用户名: 密码: 验证码:
牛珀至宝微丸对内毒素休克相关基因表达调控的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1、研究目的
     牛珀至宝微丸临床治疗感染性休克疗效显著,一氧化氮(NO)及其相关基因在内毒素休克中对血压调节、脏器损伤与修复起重要作用。为探讨牛珀至宝微丸治疗感染性休克的机理是否与一氧化氮及其相关基因相关,本研究从整体水平、细胞、信号转导与基因调控各个层次对牛珀至宝微丸调控一氧化氮及其相关基因进行研究。
     2、研究内容、方法
     本实验分在体实验与离体实验二部分。
     整体实验主要观察牛珀至宝微丸调控NO对内毒素休克血压、脏器损伤及修复的影响。用静脉注射脂多糖内毒素(LPS)1.5mg/kg、腹腔注射D-氨基半乳糖(D-GaLN)100mg/kg造成内毒素休克模型,用牛珀至宝微丸和一氧化氮合酶抑制剂氨基胍(AG)作干预处理,用BL-410生理仪监测血压,用OlympusAU2700型全自动生化分析仪进行肝功能检测,用HE染色观察各脏器的病理形态,用硝酸还原酶法检测血浆NO浓度,同位素标记法测组织匀浆一氧化氮合酶(NOS)活性,免疫组化、Western blot方法检测诱导型一氧化氮合酶(iNOS)、内皮型一氧化氮合酶(eNOS)在各脏器组织内的表达,用Van Gieson法染色检测胶原纤维在肺组织内的表达,免疫组化方法检测肺组织高迁移蛋白(HMGB_1)、转化生长因子(TGF-β_1)及其受体的表达,并用激光共聚焦扫描显微镜进一步观察高迁移率族蛋白(HMGB_1)的表达。
     离体实验从细胞信号转导与基因调控水平观察牛珀至宝微丸动物血清对LPS刺激RAW264.7iNOS基因转录调控的影响。用硝酸还原酶法检测测定蛋白激酶C(PKC)抑制剂对LPS诱导的NO生成作用,用PKC活性测定法研究LPS对PKC的激活作用;用基因重组技术构建iNOS荧光素酶报告基因载体;用基因转染及报告基因检测等方法研究牛珀至宝微丸调控LPS刺激RAW264.7细胞对iNOS启动子活性的诱导作用及其与PKC的关系,以明确牛珀至宝微丸对LPS刺激RAW264.7细胞iNOS启动子活性的诱导作用及PKC的影响。
     3、研究结果
     牛珀至宝微丸对内毒素休克与NO影响结果显示:LPS注射即时血压迅速下降成稳定的低血压,AG有显著的升压作用,用药30min后血压上升接近正常水平,至240min甚至高于原基础血压;牛珀至宝微丸血压回升稳定而缓慢,AG+牛珀至宝微丸有升压作用,但并未叠加,而是使升压作用缓和。LPS组NO浓度持续上升,AG可明显使NO浓度下降迅速而且稳定,注射后30min即回复至正常水平,240min后仍有继续下降趋势。牛珀至宝微丸组NO缓慢上升,其上升幅度高于LPS组而低于正常组。提示牛珀至宝微丸可使内毒素休克鼠血浆NO浓度缓慢下降,抑制NO的过量生成。AG+牛珀至宝微丸的作用叠加无显著意义。iNOS蛋白活性检测结果显示:LPS可致iNOS活性显著增强,AG可抑制iNOS,牛珀至宝微丸可抑制iNOS活性,AG+牛珀至宝微丸其作用有增强趋势。iNOS Western Blotting结果显示:正常组iNOS条带缺如,LPS组iNOS强阳性表达,AG组iNOS表达较弱,牛珀至宝微丸iNOS表达也较弱,但不如AG组明显,AG+牛珀至宝微丸其作用有增强趋势。
     牛珀至宝微丸对内毒素休克各脏器损伤的形态、功能影响与iNOS关系结果显示:AG对内毒素性肝损伤血清ALT、AST的浓度变化无影响,牛珀至宝微丸则可以明显改善以上肝功能指标及肝脏病理损坏,并能减少肝细胞、枯否氏细胞、内皮细胞的iNOS表达。内毒素休克心脏iNOS阳性细胞分布于心脏外膜与心肌,牛珀至宝微丸能明显降低内毒素所致iNOS表达,并能改善内毒素休克的心脏损害。内毒素休克脑iNOS阳性细胞分布于大脑皮质、纹状体、脑干、小脑等,牛珀至宝微丸能明显降低内毒素脑iNOS表达,并能改善内毒素休克脑损害。内毒素休克肾组织iNOS表达增强,牛珀至宝微丸能明显降低内毒素肾iNOS表达,并能改善内毒素休克肾损害。
     牛珀至宝微丸对内毒素休克脏器损伤修复与NOS表达关系结果显示:牛珀至宝微丸降低肺组织iNOS活性,使肺内iNOS表达减弱、而且同时能使eNOS表达增强,肺损伤减轻。对内毒素急性肺损伤的修复表明,内毒素肺损伤肺组织胶原纤维染色显著增强,牛珀至宝微丸能减轻肺损伤,并能减弱肺组织胶原纤维染色。内毒素肺损伤与修复的相关因子结果显示:牛珀至宝微丸可增强内毒素休克晚期关键核因子高迁移蛋白(HMGB_1)的表达,增强肺组织转化生长因子-β_1及其受体表达而不产生纤维化。
     离体实验从细胞信号转导与基因调控水平研究结果显示:牛珀至宝微丸可负调节LPS刺激RAW264.7细胞引起的PKC磷酸化激活和膜移位,并可延长PKC抑制剂H7下调NO作用时间。荧光素酶报告基因实验结果显示,牛珀至宝微丸可抑制LPS刺激诱导的iNOS启动子的转录活性,并可增强H7和钙离子通道阻滞剂维拉帕米的作用。牛珀至宝微丸抑制LPS刺激RAW264.7细胞所致的NO生成增加,其机制之一是量效与时间两方面抑制PKC激活和细胞内钙增加,从而影响iNOS启动子的转录活性。
     4、研究结论
     AG过快、无限制的升压可能对机体不利。牛珀至宝微丸治疗内毒素休克与NO途径相关,但不同于单纯的一氧化氮合酶抑制剂,升压稳定而缓慢,可能更有利于机体恢复,这也说明牛珀至宝微丸有平稳的升压作用不只是单纯的NO作用途径,而且存在某种稳定NO浓度的机制。牛珀至宝微丸治疗内毒素休克各脏器损伤与减少iNOS表达相关,与一氧化氮合酶抑制剂不同的是能使eNOS表达增强;对于内毒素损伤与修复表明,牛珀至宝微丸其机理可能与增强纤维化因子TGF-β_1及其受体表达相关,能增强内毒素休克晚期关键核因子HMGB_1的表达,其损伤与修复之间可能是通过核因子HMGB_1而发生作用。鉴于iNOS的表达主要取决于基因转录水平,研究表明牛珀至宝微丸抑制iNOS启动子转录活性,细胞信号研究表明牛珀至宝微丸可增强PKC抑制剂H7下调NO的作用。本研究的最终结果表明:牛珀至宝微丸对内毒素休克NO影响是一个独特的整体调节机制,而且其靶点主要在细胞核。
1.Objective
     Niu-Po-Zhi-Bao peUet(NPZB pellet,牛珀至宝微丸) is clinically used to treat shock inTCM, Nitric Oxide(NO) related gene expression play an important role on blood pressureregulation and vicera injure in endotoxin shock. To investigate the mechanism of NPZBpellet in treating shock is correlated to NO related gene expression or not, the effect of theNPZB pellet on regulating NO in biochemistry of signal transduction and generegulation, cell and in vivo is studied.
     2.Content and method
     Research includes in vivo and in vitro experiment.
