用户名: 密码: 验证码:
并联式A~2/O工艺和常规A~2/O工艺脱氮除磷功能的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规A~2/O工艺是目前最常见的一种脱氮除磷工艺,其特点是厌氧区和缺氧区串联布置,在脱氮过程中污水进入无意义的厌氧区,在除磷过程中污水进入无意义的缺氧区,均使得反应池的有效停留时间大大浪费了,造成反应池的设计池容较大,投资及运行成本均较高。并联式A~2/O工艺是将常规A~2/O工艺的厌氧区和缺氧区并联,后接好氧区的一种新型脱氮除磷工艺。理论上这种新工艺能够改进常规A~2/O工艺的缺点,在相同体积条件下,能够提高厌氧和缺氧时间。为考察并联式A~2/O工艺和常规A~2/O工艺实际脱氮除磷效果的异同,本研究对上海城市污水进行了为期一年的小试试验,为工程应用和理论研究提供经验数据。
     本研究采用两套平行装置,通过调节进水中COD和氮磷浓度,对于每个工况稳定运行半个月,分别考察了在一般条件下、碳源充足条件下和碳源不足条件下并联式A~2/O工艺和常规A~2/O工艺的氮磷去除效果。
     在水力停留时间13个小时的条件下,当进水COD为150~450mg/L时,两系统的COD去除效果都很好,出水COD均低于50mg/L,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级A标准。
     通过在COD浓度为170,250,330,450mg/L的浓度梯度下,对两系统的脱氮除磷效果进行研究,结果表明:
     一、两系统的脱氮效果随着COD浓度升高先上升后下降,在330mg/L时,TN去除率最高,常规系统达到58.5%,并联式系统达到66.7%,二者的TN出水均达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级标准。并联式系统的脱氮效果略优于常规系统,这说明,在碳源相对充足条件下,并联式系统较长的缺氧时间,使得反硝化程度比常规充分,因此脱氮效果优于常规。
     二、两系统的除磷效果随着COD(有机负荷)的升高而逐渐升高,在COD浓度为450mg/L(负荷为0.49~0.62kgCOD/kgMLSS.d)时,TP去除效果最好,并联式可达到75.6%,常规可达到75.5%,出水均达到一级排放标准。
     总氮增加到50mg/L时,两系统氨氮去除率都小于75%,出水氨氮浓度均大于5mg/L,常规系统出水NO_3~--N浓度为15.1mg/L,并联式系统出水NO_3~--N浓度为14.9mg/L。这说明50mg/L进水氨氮浓度超过了系统的硝化容量。在0.18~0.24kgCOD/kgMLSS.d的负荷下,两系统的反硝化效果较差。
     增加氮磷对并联式系统的影响远大于对常规系统的影响,即碳源严重不足对并联式系统的影响更大,这是因为并联式系统对碳源利用率高,将原本不足的碳源平分到厌氧和缺氧区使得二者所能利用的碳源都不足以进行有效的释磷和反硝化反应,因此氮磷脱除效果反而不如常规系统。
     实验表明:在有机负荷为0.30~0.48kgCOD/kgMLSS.d时,由于并联式系统厌氧和缺氧时间是常规系统的两倍,反硝化和释磷都相对充分,因此并联式系统的脱氮除磷效果相对常规系统有一定的优势;而在0.49~0.62kgCOD/kgMLSS.d的负荷下,由于碳源充足,两者的脱氮除磷效果相差不大;在0.18~0.24kgCOD/kgMLSS.d的负荷下,由于碳源严重不足,而并联式系统将原本不足的碳源分两股进入厌氧区和缺氧区,既不能保证充分释磷,又不能保证充分反硝化,此时常规系统相对并联式系统的脱氮除磷效果有相对的优势。实验表明,在0.38~0.48kgCOD/kgMLSS.d的负荷下,无论常规还是并联式系统,两者的氮磷脱除效果都较好。
     因此,并联式系统适合在碳源充足的条件下使用。
Normal A~2/O process is the most common nutrient removal technology at present,with connected anaerobic zone and anoxic zone.It means that the wastewater has to enter meaningless anaerobic zone in the nitrogen removal process and the same disadvantage exits in the phosphorus removal process to enter meaningless anoxic zone.This results in long retention time,large tank volume and high investment and operation cost.Parallel Connected A~2/O process is a new technology with parallel connected anaerobic zone and anoxic zone,followed by aerobic zone.In theory,this new technology can modify the disadvantage of Normal A~2/O process by improving anaerobic and anoxic time in the same volume and influent.To investigate the difference between Normal A~2/O process and Parallel Connected A~2/O process,a lab-scale experiment was conducted for one year to obtain the optimized running parameter of the new process.
