用户名: 密码: 验证码:
城市污水生物脱氮除磷活性污泥系统微生物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用纯培养方法和PCR-DGGE(变形梯度凝胶电泳)技术对典型生物脱氮除磷系统(常规A~2/O和倒置A~2/O工艺)活性污泥中微生物多样性进行了研究。并采用PCR-DGGE技术对生物脱氮除磷工艺不同反应区段活性污泥系统微生物多样性进行了研究。
     6种不同提取总DNA方法对活性污泥微生物多样性PCR-DGGE检测的影响研究结果显示:基于SDS裂解法是用于活性污泥微生物多样性PCR-DGGE研究的一种简便、可靠的总DNA提取方法。
     采用培养方法从活性污泥样品中分离得到34株菌,经过BIOLOG和16S rDNA鉴定他们属于5大类群:α-变形菌纲(Alphaproteobacteria) ;β-变形菌纲(Betaproteobacteria);γ-变形菌纲(Gammaproteobacteria);芽孢杆菌纲(Bacillibacteria)和放线菌纲(Actinobacteria)。其中优势菌为β-变形菌纲、γ-变形菌纲和放线菌纲。而两工艺中微生物细菌组成差别主要是:γ-变形菌纲中的希瓦氏菌属(Shewanella algae sp.)、克雷伯氏菌属(Klebsiella sp.)和类球红细菌(Rhodobacter sphaeroides)只在倒置工艺中分离得到,而在常规工艺中未分离到;而放线菌纲(Actinobacteria)中的滕黄微球菌(Micrococcus luteus)只在常规工艺中分离到,在倒置工艺中未分离到。同时对两工艺曝气池末端活性污泥样品进行扫描电镜观察,结果显示常规A~2/O工艺活性污泥中含有大量的丝状细菌、杆状菌和球状菌,同时还有部分念珠状细菌。而倒置工艺活性污泥中主要含有大量的球状菌和杆状菌,丝状细菌相对常规工艺来说较少,没有发现念珠状细菌。而且常规工艺活性污泥菌胶团比较致密,而倒置工艺活性污泥菌胶团比较疏松。
     2工艺活性污泥系统样品PCR-DGGE检测结果表明:从2工艺活性污泥样品中获得的16S rDNA序列分别归属于四大细菌类群:变形细菌(Proteobacteria)、拟杆菌群(Bacteroides)、厚壁菌群(Firmicutes)和Candidate division TM7类群。其中拟杆菌群和变形细菌为优势菌群。2工艺微生物细菌组成结构的的主要差异是:有6种菌在常规工艺中含量较少,而在倒置工艺中含量较高。在这6种菌中有4种属于无法培养的拟杆菌,其余2种为亚硝化螺旋菌属(Uncultured Nitrosospira sp.)和红环菌属(Rhodocyclus sp.)。与纯培养研究相比可共同得出β、γ-proteobacteria菌为两工艺中主要的优势菌。
     同时采用PCR-DGGE技术对两工艺不同反应区段活性污泥微生物多样性进行研究,结果显示:(1)小试和生产性试验工艺活性污泥中细菌主要分为4大类:拟杆菌群(Bacteroides,54.55%)、变形细菌(Proteobacteria,27.27%)、Candidate division TM7类群(9.09%)和厚壁菌群(Firmicutes,9.09%);(2)小试和生产性试验系统活性污泥中细菌组成结构主要差异为:盐单胞菌属(Halomonas sp.)在小试试验系统中含量很少,而在生产性试验系统中含量较高;而红环菌属(Rhodocyclus sp.)、γ-Proteobacteria、Bacteroidetes类群等5类细菌在小试试验系统中含量较高,而在生产性试验系统中含量较低。(3)在小试工艺中:普氏菌属(Prevotella sp.)、鞘氨醇杆菌属(Sphingobacterium sp.)、优杆菌属(Eubacterium sp.)、亚硝化螺旋菌属(Nitrosospira sp.)4类细菌在常规A~2/O中含量较少,而在倒置A~2/O中含量较高。(4)在生产性试验系统中:普氏菌属(Prevotella sp.)、黄杆菌属(Flavobacterium sp.)在生产性试验系统的常规A~2/O工艺系统中都存在,而在倒置A~2/O工艺系统厌氧区、好氧区没有监测到。(5)在小试和生产性工艺中,各工艺的厌氧区、缺氧区和好氧区之间变化最大的细菌主要集中在黄杆菌科(Flavobacteriaceae)和不动杆菌属(Acinetobacter sp.)的细菌。
The bacterial community composition of two activated sludge samples retrieved from A~2/O and reversed A~2/O procedure were investigated by cultivation method and PCR-DGGE (Denaturing gradient gel electrophoresis) technique. And the microbial ecological communities in different reaction regions of biological phosphorus removal systems were investigated by PCR-DGGE technique.