     To explore the effect of NPZB pellet on NO expression regulated induced bylipopolysaccharide(LPS) in rats. The septic shock was induced by LPS and D-GalN,Pathological injure was tested by lung HE stained slices, the serum ALT and AST weretested; the serum NO was tested by Griess method, The expression of nitric oxide synthase(NOS) was measured by immunohistochemistry and Western blot, The activity was assayedby isotope labeling, The effect of AG and NPZB pellet on inducible nitric oxide synthase(iNOS) expression was observed, the expression of collagenous fiber was measured by VanGieson's stained slices.The expression of TGF-βand TβRⅡwas measured byimmunohistochemistry. The expression of high mobility group box-1 protein(HMGB1) wasmeasured by immunohistochemistry and double immunofluorescence staining using laserscanning confocal microscopy.
     To explore the gene expression of iNOS regulated by NPZB pellet through proteinkinase C (PKC) on the stimulation of LPS in macrophages. PKC activity assay was used tostudy the activation of PKC by LPS. Griess method was used to determine inhibitory effectof PKC on the induction of NO by LPS. Luciferace reporter gene system of iNOS wasconstructed using gene recombination technique. Gene transfection and reporter gene assaywere used to study the production of NO and induction of iNOS promoter transactivityregulated by NPZB pellet in RAW264.7 cell on the stimulation of LPS and the effect ofPKC.
     3.Result
     The influence and effect of NPZB pellet on shock and NO in plasma showed that blood pressure decreased rapidly by injecting LPS while the blood pressure rised andapproached to normal level in 30min and higher than the basic blood pressure in 240minafter injecting AG, which had action of rising blood pressure remarkably. The bloodpressure had been rised slowly by using NPZB pellet compared to LPS control group.Combination of AG and NPZB pellet cannot synergize the effect of elevation of bloodpressure. The plasma NO concentration rised consistently after injection of LPS, LPS+AGgroup's plasma NO concentration decreased rapidly; it approached to normal level in 30minand lower than the basic concentration in 240min after injection of AG. The plasma NOconcentration in NPZB pellet group decreased slowly compared to AG group, but it waslowered than LPS control group. Combination of AG and NPZB pellet cannot enhance theeffect of decreasing the plasma NO concentration. iNOS protein and activity were inducedby LPS and decrease by AG, NPZB pellet can decrease iNOS protein and activity but waslower than AG;
     The results of NPZB pellet on morphology and function of organs injured by septicshock and the relationship between effect of NPZB pellet and iNOS showed that iNOSimmuno-positive cells induced by LPS distributed in liver cell, Kuffers cells andendothelium cells. In heart, iNOS immuno-positive cells induced by LPS distributed inmyocardium and epicardium; In brain, iNOS immuno-positive cells induced by distributedin layer of cerebral cortex, striatum, brain stem reticular formation, cerebellar cortex. Also,iNOS immuno-positive cells induced by distributed in kindney. The number of positiveceils in LPS group were much more than that treated by NPZB pellet, there wassignificant difference between the two groups. Pathological injure was tested by lung HEstained slices, the serum ALT and AST were tested, NPZB pellet can alleviate liver injury,heart injury, brain injury and kidney injury.