     This study uses two parallel equipments to study on the the nutrients removal effect of the two technologies in three conditions(respectively the common condition, the condition of abundant carbon source and the condition of deficient carbon source), through regulating COD,TN and TP of the influent from municiple wastewater of Shanghai,with 15 days of each test condition.
     In the condition of 150~450mg/L COD influent with 13 hours' waterpower retention time,both the two systems perform good removal effect of COD.The outlet water absolutely meets the requirement of the first rank A of (GB18918-2002),which is less than 50 mg/L.
     In the concentration gradient of 170,250,330 and 450mg/L,comparing the nitrogen removal effect,two outcomes can be concluded:First,the nitrogen removal effect of the two systems are growing first and then lowing with the growing of COD concentration.The nitrogen removal rate reaches the highest when the influent COD is 330 mg/L,the Normal A~2/O is 58.5%and the Parallel Connected A~2/O is 66.7%. Both of them can meet the requirement of the first rank of (GB18918-2002).The nitrogen removal effect of Parallel Connected A~2/O system is better than Normal A~2/O system,because the anoxic time of Parallel Connected A~2/O is two times of Normal A~2/O.When the carbon source is relavent abundant,the denitrification of Parallel Connected A~2/O is more sufficient than Normal A~2/O.Second,as the influent COD(organic load)grows,phosphorus removal effect becomes better,when the influent COD is 330 mg/L,the Normal A~2/O is 75.5%and the Parallel Connected A~2/O is 75.6%.Both of them can meet the requirement of the first rank of (GB18918-2002). So it reflects that the growth of influent COD is good for phosphorus release.
     When influent TN is up to 50mg/L,Both the two systems perform bad removal rate of NH_4~+-N,less than 75%.And the outlet concentration of NH_4~+-N is more than 5mg/L in both the two systems,which are about 15mg/L.This reflect that the influent NH_4~+-N concentration of 50mg/L beyond the nitrification ability.In the load of 0.18~0.24mg/L kgCOD/kgMLSS.d,the detrification of the two systems are bad.
     The increase of nitrogen and phophorus affects parallel A~2/O much more than A~2/O,it is to say,serious unsufficiency of carbon source affects parallel A~2/O much more than A~2/O.That is because the carbon source using efficiency of parallel A~2/O is higher than A~2/O,when unsufficient carbon source sivided into anaerobic zone and anoxic zone,none of the two zone can perform efficient phosphorus release and denitrification,which lead to worse nutrients removal effect of parallel A~2/O system.
     Three outcomes can be abttained from the experiment:at the organic load of 0.30~0.48kgCOD/kgMLSS.d,the phosphorus release and denitrification of parallel A~2/O is relovent sufficient for its anaerobic time and anoxic time is twice than Normal A~2/O system,so Parallel Connected A~2/O system possesses advantage to Normal A~2/O system.At the organic load of 0.49~0.62kgCOD/kgMLSS.d,the nutrients removal rates of both systems are the same for sufficient carbon source.At the organic load of 0.18~0.24kgCOD/kgMLSS.d,none of phosphorus releases and denitrification can be good for seriously unsufficient carbon source divided into two influents.In this condition,the phosphorus removal of Parallel Connected A~2/O system is worse than Normal A~2/O system.The experiment reflects that the organic load of 0.18~0.24kgCOD/kgMLSS.d is fit for both the two systems.
     Therefore,Parallel Connected A~2/O system is fit for abundant carbon source condition.
引文
[1].Edward S.Rubin,Cliff I.Davidson.Introduction to Engineering & the Environment.清华大学出版社、McGraw-Hill出版公司.2001:40-50.
    [2].Paul L.Bishop.Pollution Prevention Fundamentals and Practice.清华大学出版社、McGraw-Hill出版公司.2001:78-144.
    [3].中国国家环境保护总局.2004年中国环境状况公报.http://www.zhb.gov.cn
    [4].中国国家环境保护总局.2004年中国近岸海域环境质量公报.http://www.zhb.gov.cn
    [5].中国国家环境保护总局.2003年环境统计年报.http://www.zhb.gov.cn
    [6].中国科学院可持续发展战略研究组.2004年中国可持续发展战略报告.科学出版社,2004.
    [7].关亮炯.我国水污染现状及治理对策.科技情报开发与经济.2004,14(6):80-81.