     The Influence of DNA extraction methods from activated sludge for denaturing gradient gel electrophoresis on microbial diversity analysis was investigated. The results showed that the method of SDS-based DNA extraction from activated sludge (Zhou method) can be used as a rapid and dependable protocol in molecular microbial ecology study.
     34 bacterial strains were isolated from two activated sludge samples. Based on BIOLOG technique and 16S rRNA gene analysis, these bacterial strains were identified as five lineages of the domain bacteria:α-proteobacteria;β-proteobacteria;γ-proteobacteria; Bacilli and Actinobacteria. The subclass of the Proteobacteria, especiallyβ、γ-Proteobacteria and Actinobacteria predominated in this study. In two activated sludge samples, the composition and distribution of bacterial strains isolated from two activated sludge samples were different. The Shewanella algae; Klebsiella and Rhodobacter sphaeroides ofγ-proteobacteria were only in reversed A~2/O procedure. And the Micrococcus luteus of Actinobacteria was only in A~2/O procedure. The activated sludge samples of areobic region in A~2/O and reversed A~2/O procedure were analyzed by scanning electron microscopy. The results showed that there were lots of round- shaped and rod-shaped bacteria in two procedures. There were more filamentous bacteria in A~2/O procedure than in reversed A~2/O procedure. Moniliform bacteria was observed only in A~2/O procedure. The zoogloea of A~2/O procedure was compact, while that of reversed A~2/O procedure was loose.
     Using PCR-DGGE technique, the sequences of the V3 region of 16S rRNA gene retrieved from two activated sludges were separated. Examination of 16S rDNA sequences obtained from DGGE bands showed that bacterial phylogenetic composition of activated sludge in the A~2/O and reversed A~2/O procedure was diverse. 16S rDNA sequences corresponding to 20 excised bands from two activated sludge samples were analyzed and classified into four lineages of the domain bacteria: Proteobacteria; Bacteroides; Firmicutes; Candidate division TM7. The number of Nitrosospira and Rhodocyclus was more in reversed A~2/O procedure than in A~2/O procedure.
     Using PCR-DGGE technique, twelve activated sludge samples from lab-scale and full-scale process were investigated. The results showed that there were four lineages of the domain bacteria in lab-scale and full-scale process, including Bacteroides(54.55%); Proteobacteria (27.27%); Candidate division TM; (9.09%); Firmicutes(9.09%). The difference of microbial ecological communities between lab-scale and full-scale process was that there were more Halomonas bacteria in full-scale process than in lab-scale process, while more Rhodocyclus,γ-Proteobacteria, Bacteroidetes bacteria in lab-scale process than in full-scale process. In lab-scale process, there were less Prevotella, Sphingobacterium, Eubacterium, Nitrosospira in A~2/O procedure than in reversed A~2/O procedure. In full-scale process, both Prevotella and Flavobacterium existed in A~2/O procedure, but only existed in the anoxic region. The most differences of microbial communities in each reaction region of lab-scale and full-scale process were Flavobacteriaceae and Acinetobacter.
引文
[1]黄理辉,张波,毕学军,马鲁铭.倒置A~2/O工艺的生产性试验研究[J].中国给水排水,2004,20(6): 12-15.
    [2]毕学军,高廷耀.缺氧/厌氧/好氧工艺的脱氮除磷研究[J]. 1999,上海环境科学,18(1): 19-21.