     We also investigated repairing function following injury in lung, NPZB pelletcan dropiNOS protein activity and rise eNOS protein activity; iNOS protein also shows less positivereaction and eNOS shows stronger in NPZB pellet group than LPS group inimmunohistochemical stained slices. NPZB pellet can obviously protect lung and dropCollagenous Fiber expression. The results in relating factor of lung injury and repair showthat NPZB pellet can enhance the expression of HMGB1, which is key nuclear factor in latephase of endotoxin shock and the expression of TGF-βand TβRⅡwhile it does not causefibrosis. The expression of TGF-βand TβRⅡwas measured by immunohistochemistry.TGF-βland TβRⅡshows stronger in NPZB pellet group than LPS group inimmunohistochemical stained slices.
     In RAW264.7 cells following the stimulation of LPS, PKC was activated by phosphorylation and translocated to inner cell membrane, and both of them were inhibitedby NPZB pellet. The stimulation of LPS on RAW 264.7 cells increased NO product ion H7and Verapamil, a calcium ion channel blocker, showed an inhibitory effect on iNOSpromoter transactivity induced by LPS. All effects were strengthened by NPZB pellet.
     4.Conclusion
     Compared with AG, it is beneficial to body that NPZB pellet increase the bloodpressure and decrease NO concentration in plasma slowly in septic shock induced by LPS.NPZB pellet can improve the injured organ induced by LPS through adjusting iNOSexpression, including liver, heart, brain, kidney and lung. It is showed that the effect ofNPZB pellet to cure septic shock is related to NO, but has some difference from NOSinhibitor, it can stablized NO concentration, and rise cNOS protein activity. NPZB pellet canrepair acute lung injury of endotoxin shock by adjusting collagenous fiber by enhancingexpression of TGF-βland TβRⅡprotein expression. In RAW264.7 cells stimulated byLPS, NPZB pellet can inhibit activation of PKC for the induction of iNOS gene expressionwhich contribute to the production of NO. This is an important signaling mechanism of NOproduction in septic shock. NPZB pellet can enhance the expression of HMGB1, which isthe key nuclear factor in late phase of endotoxin shock, its mechanism of regulating repairmay be through HMGB1. Since the expression of iNOS mostly depend on transcriptionallevel of gene, NPZB pellet can inhibit the transcriptional activity of promoter in iNOS, andenhance the effect of H7 which is the inhibitor of PKC to down-regulation of NO in cellsignal. Taken together, the influence of NPZB pellet on NO in shock is an uniquemechanism of regulating in whole, and its target is within the nuclear.
引文
1. Cherry DD, Furchgott RF, Zawadski JV, et al. The role of endothelial cells in the relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci USA, 1982, 79: 2106-2110
    2. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987, 327: 524-526
    3. Koshl DE. The molecular of the year. Science, 1992, 258: 1861-1863
    4. Moro MA, Russell RL, Cellek S, et al. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci USA,1996, 93:1480-1485
    
