用户名: 密码: 验证码:
伟统活性污泥过程及其生物脱氮除磷改造的动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际水协开发的活性污泥模型(Activated Sludge Model,ASM)作为污水处理工艺设计、污水处理厂运行管理和污水处理新技术、新工艺的研究开发等的新工具,自20世纪80年代中后期以来已在国外得到大量运用,但国内尚未见相关报道,还十分缺乏。本文基于Matlab平台和活性污泥2号模型开发了活性污泥过程模拟与仿真程序(Modeling and Simulating Program for Activated Sludge Model No.2,MSPASM2)并对重庆市唐家桥污水处理厂(WWTP)的运行和脱氮除磷改造进行了动态模拟研究,以期为该厂的运行管理和改造提供参考资料。
    为解决活性污泥模型中微分方程求解问题,开发了基于Matlab平台的活性污泥2号模型模拟程序(MSPASM2),还开发了灵敏度分析程序,分析了主要出水指标(COD、TN、TP、NH4-N和NO3-N)对所有化学计量学系数、动力学参数和进水COD中快速降解基质和慢速降解基质之比值((Sa+Sf)/Xs)的灵敏度。灵敏度分析结果表明,有3个参数灵敏度的绝对值大于1.0,占7.5%;有11个参数灵敏度的绝对值大于0.5,占27.5%;剩下72.5%的参数灵敏度的绝对值小于0.5。
    采用国际水协推荐的参数典型值作为初始值运行模拟程序,TN和TP的模拟值与实测值基本一致,而对于COD,两者之间存在较大的差距。根据灵敏度分析结果,在调整了3个参数的典型值以后,即水解速度常数Kh的值由3.00d-1调整为2.85d-1,XS的饱和系数Kx的值由0.10gCODg-1COD调整为0.13gCODg-1COD,异养菌衰减速度常数bH的值由0.40 d-1调整为0.48 d-1,使模拟值和实测值取得了较好的吻合。校核后模型的连续多日运行状况的动态模拟结果表明, ASM NO.2能够很好的模拟唐家桥WWTP的运行状态。利用经校核和验证的模型,预测了唐家桥WWTP运行条件(流量Q、进水COD浓度、曝气池溶解氧浓度DO和温度)变化时出水水质情况,为污水厂的日常管理提供了参考。模拟结果同时表明该厂尚有一定的污水处理潜力未能得到利用。
    针对唐家桥WWTP现有单一好氧工艺脱氮除磷效率低的实际情况,希望在不增加大的基建投资的前提下,研究了通过运行方式的改变(A/O(anoxic-oxic,缺氧-好氧)生物脱氮工艺和A2/O(anaerobic-anoxic-oxic,厌氧-缺氧-好氧)同时脱氮除磷工艺)来提高其脱氮除磷效果。运用所开发的程序模拟预测各种方案的处理效果,寻求最佳运行控制参数,包括混合液内回流比R、缺氧区溶解氧浓度DO1和各区体积比。结果表明:(1)将现有曝气池前端1/4控制为缺氧而形成A/O工艺,缺氧区溶解氧浓度为0.10mg/L,混合液内回流比为100%,可以使TN去除率由原来的34.2%上升到58.6%,提高24个百分点,COD仍能达标,TP基本不受影响;(2)将现有曝气池前端12%控制为厌氧区,24%控制为缺氧区,缺氧区溶解氧浓度为
    
    0.10mg/L,混合液内回流比为100%,可以使TN去除率由原来的34.2%上升到62.1%,提高约28个百分点,TP去除率由原来的41.7%上升到78.3%,提高37个百分点。(3) 倒置A2/O工艺与常规A2/O工艺的出水水质基本相当,但倒置A2/O工艺在工程实践中更易于实现。
    研究结果表明,基于Matlab平台开发的活性污泥2号模型模拟与仿真程序(MSPASM2)能够很好地模拟城市污水处理厂传统活性污泥过程的运行,能够为传统活性污泥过程的生物脱氮除磷改造提供具有重要价值的参考资料,值得在我国进行进一步的深入研究和推广应用。
As a new tool, the Activated Sludge Model No.2 (ASM No.2) developed by the International Water Association (IWA) has been available in the design, performance administration, nitrogen and phosphorus removal upgrading and the development of new wastewater treatment technology and process, which has been widely used in many developed countries. However, this had not been reported in our country. This paper developed Modeling and Simulating Programs for Activated Sludge Model No.2 (MSPASM2), which was used to dynamically model and simulate the operation state of WWTP Tangjiaqiao in Chongqing, and to study its upgrading methods for biological nutrition removal.