    [3]毕学军,张波.倒置A~2/O工艺生物脱氮除磷原理及其生产应用[J].环境工程,2006,24(3): 29-30.
    [4]张波,苏玉民.倒置A~2/O工艺的氮磷脱除功能[J].环境工程,1999,17(2): 7-12.
    [5]张波,高廷耀.倒置A~2/O工艺的原理与特点研究[J].中国给水排水,2000,16(7): 11-15.
    [6]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展[J]. 1999,18(1): 16-18.
    [7]张波.短时厌氧区生化特性及其对聚磷菌除磷行为的影响[J].青岛建筑工程学院学报,1997,18(4) :26-31.
    [8]张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水,1997,13(3): 7-10.
    [9] Fuhs, G.W., Chen, M., Microbiological basis of phosphate removal in the activated sludge process for treatment wastewater[J]. Microbial Ecol. 1975, 2, 119–138.
    [10] Deinema MH, Habets LHA, Schoten J, Turkstra E, Webers HAAM. The accumulation of polyphosphate in Acinetobacter spp. FEMS Microbia Lett, 1980, 9: 275-279.
    [11] Buchan L. Possible biological mechanism of phosphorus removal[J]. Water Sci Technol, 1983, 15: 87-103.
    [12] Deinema M H, van LoosdrechtM, Scholten A. Some physiological characteristics of Acinetobacter spp. accumulating large amounts of phosphate. Water Sci Technol, 1985, 17: 119-125.
    [13] Streichan M, Golecki JR, Sch n G. Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal[J]. FEMS Microbiol Ecol, 1990, 73: 113-124
    [14] Duncan A, Vasiliadis GE, Bayly RC, May JW, Raper WGC. Genospecies of Acinetobacter isolated from activated sludge showing enhanced removal ofphosphate during pilot-scale treatment of sewage[J]. Biotechnol Lett, 1988, 10: 831-836.
    [15] Beacham AM, Seviour RJ, Lindrea KC, Livingstone I. Genospecies diversity of Acinetobacter isolates obtained from a biological nutrient removal pilot plant of modified UCT configuration[J]. Water Res, 1990, 24: 23-29.
    [16] Kim MH, Hao OJ, Wang NS. Acinetobacter isolates from different activated sludge processes: characteristics and neural network identification[J]. FEMS Microbiol Ecol, 1997, 23: 217-227.
    [17] Bonting CFC, Willemsen BMF, van Akkermans VW, Bouvet PJM, Kortstee GJJ, ZehnderAJB. Additional characteristics of the polyphosphate-accumulating Acinetobacter strain 210A and its identification as Acinetobacter johnsonii[J]. FEMS Microbiol Ecol, 1992, 102: 57-64.
    [18] K?mpfer P, Bark K, Busse HJ, Auling G, DottW. Numerical and chemotaxonomy of polyphosphate accumulating Acinetobacter strains with high polyphosphate: AMP phosphotransferase (PPAT) activity[J]. Syst Appl Microbiol, 1992, 15: 409-419.
    [19] Lotter LH, Murphy M. The identification of heterotrophic bacteria in an activated sludge plant, with particular reference to polyphosphate accumulation[J]. Water SA , 1985, 11: 179-184.
    [20] Suresh N, Warburg R, TimmermanM, Halvorson HO. New strategies for the isolation of microorganisms responsible for phosphate accumulation[J]. Water Sci Technol, 1985, 17: 99-111.
    [21] Kornberg A, Rao NN, Ault-Riche D. Inorganic polyphosphate: a molecule of many functions[J]. Annu Rev Biochem , 1999, 68: 89-125.
    [22] Maszenan AM, Seviour RJ, Patel BKC, Schumann P, Burghardt Y, Tokiwa Y, Stratton HM. Three isolates of novel polyphosphate accumulating gram positive cocci, obtained from activated sludge belong to a new genus Tetrasphaera gen. nov. and description of two new species Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov[J]. Int J Syst Evol Microbiol, 2000, 50: 593-603
    [23] Hanada S, Liu WT, Shintani T, Kamagata Y, Nakamura K. Tetrasphaera elongata sp. nov. , a polyphosphate-accumulating bacterium from activated sludge[J]. Int J Syst EvolM icrobiol, 2002, 52: 883-887 .