    5. Wedel B, Humbert P, Harteneck C, et al. Mutation of His-105 in the 6 subunit yield a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci USA,1994,91:2592-2596
    
    6. Salvemini D, Misko TP, Masferrer JL,et al. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA,1993,90:7240-7244
    
    7. Burgstahler AD, Nathanson MH. NO modulates the apicolateral cytoskeleton of isolated hepatocytes by a PKC-dependent, cGMP-independent mechanism. AM J Physiol, 1995, 269:789-799
    
    8. Gopalakrishaa R, Chen ZH, Gundimeda U. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinaseC activity and phorhol ester binding. J Biol Chem, 1993, 268:27180-27185
    
    9. Haby C, Lisovoski F, Aunis D, et al. Stimulation of the cyclic GMP pathway by NO induces expression of the immediate early genes c-fos and jun B in PC 12 cells. J Neurochem, 1994,62:496-501
    
    10. Peng HB, Libby P, Liao JK. Induction and stabilization of IκBa by nitric oxide mediate inhibition of NF-κb,J Biol Chem, 1995,270:14214-14219
    
    11. Brune B, Lapetina EG. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase as a target for nitric oxide signaling. Genet Eng N Y, 1995, 17:149-164
    
    12. Asahi M, Fujii J, Suzuk K, et al. Inactivation of glutathione peroxidase by nitric oxide: implication for cytotoxicity. J Biol Chem, 1995, 270:21035-21039
    
    13. Castro L, Rodriguez M, Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precuror, nitric oxide. J Biol Chem, 1994,269:29409-29415
    
    14. Kroncke KD, Fehseh K, Schmidt T, et al. Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast trancription activator LAC9. Biochem Biophys Res Commun, 1994, 200:1105-1110
    
    15. Crow JP, Beckman JS. Reactions between nitric oxide,superoxide, and peroxynitric: footprints of peroxynitrite in vivo. Adv Pharmacol, 1995, 34:17-43
    
    16. Szabo C, Salman AL. Endogenous peroxynitrite is induced in the inhibition of mitochondrial respiration in immune-stimulated J744. 2 macrophages. Biochem Biophys Res Commun,1995,209:739-743
    
    17. Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide: a reviews. Mutat Res, 1995, 339:73-89
    
    18. Mannick JB, Asano K, Jzumi K, et al. Nitric oxide produced by human B lymphocytes inhibites apoptosis and Epstein-Barr virus reactivation. Cell, 1994,79:1137-1146
    
    19. Sato K. Immunohistochemical expression of inducible nitric oxide synthase(iNOS) in reversible endotoxic shock studied by a novel monoclonal antiboby against rat iNOS. J Leukoc Biol, 1995, 57:36-44
    
    20. Morikawa A, et al. Role of nitric oxide in lipopolysaccharide-induced hepatic injury in D-Galactosamine-sensitized mice as an experimental eudotoxic shock model. Infect Immun.1999,67:1081-1084
    
    21. Chartrain NA, Geller DA, Koty PP, et al. Molecular cloning, structure, and chromosomal localization of human inducible nitric oxide synthase gene.J Biol Chem, 1994, 269: 6765-6772
    
    22. Tzeng E, Billiar TR, Tobbins PD,et al. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin(H4B)-deficient cell line:H4B promotes assembly of enzyme subunits into an active dimmer. Proc Natl Acad Sci USA, 1995,92:11771-11775
    
    23. Albakri QA, Stuehr DJ. Intracellular assembly of inducible NO synthase is limited by nitric oxidemediated changes in heme insertion and availability. J Biol Chem,1996,271:5414-5421
    
    24. Xie Q-W, Leung M, Fuortes M, et al. Complementation analysis of mutants of nitric oxide synthase reveals that the active site requires two hemes. Proc Natl Acad Sci USA, 1996,93:4891-4896
    
    25. Cho HJ, Xie Q-W, Calaycay J, et al. Calmodulin is a subunit of nitric oxide synthase from macrophage. J Exp Med , 1992,176:599-604
    
    26. Forstermann U, Closs EI, Pollock JS, et al. Nitric oxide synthase isozymes: characterization, molecular cloning and functions. Hypertension, 1994, 23:1121-1131
    
    27. Denlinger LC, Fisette PL, Garis KA, et al. Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptorw and calcium. J Biol Chem, 1996, 271:337-342
    
    28. Gilbert RS, Herschman HR. Transforming growth factor-beta differentially modulates the inducible nitric odide synthase gene in distinst cell types. Biochem Biophys Res Commun, 1993,195:380-384
    