    In order to solve the differential equations in the model, a computer program was developed by the author himself on the basis of Matlab 5.3, a kind of computer language mainly used in engineering calculation. Also another computer program was developed for analyzing the sensitivity of the principal effluent targets, including COD, TN, TP, NH4-N and NO3-N, to all stoichiometric and kinetic parameters and the ratio of readily biodegradable substrate to slowly biodegradable substrate. The result showed that only a limited number of model parameters influenced the model output significantly. Running the modeling program with the default parameters recommended by IWA, the modeling and simulating results suggested that there was a good agreement between the modeling values and the practical measurements for TN and TP, but it was not a case for COD. ASM No.2 proved well capable of describing the operation state of the WWTP Tangjiaqiao with adjustment of only three default parameters, namely, hydrolysis rate constant Kh from 3.00d-1 to 2.85 d-1, saturation coefficient for Xs from 0.10 gCODg-1COD to 0.13gCODg-1COD, rate constant for lysis of heterotrophic organisms bH from 0.40 d-1 to 0.48d-1. The choice of parameters to calibrate was done on the basis of sensitivity analysis. A continuous dynamic simulation for the operation state in several days was done in order to validate the model's universality. A very satisfied agreement between the modeling values and practical measurement values was obtained. The effluent quality was predicted by the calibrated and validated model when the conditions are
    
    changed, such as influent volume, influent COD concentration, the dissolved oxygen concentration and wastewater temperature in the aeration pond. The results could provide a valuable reference data for the administration of WWTP Tangjiaqiao.
    Aiming at to increase the efficiency of nitrogen and phosphorus removal in WWTP Tangjiaqiao, some upgrading schemes were studied by only changing the pattern of performance without high construction costs. So two processes were considered: A/O (anoxic-oxic), a biological nitrogen removal process, A2/O (anaerobic-anoxic-oxic), a simultaneous biological nitrogen and phosphorus removal process. The efficiency of each scheme was evaluated through simulating with MSPASM2. The optimum control parameters, including the inner cycle ratio of mixed liquid, the dissolved oxygen concentration in anoxic zone and the volume ratio of each zone, were optimized through the modeling and simulating of the schemes. The results showed that: (1) The efficiency of TN removal could be increased from 34.2% to 58.6% by A/O process, if 1/4 of the existing aeration pond was changed as an anoxic zone, the dissolved oxygen concentration was 0.10 mg/L in the anoxic zone, and the inner cycle ratio of mixed liquid was 100%. Meanwhile, the effluent COD concentration could also meet the standard and the TP was hardly influenced. (2) The efficiency of the TN removal could be increased from 34.2% to 62.3% and the TP from 41.7% to 78.3% in A2/O process, if 12% of the existing aeration pond was changed as an anaerobic zone and 24% as an anoxic zone, the dissolved oxygen concentration was 0.10 mg/L in the anoxic zone, the inner cycle ratio of mixed liquid was 100%. (3)The effect of the reverse A2/O process was almost same to the A2/O process, but the former was more
引文
[1] 顾夏声编著.废水生物处理数学模式(第二版),北京:清华大学出版社,1993.
    [2] 郑兴灿,李亚新.废水生物除磷脱氮技术,北京:中国建筑工业出版社,1998.
    [3] W.Gujer,M.Henze,T.Mino et al.The Activated Sludge Model NO.2:Biological Phosphorus Removal,Wat.Sci.Tech.,1995,31(2):1-11.
    [4] W.Gujer,M.Henze,T.Mino et al.Wastewater and Biomass Characterization for theActivated Sludge Model NO.2:Biological Phosphorus Removal,Wat.Sci.Tech.,1995,31(2):12-22.
    [5] 吴俊奇,汪慧贞.活性污泥法2号模型(ASM2)简介,给水排水,1998,24(6):13-18.
    [6] Mogens Henze,Willi Gujer,Takahashi Mino et al. Activated Sludge Model No.2d,ASM2D,Wat.Sci.Tech.,1999,39(1):165-182.