    [24] Erhart R, Bradford D, Seviour RJ, Amann R, Blackall LL. Development and use of fluorescent in situ hybridization p robes for the detection and identifcation ofMicrothrix parvicella’in activated sludge[J]. Syst Appl Microbiol, 1997, 20: 310-318
    [25] Blackall LL, Seviour EM, Bradford D, Rossetti S, Tandoi V, Seviour RJ. Candidatus Nostocoida limicola, a filamentous bacterium from activated sludge. Int J Syst Evol Microbiol , 2000, 50:703-709.
    [26] Nakamura K, Hiraishi A, Yoshimi Y, Kawaharasaki M, Matsuda K, Kamagata Y. Microlunatus phosphovorus gen. nov. sp. nov., a new gram-positive polyphosphate accumulating bacterium isolated from activated sludge[J]. Int J Syst Bacteriol, 1995, 45: 17-22.
    [27] Santos MM, Lemos PC, Reis MAM, Santos H. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus[J]. Appl Environ M icrobiol, 1999, 65: 3920 -3928.
    [28] Stante L, Cellamare CM, Malaspina F, Bortone G, Tiche A. Biological phosphorus removal by pure culture of Lampropedia spp[J]. Water Res, 1997, 31: 1317-1324
    [29] Liu WT, Linning KD, Nakamura K, Mino T, Matsuo T, Forney L. Microbial community changes in biological phosphate-removal systems on altered sludge phosphate content[J]. Microbiology (UK), 2000, 146: 1099-1107.
    [30] Lin CK, Katayama Y, HosomiM, Murakami A, OkadaM. The relationship between isoprenoid quinone and phosphorus removal activity. Water Res, 2000, 34: 3607-3613.
    [31] Lin CK, Katayama Y, HosomiM, MurakamiA, OkadaM. The characteristics of the bacterial community structure and population dynamics for phosphorus removal in SBR activated sludge processes, Water Res, 2003, 37: 2944-2952.
    [32] Hiraishi A, Ueda Y, Ishihara J. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal[J]. Appl Environ Microbiol, 1998, 64: 992-998.
    [33] Liu P G, Liu K C, He J G. A Novel Analysis to the Ridged Cylinder TEM Transmission-Line[J]. Int Jinfrar Millim Wave. 1995, 16(6): 1083-1090.
    [34] Gieseke, A, Arnz, P, Amman, R, Schramm, A. Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactor and microscale investigations[J]. Water Res , 2002.36, 501–509.
    [35] Wagner M, Erhart R, Manz W, Amann R, Lemmer H, Wedi D,Schleifer KH. Development of an rRNA-targeted oligonucleotide probe specific for the genusAcinetobacter and its application for in situ monitoring in activated sludge[J]. Appl Environ Microbiol, 1994, 60: 792-800.
    [36] Kampfer, et al. Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus oligonucleotide probes[J]. Microbial. Ecol.,1996,32:101-121
    [37] Bond PL, Hugenholtz P, Keller J, Blackall LL. Bacterial community structures of phosphate-removing and nonphosphate-removing activated sludges from sequencing batch reactors[J]. Appl Environ Microbiol, 1995, 61: 1910-1916.
    [38] Mamoru K, et al. In situ identification of polyphosphate accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotied probes and 4', 6-diamidino-2-phenlindol (DAPI) at a polyphosphate-probing concentration[J]. Wat. Res.,1999, 33(1): 257-265.
    [39] Maszenan A M, Seviour R J, Patel B K C, et al. Three isolates of novel polyphosphate-accumulating Gram-positive cocci,obtained from activated sludge, belong to a new genus, Tetrasphaera gen.nov.and description of two new species, Tetrasphaera japonica sp.nov.and Tetrasphaera australiensis sp.nov[J]. Int. J.Syst.Evol. Microbiol.,2000,50:593-603
    [40]Loy A, Daims H, Wagner M. Activated sludge-molecular techniques for determining community composition. In: Bitton Ged. Encyclopaedia of Environmental Microbiology[J]. New York: Wiley Scientific, 2002. 26-43.