    29. Fujisawa H,Ogura T,Hokari A, et al. Inducible nitric oxide synthase in a human glioblastoma cell line. J Neurochem, 1995. 64:85-91
    
    30. Gilbert RS,Herschman HR.Macrophage nitric oxide syunthase is a glucocorticoid-inhibitable primary reponse gene in 3T3 cells. J Cell physiol, 1993,157:128-132
    
    31. Xie Q-W, Kashiwabara Y, Nathan C. Role of transcription factor NF-KB/Rel in induction of nitric oxide syuthase. J Biol Clem, 1994, 269:4705-4708
    
    32. Lawenstein CJ, Alley EW, Raval P et al. Macrophage nitric oxide synthase gene-two upstream re-gions mediate induction by interferon-R and lipopolysaccharide. Proc Natl Acad Sci USA, 1993, 90:9730-9734
    
    33. Xie W-Q, Whisnant R, Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon-R and bacterial lipopolysaccharide. J Exp Med, 1993, 177:1779-1784
    
    34. Martin E, Nathan C, Xie Q-W. Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J Exp Med ,1994,180:977-984
    
    35. Vodovotz Y, Bogdan C, Paik J , et al. Mechanism of suppression of macrophage nitric oxide release by transforming growth factor-B, J Exp Med, 1993,178:605-613
    
    36. Weisz A, Oguchi S, Cicatiello L, et al. Dual mechanism for the control of inducible-type NO synthase gene expression in macrophage during activation by interferon-R and bacterial lipopolysaccharide-transcriptional and post-transcriptional regulation. J Biol Chem, 1994, 269:8324-8333
    
    37. Bogdan C, Vodovotz Y, Paik J, et al. Mechanism of suppression of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophage. J Leukocyte Biol,1994,55:227-233
    
    38. Wang P, Ba ZF, Chaudry IH. Nitric oxide: to block or enhance its production during sepsis? Arch Surg, 1994,129:1137-1143
    
    39. Kurose I, Miura S. Increased nitric oxide synthase activity as a cause of mitochondrial dysfunction in rat hepatocytes: roles for tumor necrosis factor alpha. Hepatology. 1996,24:1185-1192
    1. Glauser MP, Zanetti G, Baumgarther JD, et al. Septic shock: pathogenesis. Lancet, 1991, 338:732-736
    2. Kilbourn RG, Griffith OW. Over production of nitric oxide in cytokine mediated and septic shock. J Natl Cancer Inst, 1992, 84: 827
    3. Lorente JA, Landin L, De Pablo R, et al. L-arginine pathway in the sepsis syndrome. Crit Care Med, 1993, 21:1287-1295.
    4. Staman R, Cbeng W, Cunningham JN, et al. Nitric oxide inhibitionin the treatment of the sepsis syndrome is detrimental to tissue oxygenation. J Surg Res, 1994, 57; 93.
    5. Nussler A K, Billiar TR. Inflammation, immunoregulation and inducible nitric oxide synthase. J Leukoc Biol, 1993, 54; 171-174.
    6. Lefroy DC, Crake T, U ren N G, et al. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation, 1993, 88: 43-46.
    7. Pasto r C, Teisseire B, V icaut E, et al. Effects of L-arginie and L-nitro-arginine treatment on blood pressure and cardiac output in a rabbit endotoxin shock model. Crit CareM ed, 1994, 22; 465-468.
    8. Nava E, Palmer RMJ, Moncada S. Inhibition of nitric oxide synthesis in septic shock: how much is beneficial? Lancet, 1991, 338: 1155-1160.
    9. Grover R, Zaccardelli D, Colice G, et al. An open-label dose escalation study of the nitric oxide synthase inhibitor L-N~G- methylarginine hydrochlodde (546C88) in patients with septic shock. Crit Care Med, 1999, 27(5):913-922.
    10. Grover R, Lopez A, Lorente J, et al. Multi-center, randomized, placebo-controlled, double blind study of the nitric oxide synthase inhibitor 546C88:effect on survival in patients with septic shock. Crit Care Med, 1999, 27:33-34
    11. Umans JG, Wylam ME, Samsel RW, et al. Effects of endotoxin in vivo on endothelial and smooth-muscle function in rabbit and aorta. Am Rev Respir Dis, 1993, 148:1638-1645.
    12. Wang P, Ba ZF, Chaudry IH. Endothelium-dependent relaxation is depressed at the macro- and microcirculatory levels during sepsis. Am J Physiol, 1995, 269:988-994.
    1. Cho HJ, Xie QW, Calaycay J, et al. Calmodulin is a subunit of nitric oxide synthase from macrophage. J Exp Med, 1992, 176: 599-604.
    2. Alonso A, Carvalho J, Alonso Orre SR, et al. Nitric oxide synthesis in rat peritoneal macrophages is induced by IgE/DNP complexes and cyclic AMP analogues evidence in favor of a common signaling mechanism. J Immunol, 1995, 154: 6475-6483.
    3. Park YC, Park SJ, Jun CD, et al. Cyclic AMP analogue as a triggering signal for the induction of nitric oxide synthesis in routine peritoneal macrophages. Cell, Immunol, 1997, 179: 41-47.
    4. Sowa G, Przewlocki R. cAMP analogues and cholera toxin stimulate the accumulation of nitrite in rat peritoneal macrophage cultnres. Eur J Pharmacol, 1994, 266: 125-129.
    5.刘景生.细胞信息与调控.第一版,北京:北京医科大学中国协和医科大学联合出版社,1998,185-187
    6. Severn A, Wakelam MJ, Liew FY, et al. The role of protein kinase C in the induction of nitric oxide synthesis by routine macrophages. Biochem Biophy Res Commun, 1992, 188: 997-1002.
    7. Chen CC, Wang JK, Lin SB, et al. Antisense oligonucleotides targeting protein kinase Cα, β, γ or δ but not η inhibit lipopolysaccharide induced nitric oxide synthase expression in Raw 264. 7macrophages. J Immunol, 1999, 161: 6206-6210
    8. Diaz Guerra MJ, Bodelon OG, Vekasco M, et al. Up regulation of protein kinase C-epsilon promotes the expression of cytokine inducible nitric oxide synthase in RAW264.7 cells. J Biol Chem, 1996, 271:32028- 32033.
    