    [8].孟伟,苏一兵,郑丙辉.中国流域水污染现状与控制策略的探讨.中国水利水电科学研究院学报.2004,2(4):242-246.
    [9].陈志恺.中国水资源的可持续利用问题.中国科技奖励.2005,1:40-42.
    [10].Metcalf & Eddy,Inc.Wastewater Engineering Treatment and Reuse.(4~(th)editon).401-410.
    [11].Clifford W.Randall,James L.Barnard,H.David Stensel.Design and Retrofit of Wastewater treatment plants for biological nutrient removal.Technomic Publishing CO.INC.1993:1-10.
    [12].古滨河.美国Apopka湖的富营养化及其生态恢复.湖泊科学.2005,17(1):1-8.
    [13].张菊,陈振楼,刘杰.上海河流氮负荷的年际变化及其水体富营养化的原因探讨.环境污染与防治.2005,27(1):29-34.
    [14].E.Bonsdorff,E.M.Blomqivst,J.Mattila etc.Coastal eutrophication:causes,consequences and perspectives in the archipelago areas of the northern Baltic Sea.Estrarine,Coastal and Shelf Scinece.1997,44:63-72.
    [15].Jose M.R Vieira,Jose L.S.Pinho,Antonio A.L.S.Duatre.Eutrophication vulnerability analysis:a case study.Wat.Sci.Tech.1998,37(3):121-128.
    [16].I.Valiela,J.L.Nitrogen sources to watersheds and estuaries:role of land covermosaics and losses within watersheds.Bowen.Environmental Pollution.2002,118:239-248.
    [17].X.P.Huang,L.M.Huang,W.Z.Yue.The characteristics of nutrients and eutrophication in the Pearl River estuary,South China.Marine Pollution Bullet.2003,47:30-36.
    [18].齐孟文,刘凤娟.城市水体富营养化的生态危害及其防治措施.环境科学动态.2004,1:44-46.
    [19].吴生才,陈伟民.水体富营养化的渐进性和灾难性.灾害学.2004,19(2):13-17.
    [20].姚云,沈志良.水域富营养化研究进展.海洋科学.2005,29(2):53-57.
    [21].中国国家环境保护总局、国家技术监督局.《污水综合排放标准》(GB8978-1996).中国环境科学出版社,1997.
    [22].中国国家环境保护总局、国家质量监督检验检疫局.《城镇污水处理厂污水排放标准》(GB18918-2002).中国环境科学出版社,2002.
    [23].郑兴灿,李亚新.《污水除磷脱氮技术》.中国建筑工业出版社.1998.
    [24].胡家骏,周群英.《环境工程微生物学》.高等教育出版社.1988.
    [25].何国富.《悬浮填料活性污泥法脱氮除磷试验及机理研究》.同济大学博士学位论文.2004.
    [26].U.S.EPA.Manual Nitrogen Contriol.Office of Research and Development.1993,EPA/625/R-93/010.
    [27].高廷耀,顾国维.《水污染控制工程》(下).高等教育出版社.2000.
    [28].张波,苏玉民.倒置A~2/O工艺的脱氮除磷功能.环境工程.1999,17(2):7-10.
    [29].Fesabeth V.Mumch et al,Simultanous nitrification and denitrification in benth-scale sequence batch reactor,Wat.Res.Vol.30,1996.
    [30].任南琪等.《污染控制微生物学》,哈尔滨工业大学出版社,2002.
    [31].Mino,T.,Arun,V.,Tzuzuki,Y.and Matzuo,T.,Effect of phosphorus accumulation on acetate metablism in the biological phosphorus removal process,Proc,from IAWQ spec.conf.,Rome,1987.
    [32].Wentzel,M.C.,Lotter,L.H.,Ekama.G.A.,Loewenthal,R.E.and Marais,G.V.R.Evaluation of biochemical models for biological excess phosphorus removal,Water Sci.Technol.23,567,1991.
    [33].Smolers,G.j.f.,van der Meij,J.,van Loosdrecht,M.C.M.,and Heijnen,J.J.Stoichiometric model of the aerobic metabolism of the biological phosphorus removal processes.Biotechnol.Bioeng.,44,837.
    [34].钱易,郝吉明编.《环境科学与工程进展》,清华大学出版社,1998.
    [35].Kirsten S.Jorgensen,Anneli S.L.Pauli.Polyphosphate accumulation among denitrifying bacteria in activated sludge[J].Environmental microbiology,1996,1:161-168.