    [41] Dabert P, Sialve B, Delgenes JP, Moletta R, Godon JJ. Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration[J]. Appl Microbiol Biotechnol, 2001, 55: 500-509.
    [42] Crocetti GR, Hugenholtz P, Bond P, SchulerA, Keller J, JenkinsD, Blackall LL. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantification[J]. Appl Environ Microbiol, 2000, 66: 1175-1182.
    [43] Weller R, Gl ckner FO, Amann R. 16S rRNA oligonucleotide probes for the in situ detection of members of the phylum Cytophaga-Flavobacterium Bacteroides. Syst Appl Microbiol, 2000, 23: 107-114.
    [44] Carr EL, Kmpfer P, Patel BKC, Gurtler V, Seviour RJ. Seven novel species of Acinetobacter isolated from activated sludge[J]. Int J Syst Evol Microbiol, 2003, 53: 953-963.
    [45] Bond PL, Jürg K, Linda LB. Bio-P and non-bio-P bacteria identification by a novel microbial approach[J]. Water Sci Technol, 1999: 13-20.
    [46] Auling G, Pilz F, Busse H J, Karrasch M, Streichan M, Schon G. Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic- aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp[J]. Appl Environ Microbiol, 1991, 57: 3685-3692.
    [47] Muyzer G, de Waal E C , Ultterlinden A G. Profiling of complex microbial population by denaturing gradient gel electrophoreses analysis of polymerse chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol , 1993 , 59 (3) :695-700.
    [48] Pereira M.A, Roest K, Stams A J.M. Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB)reactors treating oleic acid[J]. FEMS Microbiol Ecol., 2002, 41: 95-103.
    [49] Fang H.HP., Liu H., Zhang T. Characterization of a hydrogen-producing granular sludge[J]. Biotechnol. Bioeng. 2002, 78(1):44-52.
    [50] Cole A.C.,Shanahan J.W.,Semmens M.1.,Lapara T.M., Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater[J].Desalination. 2002,146:421 426
    [51] Watanabe K., Teramoto M., Futamata H., Harayama S. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria inactivated sludge[J]. Appl. Environ. Microbiol.1998, 64:4396-4402.
    [52] Jackson C.R, Roden E.E, Churchill P.F. Changes in bacterial species composition in enrichment cultures with various dilutions of inoculum as monitored by denaturing gradient gel electrophoresis[J]. Appl. Environ. Microbiol.1998, 64: 5046-5048.
    [53] Duhamel M, Wehr S.D, Yu L, Rizvi H., Seepersad D, Dworatzek S, Cox E.E, Edwards E.A. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinylchloridet[J]. Water Res. 2002, 36: 4193-4202.
    [54] Hoostal M J, Bullerjahn G S, et al. Molecular Assessment of the potential for in situ bioremediation of PCBs from aquatic sediments[J]. Hydrobiologia, 2002, 469:59-65.
    [55] Hoshino M, Aoike N, Takahashi M, et al. Increased immunoreactivity of stromal cell-derived factor-1 and angiogenesis in asthma. Eur Respir J,2003, 21: 804-809.
    [56] Kaewpipat K., Grady C.P.L, Microbial population dynamics in laboratory-scale activated sludge reactors[J]. Water. Sci. Technol. 2002, 46:19-27.
    [57] Lapara T.M, Nakatsu C.H., Pantea L.M. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE[J]. Water Res. 2002, 36:638-646.
    [58] Philips C.J., Harris D., Dollhopf S.L., Gross K.L., Prosser J.I. and Paul E.A. Effects of agronomic treatments on structure and function of ammonia- oxidizing communities[J]. Appl. Environ. Microbiol. 2000, 66: 5410-5418.
    [59] Boon N, Windt W.D, Verstraete W, Yop E.M. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants[d]. FEMS Microbiol Ecol. 2002, 39:101-112.
    [60] Radajewski S, Webster G, et al, Identification of active methylotroph populations in an acidic forest soil by stable isotope probing[J]. Microbiology. 2002, 148: 2331-2342.