    9. Chan ED , Winston BW, Uh ST, et al. Evaluation of the role of mitogen-activated protein kinases in the expression of inducible nitric oxide synthase by IFNalpha in mouse macrophages. J Immunol, 1999,162:415-422.
    
    10. Feng GJ, Goodridge HS, Harnett MM, et al . Extracellular signal related kinase (ERK) and P38mitogen activated protein (MAP) kinases differentilly regulate the lipopolysacchride mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosophoglycans subvert macrophage IL-1 production by targeting ERK MAP kinase. J Immunol, 1999 ,163:6403-6412.
    
    11. Caivano M. Role of MAP kinase cascades in inducing arginine transporters and nitric oxide synthetase in RAW264 macrophages. FEBS Letters ,1998, 429:249-254.
    
    12. Park YC , Lee CH ,Kang HS,et al. Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, enhances LPS induced NO production from murine peritoneal macrophage .Biochem Biophps Res Commun, 1997, 240:692 - 696.
    
    13. Chen YQ , Fisher JH , Wang MH. Activation of the RON receptor tyrosine kinase inhibits inducible nitric oxide synthase(iNOS) expressing by murine peritoneal exudate macrophages: Phospatidylinositol-3 kinase is required for RON mediated inhibition of iNOS expression. J Immunol ,1998 ,161: 4950 - 4959.
    
    14. Marrero MB.Venema VJ,He H. Inhibition by the JAK/STAT pathway of IFNgamma and LPS stimulated nitric oxide synthase induction in vascular smooth muscle cells. Biochem Biophys Res Commun,1998,252:508-512.
    
    15. St-Denis A, Chano F, Tremblay P, et al. Protein kinase C-α modulates lipopolysaccharide-induced functions in a murine macrophage cell line. J Biol Chem, 1998, 273:32787-32792.
    1. Ruetten H, Southan GJ, Abate A, et al. Attenuation of endotoxin induced multiple organ dysfunction by aminohydroxyguanidine, apotent inhibitor of inducible nitric oxide synthase. Br J Pharmacol, 1996, 118: 261-266
    2. Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet, 2002; 360: 219-226
    3. Bossut HV, Wisse E. Cultured kupffer cells isolated from human and rat liver biopsies ingest endotoxins. J Hepatol, 1988, 7: 45259-45266.
    4.李军,孙梅,吴玉斌,等.内毒素诱导新生大鼠肝损伤及地塞米松的保护作用.中国当代儿科杂志,2002:4(1):73-76.
    5.李生伟,吴传新,石毓君.内毒素上调肝细胞表达CD14基因和蛋白的实验研究.中华肝脏病杂志,2001;9(2):103-106
    6. Olinga P.Merema MT, Jager MH, et al.Rat liver slices as a tool to study LPS-induced inflammatory response to the liver. Hepatology, 2001, 35:187-194
    