    [36].董滨.《投料AAO新工艺城市污水生物脱氮除磷的中试试验研究》,同济大学硕士学位论文.2004
    [37].张波,高廷耀.倒置A~2/O工艺的原理与特点研究.中国给水排水.2000,16(7):11-15
    [38].王凯军,贾立敏.城市污水生物处理新技术开发与应用.化学工业出版社.2001.
    [39].赵耘挚,刘振鸿.SBR工艺脱氮除磷研究进展.中国给水排水.2003,19(3):33-36
    [40].程晓如,魏娜.SBR工艺研究进展.工业水处理.2005,25(5):10-13
    [41].岳强,雏小玲,廖应祺.SBR技术的发展及应用.污染防治技术.2003,16(4):35-38
    [42].娄金生,谢水波,何少华等.《水污染治理新工艺与设计》,.2002
    [43].任南琪等.《污染控制微生物学》,哈尔滨工业大学出版社,2002.
    [44].王洪尘主编.《城市污水处理厂运行控制与维护管理》,科学出版社,1997.
    [45].王大惠,雷乐成编著.《水处理新技术及工程设计》,化学工业出版社,2001.
    [46].于尔捷,张杰主编.《给水排水工程快速设计手册》,中国建筑工业出版社,1996.
    [47].张智.《给水排水工程专业毕业设计指南》,中国水利水电出版社,2000.
    [48].章非娟.《生物脱氮技术》,中国环境科学出版社,1992.
    [49].叶建锋.《废水生物脱氮处理新技术》,化学工业出版社,2006.
    [50].(日)宗宫功.《污水除磷脱氮技术》,中国环境科学出版社,1987.
    [51].王红旗,鞠建华著.《城市环境氮污染模拟与防治》,北京师范大学出版社,1998.
    [52].王青,陈建中.污水生物脱氮除磷技术的研究进展.2006,31(8):126-129.
    [53].Hyungseok Yoo.et al.Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification CSND via nitriate in a reactor.Wat.Res.1999.33(1).145-154.胡林林,王建龙,文湘华,钱易.低溶解氧条件下生物脱氮研究中的新现象.2003,9(4):444-447.
    [54].Kokufuta E,Shimohashi M,Nakamura I.Simultaneously occurring nitrification and denitrification under oxygen gradient by polyelectrolyte complex-coimmobilized Nit rosomonas europaea and Paracoccus denit rif icans cells,Biotech Bioeng.1988,31:382-384.
    [55].Rittmann BE,Langeland WE.Simultaneous denitrification with nitrification in single channel oxidation ditches.J WPCF,1985,57(4):300-308.
    [56].Zhao HW,Mavinic DS,Oldham WK,Koch FA.Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage.Wat.Res,1999,33(4):961-970.
    [57].Pachana K,Keller J,Lant P.Model development for simultaneous nitrification and denitrification.Wat Sci Tech,1999,39(1):235-243.
    [58].Pochana K,Keller J.Study of factors affecting simultaneous nitrification and denitrification(SND).Wat Sci Tech,1999,39(6):61-68.
    [59].Collivignarelli C,Bertanza G.Simultaneous nitrification-denitrification process in activated sludge plants:performance and applicability.Wat Sci Tech,1999,40(4~5):187-194.
    [60].Puznava N,Payraudeau M,Thornberg D.Simultaneous nitrification and denitrification in biofilters with real time aeration control.Wat Sci Tech,2001,43(1):269-276.
    [61].Menound P,Wong CH,Robinson HA,Farquhar A,Barford J P,Barton GW.Simultaneous nitrification and denitrification using SiporaxTM packing.Wat Sci Tech,1999,40(4~5):153-160.
    [62].Helmer C,Kunst S.Simultaneous nitrification and denitrification in an aerobic biofilm system.Wat Sci Tech,1998,37(4~5):183-187.
    [63].T.Kuda et al.Phosphorus and nitrogen removal with minimal COD requirement by intergration of denitrifying dephosphatation and nitrification in two sludge system.Wat.Res,1996,30(7):1702-1710.
    [64].Baker P.S.Dold Pl.Denitrification behavior in biological excess phosphorus removal activiated sludge system.Wat.Res,1996,30(4):769-780.
    [65].Kubat T.Van Loosdrecht.M.C.M.,et al.Occurrence of denitrifying phosphorus removing bacteria in modified UCT type wastewater treatment plants.Wat.Res,1997,31(4):777-778.
    [66].郝晓地.汪慧贞.钱易等.欧洲城市污水处理技术新概念—可持续生物除磷脱氮工艺(上)[J].给水排水,2002,28(6):6-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700