    [7] Willi Gujer,Mogens Henze,Takahashi Mino et al.Activated Sludge Model No.3,Wat.Sci.Tech.,1999,39(1):182-192.
    [8] 许保玖,龙腾锐.当代给水与废水处理原理,北京:高等教育出版社,2000.
    [9] F.Coen, B.Vanderhaegen, I.Boonen,et al. Improved Design and Control of Industrialand Municipal Nutrient Removal Plants Using Dynamic Model,Wat.Sci.Tech.,1997,35(10):53-61.
    [10] Cinar ?zer, Daigger Glen T.,Graef tephen P.S., et al.Evaluation of IAWQ Activated SludgeModel NO.2 Using Steady-State Data from Four Full-Scale Wastewater Treatment Plants,Water Environment Research,1998,70(6):1216-1223.
    [11] BRDJANOVIC DAMIR, VAN LOOSDRECHT MARK C.M., VERSTEEG PAOL.,et al..Modeling COD、N and P Removal in a Full-Scale WWTP HAARLEM WAARDERPOLDER,Wat.Res.,2000,34(3):846-858.
    [12] Van Veldhuizen H.M., VAN LOOSDRECHT M.C.M., HEIJNEN J., et al.Modeling Biological Phosphorus and Nitrogen Removal in a Full-Scale Activated Sludge Process,Wat.Res.,1999,33(16):3459-3468.
    [13] HIROAKI FURUMAI,ABSAR A. KAZMI,MASAFUMI FUJITA et al.Modeling Long Term Nutrient Removal in a Sequencing Batch Reactor,Wat.Res.,1999,33(11):2708-2714.
    [14] M.Maurer,W.Gujer.Dynamic Modeling of Enhanced Biological Phosphorus and Nitrogen Removal in Activated Sludge System,Wat.Sci.Tech.,1998,38(1):203-210.
    [15] G.KOCH.Calibration and Validation of Activated Sludge Model NO.3 for Swiss Municipal Wastewater,Wat.Res.,2000,34(14):3580-3590.
    
    
    [16] CHUNDAKKAU KRISHNA.Substrate Flux into Storage and Growth in Relation to Activated Sludge Modeling,Wat.Res.,1999,33(14):3149-3161.
    [17] 高廷耀,周增炎.简易改造城市污水厂的脱氮除磷新工艺,同济大学学报,2000,28(3):324-327.
    [18] 杜英豪,黎耀,陶清.传统活性污泥法的脱氮除磷改造实践,给水排水,2000,26(9).
    [19] 王社平,王尊符,郑琴等.西安市邓家市污水处理厂改造工程设计,给水排水,2001,27(5).
    [20] 彭永臻,高景峰,隋铭皓.活性污泥法动力学模型的研究与发展,给水排水,2000,26(8):15-19.
    [21] 汪慧贞,吴俊奇.活性污泥数学模型的发展和使用,中国给水排水,1999(5).
    [22] 刘志强,李永秋,苗群.活性污泥系统数学模型的探讨,青岛建筑工程学院学报,1995,16(2):21-27.
    [23] 黃勇,杨铨大,王宝贞等.废水生物处理过程的结构化模型,中国给水排水,1992,8(6):29-32.
    [24] 黃勇,杨铨大,王宝贞等.活性污泥生物反应动力学模型研究,环境科学研究,1995,8(4):23-27.
    [25] 黄勇,杨铨大,王宝贞等.生物处理动力学参数测定研究,中国环境科学,1996,16(2):123-127.
    [26] 陈立.EFOR程序的仿真模拟功能应用研究,中国给水排水,1998,14(5):15-18.
    [27] Barker P.S., DOLD P.L..COD and Nitrogen Mass Balances in Activated Sludge System,Wat.Res.,1995,29(2):633-643.
    [28] 唐受印编,废水处理工程(第一版),北京:化学工业出版社,1999.
    [29] 催怡编著,Matlab(第一版),北京:航空工业出版社,2000.
    [30] 张志涌主编,精通Matlab(第一版),北京:北京航空航天大学出版社,2000.
    [31] 朱明权.利用COD指标进行活性污泥法系统的设计,中国给水排水,1999,15(2):18-24.