    7. Alexnder B. The role of nitric oxide in hepatic etabolim. Nutrition, 1998,14(4):376-390
    
    8. Yang F.Comtois AS, Fang L, et al. Nitric oxide derived nitrate anioncontributes to endotoxic shock and multiple organ injury dysfunction. Crit Care Med,2002:30 : 650-653
    
    9. Billiar TR, Curran RD .Stuehr DJ, et al . An Larginine dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med , 1989 ; 169 (4) : 1467-1472
    
    10. Liu TH, Robinson EK, Helmer KS. Does upregulation of inducible nitric oxide synthase play a role in hepatic injury ? . Shock, 2002,18:549 -554.
    1. Ursell PC, Mayes M.Anatomic distribution of nitricoxide synthase in the heart. Int J Cardiol, 1995, 50; 217-223
    2. Hart X, Kobzik L, Balligand JL, et al. Nitric oxide synthase-mediated cholinergic modulation of Ca2+ current in adult rabbit atroventricular nodal cells. Circ Res, 1996, 78: 998-1008
    3. Kaszaki B. Effect of nitric oxide synthase inhibition on myocardial contractility in anesthetized normal and endotoxic dogs.Shock 1996; 6; 279-285
    4. Brady AB, Warren JB, Poole-Wilson P, etal. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol, 1993, 265: 176-182
    5. Mohan P,Sys SU,Bmtsaert DL.Positive inotropic effect of nitric oxide in myocardium.Int J Cardiol,1995,50:233-237
    
    6. Klabunde RE.Nitric oxide synthase inhibition does not prevent cardiac depression in endotoxic shock.Shock,1995;5:73-78
    