    [61] Barns SM, Takala SL, Kuske CR. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment[J]. Appl Environ. Microbiol. 1999, 65(4): 1731-1737.
    [62]徐亚同.污水的生物除磷[J].环境科学研究,1994,7(5): 1-6.
    [63] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: a laboratory manual [M]. Cold Spring Harbor Laboratory Press, 1989: 672-691.
    [64] Bosshard P P, Santini Y, Grüter D, et al. Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis[J]. FEMS Microbiol Ecol, 2000, 31: 173-182.
    [65] Renze van Houten, Herman Evenblij, Mischa Keijmel. Membrane bioreactors hit the big time-ten years of research in the Netherlands[J]. H2O MBR Special,2001,26-29.
    [66] Juretschko S,Timmermann G, Schnid M,et al. Combined Molecular and Conventional Analyses of Nitrifying Bacterium Diversity in Activated Sludge: Nitrosococcus Mobilis and Nitrospira-like Bacteria as Dominant Populations[J]. Appl Environ Microbiol, 1998, 64:3042-3051.
    [67] Wen-Tsol, ON-Chim C, Herbert H P Fang. Microbial community dynamics during start-up of acidogenic anaerobic reactors [J]. Wat Res, 2002, 36:3203-3210.
    [68] Zhang T, Herbert H P Fang. Phylogenetic diversity of a SRB-rich marine biofilm[J]. Appl Microbiol Biotechnol, 2001, 57: 437-440.
    [69] Liesack W., Weyland H., Stackebrandt E. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria[J]. Microbial Ecology, 1991, 21: 191-198.
    [70] Picard C, Ponsonnet C, Paget E, et al. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction [J]. Appl Environ Microbiol, 1992, 58 (9): 2717-2722.
    [71] Stach JEM, Bathe S, Clapp JP, et al. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods[J]. FEMS Microbiol Ecol, 2001, 36(2-3): 139-151.
    [72] Muriel B, Wafa A, Vincent U, et al. DNA extraction from activated sludges[J]. Current Microbiol, 1999, 38: 315-319.
    [73]高平平,赵立平.可用于微生物群落分子生态学研究的活性污泥总DNA提取方法研究[J].生态学报,2002,11(22): 2015-2019.
    [74]熊开容,张智明,张敏.活性污泥总DNA提取方法的研究[J].生物技术,2005,15 (4):43-46.
    [75] Miller D N, Bryant J E, Madsen E L, et al. Evaluation and Optimization of DNA Extraction and Purification Procedures for Soil and Sediment Samples[J]. Appl Environ Microbiol, 1999, 65: 4715-4724.
    [76] Zhou J, Bruns, M A, Tiedje, J M. DNA Recovery from Soils of Diverse Composition [J]. Appl Microbiol Biotechnol, 1996, 62(2): 316-322.
    [77]邢德峰,任南琪,宫曼丽. PCR-DGGE技术解析生物制氢反应器微生物多样性[J].环境科学,2005, 26 (2): 172- 176.
    [78] Orsini M., Romano-Spica V.A.. Microwave-based method for nucleic and isolation from environmental samples[J]. Letters in Applied Microbiology[J]. 2001, 33.17-20.
    [79] Xia S Q, Yan S, Fu Y G, et al. DGGE analysis of 16S rDNA of ammonia- oxidizing bacteria in chemical–biological flocculation and chemical coagulation systems[J]. Appl Environ Microbiol, 2005, 69: 99-105.
    [80]高平平,赵立平.可用于微生物群落分子生态学研究的活性污泥总DNA提取方法研究[J].生态学报,2000,22(11):2015-2019.
    [81] Eichner C A, Erb R W, Timmis K N, et al. Thermal gradient gel electrophoresis analysis of bio-protection from pollutant shock s in the activated sludge microbial community[J]. Appl Environ Microbiol, 1999, 65: 102-109.
    [82] Julia R DE Lipthay, Christiane Enzinger, Kaare Johnsen, et al. Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis[J]. Soil Biology & Biochemistry, 2004, 36: 1607-1614.
    [83] Ogram A, Sayler G S, Barkey T, et al. The extraction and purification of microbial DNA from sediments[J]. J. Microbial. , 1987, 7: 57-66.