    [32] 郭劲松,龙腾锐.城市污水BOD与COD关系的探讨,中国给水排水,1994,10(4):17-20.
    [33] P.Harremoes,A.Haarbo,M.Winther-Nielsen et al.Six Years of Pilot Plant Studies for Design of Treatment Plants for Nutrient Removal,Wat.Sci.Tech.,1998,38(1):219-226.
    [34] 沈耀良,王宝贞编著.废水处理新技术—理论与应用(第一版),北京:中国环境科学出版社,1999.
    [35] Yerachmiel Argaman,Gregory Papkov,Avi.Ostfeld et al.Single-Sludge Nitrogen Removal Model:Calibration and Verification,JOURNAL of ENVIRONMENTAL ENGINEERING,1999(7):608-617.
    
    
    [36] T.KUBA,M.C.M.Van LOOSDRECHT,E.MURNLEITNER et al.Kinetics and Stoichiometry in the Biological Phosphorus Removal Process with Short Cycle Times,Wat.Res.,1997,31(4):918-928.
    [37] 程声通,陈毓龄编著.环境系统分析,北京,高等教育出版社,1990:20-25.
    [38] D.Baetens,P.A.Vanrolleghem,M.C.M.van Loosdrecht et al.Temperature effects in bio-P removal,Wat.Sci.Tech.,1999,39(1):215-225.
    [39] M.FUERHACKER.Approach for Novel Control Strategy for Simultaneous Nitrification/Denitrification in Activated Sludge Reactors,Wat.Res.,2000,34(9):2499-2506.
    [40] G.T.Daigger、H.X.Littleton.Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究,中国给水排水,1999,15(3):1-6.
    [41] Ferry O’Flynn.Operating Experiences of a Treatment Plant Designed for Biological Nutrient Removal by Pilot Trials and Mathematical Modeling,Resources,Conservation and Recycling,1999,27:117-124.
    [42] 陈金声,史家梁,徐亚同.硝化速率测定和硝化细菌计数考察脱氮效果的应用,上海环境科学,1996,15(3):18-20.
    [43] 高廷耀.污水处理的新技术与新发展,上海环境科学,1999,18(4):162-164.
    [44] 赵旭涛,顾国维.城市污水生物脱氮技术研究,上海环境科学,1995,14(9):17-20.
    [45] 屈计宁,金志刚,何群彪等.高效硝化细菌的富集技术研究,同济大学学报,1999,27(3):351-354.
    [46] JACEK MAKINIA,SCOTT A.WELLS.A General Model of the Activated Sludge Reactor with Dispersive Flow—Ⅰ.Model Development and Parameter Estimation,Wat.Res.,2000,34(16):3987-3996.
    [47] JACEK MAKINIA,SCOTT A.WELLS.A General Model of the Activated Sludge Reactor with Dispersive Flow—Ⅱ.Model Verification and Application,Wat.Res.,2000,34(16):3997-4006.
    [48] 刘瑾,高廷耀.生物除磷机理的研究,同济大学学报,1995,23(4):387-392.
    [49] 毕学军,高廷耀.缺氧/厌氧/好氧工艺的脱氮除磷研究,上海环境科学,1999,18(1):19-21.
    [50] 毕学军,高廷耀.生物脱氮除磷工艺好氧区硝化功能的强化试验,上海环境科学,2000,19(4):183-186.
    [51] 李勇,黄勇,潘杨.泥龄对生物除磷效率影响的分析,苏州城建环保学院学报,2001,14(1):16-21.
    [52] T.MINO.Microbiology and Biochemistry of the Enhanced Biological Phosphate
    
    Removal Process,Wat.Res.,1998,32(11):3193-3207.
    [53] Peter A.Vanrolleghem,Henri Spanjers,Britta Petersen.Estimating (combinations of) activated sludge model No.1 parameters and components by respirometry,Wat.Sci.Tech.,1999,39(1):195-214.
    [54] Henryk Melcer.Full scale experience with biological process models-calibration issues,Wat.Sci.Tech.,1999,39(1):245-252.
    [55] T.T.LEE,F.Y.WANG,R.B.NEWELL.Dynamic Modeling and Simulation of Activated Sludge Process Using Orthogonal Collocation Approach,Wat.Res.,1999,33(1):73-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700