.线粒体DNA大片段缺失与老年性聋的关系.临床耳鼻咽喉科杂志, 2003, 11: 40-42.
    31.刘俊,孔维佳,刘维荣.老年大豚鼠耳蜗螺旋神经节及耳蜗核线粒体DNA缺失的研究.听学及言语疾病杂志,2005,13:50
    32.魏雪梅,杨元,梁传余,等.豚鼠线粒体DNA 4568缺失与老年性聋的关系.中华医学遗传学杂志, 2006, 6: 79-82.
    33. Kujoth GC, Bradshaw PC, et al. The role of mitochondrial DNA mutations in mamm- alian aging. PLoSGenetics, 2007,3(2): 161-173.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700