    [84] Tsai Y L , Park M J, Olson B H, et al. Rapid method for direct extraction of DNA from soil and sediments[J]. Appl Environ Microbiol, 1991, 57: 1070-1074.
    [85] Bourrain M, Achouak W, Urban V, et al. DNA extraction from activated sludges [J]. Curr. Microbiol, 1999, 38(6): 315-319.
    [86]刘新春,吴成强. PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析[J].生态学报,2005,25(4): 842-847.
    [87]王峰,傅以钢,夏四清. PCR-DGGE技术在城市污水化学生物絮凝处理中的特点[J].环境科学,2004,25(6): 74-79.
    [88]王海燕,周岳溪,蒋进元.强化生物除磷系统的微生物种群及其表征技术[J].微生物学通报,2005,32(1): 118-122.
    [89] Brodisch KEU, Joyner SJ (1983) The role of microorganisms. other than Acinetobacter in biological phosphate removal in. the activated sludge process. Wat Sci Tech 15:117-125.
    [90] Meganck M, Malnou D, Le Flohic P, et al. The importance of the acidogenic microflora in biological phosphorus removal. Water Science and Technology,1985,17:199~212.
    [91]周岳溪等.废水生物除磷机理的研究—循序间歇式生物脱氨除磷系统中微生物的组成.环境科学,1992,13(4): 2-4.
    [92] Blackall, L.L., Crocetti, G.R., Saunders, A.M. & Bond, P.L. A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie van Leeuwenhoek , 2002, 81:681-691.
    [93] Mudaly D D, Atkinson B W, Bux F. 16S rRNA in situ probing for thedetermination of the family level community structure implicated in enhanced biological nutrient removal[J].Water Sci Technol, 2001, 43(1): 91-98.
    [94] Hesselmann RPX, Werlen C, Hahn D, van der Meer JR, Zehnder AJB. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J]. Syst Appl Microbiol, 1999, 22: 454-465.
    [95] Philip L. Bond, Jürg Keller and Linda L. Blackall. Characterisation of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances[J]. Water Science and Technology, 1998, 37(4-5): 567–571.
    [96] Zilles J.L., Hung C.H., Noguera D.R., Presence of Rhodocyclus in a full-scale wastewater treatment plant and their participation in enhanced biological phosphorus removal[J]. Water. Sci. Technol.2002, 46(1-2):123—128.
    [97] Egli D., Selvaraj A., Yepiskoposyan H., Zhang B., Hafen E., Georgiev O. and Schaffner W. Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J., 2003, 22(1): 100-108.
    [98] Chai Sung Gee, Makram T Suidan. Modeling of nitrification under substrate-inhibiting conditions. Journal of Environ. Eng., 1990,116(1).
    [99] Martin Eschenhagena, Markus Schupplerb, Isolde Roskea. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Research, 2003,37:3224~3232.
    [100]傅以钢,王蜂,赵建夫.高浓度硝酸盐对城市污水活性污泥中微生态种群结构的影响[J].环境科学学报,2005,25(3):372-378.
    [101] Farrelly V , Rainey F A , and Stackebrandt E. Effect of genome size and copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Eviron. Microbiol, 1995, 61, 2798-2801.
    [102] Becker S, Boger P, Oehlmann R, et al. PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl. Environ. Microbiol, 2000, 66, 4945-4953.
    [103] PolzM F, and Cavanaugh CM. Bias in template-to-product ratio s in multitemp late PCR. Appl. Environ. Microbiol, 1998, 64, 3724-3730.
    [104] Suzukim t, and Giovannoni S J. Bias caused by template annealing in theamplification of mixture of 16S rRNA genes by PCR. Appl. Environ. Microbiol, 1996, 62, 625-630.
    [105] Gelsomino A , Keijzer-Wo lters AC, Cacco G, et al. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods, 1999, 38(1-2): 1-15.
    [106] David M , Stamper, Marianne Walch, et al. Bacterial population changes in a membrane bio reactor for gray-water treatment monitored by denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments. Appl. Environ. Microbiol, 2003, 69: 852-860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700