    7. Kumar A.Tumor necrosis factor-induced myocardial cell depression is mediated by nitric oxide and cyelic GMP generation.Circulation 1993;883;1617-1621
    1. Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in the brain.Nature, 1988, 336; 385-388
    2. Faraci FM, Brain JE. Nitric oxide and the cerebral circulation. Stroke, 1994, 25: 692-703
    3. Bredt DS, Glatt CE, Hwang PM, et al. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron, 1991, 7; 615-324
    4. Okada D.Two pathways of cyclic GMP production through glutamate receptor mediated nitric oxide synthesis. J Neurochen, 1992, 59; 1203-1210
    5. Crepel F, Jaillard D. Protein kinases, nitric oxide and long-term depression of synapses in the cerebellun. NeuroReport, 1990, 1: 133-136
    6. Huang ZH. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science.1994; 265: 1883-1885
    7. Wei XQ, Charles IG, Smith A, et al. Altered immune responses in mice lacking inducible nitric oxide synthase.Nature, 1995; 375: 408-411
    8. Wong ML, Rettori V, Shekhlee A, et al. Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat Med. 1996, 5:581-5844
    1. Kang Y H, Falk M C, Bentley TB, et al. Distribution and role of lipopolysaccharide in the pathogenesis of acute renal proximal tubule injury. Shock, 1995, 4:441-449.
    2. Raij L, Baylis C. Glomerular actions of nitric oxide. Kidney Int, 1995, 48:20-32.
    3. Morrissey JJ, McCracken R, Kaneto H, et al. Location of an inducible nitric oxide synthase mRNA in the normal kidney. Kidney Int, 1994, 45:998-1005.
    4. Peilschifter JM. Nitric oxide: an inflammatory mediatorof glomerular mesangial cells. Nephron, 1993, 64:518-525
    5. Saura M, Lopez S, Puyol MR, et al. Regulation of inducible nitric oxide synthase expression in rat mesangial cells and isolated glomeruli. Kidney Int, 1995, 47:500-509.
    6. Kunz D, Muhl H, Walker G, et al. Two distinct signaling pathway trigger the expression of inducible nitric oxide synthase in rat mesangial cells. Proc Natl Sci USA, 1994, 91:5387-5391.
    7. Ogle CK, Guo XL, Wu J Z, et al. Production of cytokinesand PGE-2 and cytotoxicity of stimulated bone marrow macrophages after thermal injury and cytotoxicity of stimulated macrophages. Inflammation, 1993, 17: 583-594.
    8.万兰清,马超英,耿耘,等.开闭固脱法为主治疗流行性出血热休克100例临床研究.中西医结合实用临床急救,1996;3(4):151-154
    1. Martin TR. Recognition of bacterial endotoxin in the lung Am J Resp ir Cell Mol Biol, 2000, 23: 128-132.
    2. Carter AB, Monick MM, Hunninghake GW. Lipopolysaccharide-induced NF-kappaB activation and cytokine release in human alveolar macrophages is PKC-independent and TK-and PC-PLC-dependent. Am J Respir Cell Mol Biol, 1998, 18: 384-391
    3. Rahman 1, MacNee W. Role of transcription factor in inflammatory lung disease. Thorax, 1998, 53:601-612
    4. Squadrito F, Bagnato G, Altavilla D, et al。Effect of sulfatide on acute lung injury during endotoxemia in rats. Life science, 1999, 65:2541-2552
    5. Skoutelis. Neutrophils in sepsis, septic shock, and adult respiratory distress syndrome:How stiff is too stiff?. Crit Care Med, 2000, 28:2659-2660
    6.谷振勇,凌亦凌,丛斌,等,过氧亚硝基阴离子参与介导内毒素所致急性肺损伤的研究,中华医学杂志;2000;80(1):57-60
    7.王翔,王晓军,罗向东,等.内毒素直接损伤血管内皮细胞的细胞生物力学机理.生物物理学报,1999;15(4):804-811.
    8. Chasletts. Cellular mechanism of acute lung injury. Thorax, 1992, 47:260.
    9.冯英凯,杨庆华.炎症介质与内毒素肺损伤.国外医学呼吸系统分册。2004;24(5):329-331
    10. Gaston B, Drazen JM, Loscalzo J, et al. The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med,1994, 149:538-51.
    11.刘艳梅,张君岚,王殿华,等.外源性一氧化氮抗内毒素致大鼠肺微血管高通透性的作用及机制研究.中国病理生理杂志,2000;16(10):157.
    12. Honda K, Kobayashi H, Hataishi R, et al. Inhaled nitic oxide reduces tyrosine niuration after lipopolysaccharide instillation into lungs of rats. Am Resp Crit Care Med, 1999, 160:678-688.
    13. Heridan BC, Mclntyre RC, Meldrum DR, et al. L-rginine attenuates endothelial dysfunction in endotoxin induced lung injury Surgery, 1999, 125:33-40.
    14. Luvone T, Aquisto FD, Camuccio R, et al. Nitric oxide inhibits LPS -induced tumor necrosis factor synthesis in vitro and in vivo. Life Sci, 1996, 59:207-211.
    15.郭振辉,邹霞英,樊满齐.一氧化氮吸入治疗急性肺损伤的作用机制.中华实验外科杂志,2001:18(6):556-558.
    16.宋冰冰孙,新艳,王俊科,等.诱导性一氧化氮合酶抑制药对感染性休克鼠肝、肺组织学改变的影响,中华麻醉杂志,1999;19(9):537-539
    17. Kristof AS, Golderg P, Laubach V, et al. Role of inducible nitric oxide synthase in endotoxin-induced acute lung injury. Am J Respir Cri Care Med, 1998, 158:1883-1889.
    18. Kilboum RG, Szabo C, Traber DL. Benificial Versus deterimental effects of nitric oxide synthase inhibitors in circulatory shock:lessons learned from experimental and clinical studies. Shock, 1997, 7:235-246
    19. Meldrum DR, McIntyre RC, Sheridan BC, et al. L-Arginine decreases alveolar macrophage proinflammatory monokire production during acute lung injury by a nitric oxide synthase dependant mechanism. J Trauma, 1997, 43:888-893.
    20. Walley KR, McDonald TE, Higashimoto Y, et al. Modulation of proinflammatory cytokinesby nitro oxide in murine acute lung injury. AM J Respir Crit Care Med, 1999, 160:698-704.
    21. Heremans H, Dillen C, Groenen M, et al. Role of interferon-γ and nitric oxide in pulmonary edema and death induced by lipopolysaccharide. Am J Re spir Crit Care Med, 2000, 161:110-117.
    22.李春盛,桂培春,何新华,等,NO和iNOS在内毒素诱导的大鼠急性肺损伤的作用及大黄对其影响,中国急救医学,2000;20(2):65-68
    1. Marshall R, Bellingan G, Laureut G, The acute respiratory distress syndrome: fibrosis in the fast lane. Thorax, 1998; 53:815-817
    2.李兴旺,蒋荣猛,郭嘉祯.糖皮质激素治疗重症急性呼吸综合征初探.中华内科杂志,2003,42(6):378-381
    3. Armstrong L, Thickett DR, Mansell JP, et al. Changes in collage turnover in early acute respiratory distress syndrome. Am J Respir Crit Care Med, 1999; 160:1910-1915
    4. Marshall RP, Bellingan G, Webb S, et al. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med, 2000; 162:1783-1788
    5. Card PA, Hunninghake GW. Lung inflammation and fibrosis. Am J Respir Crit Care Med, 1998; 157:123-129
    6. Attisano L, Wrana JL. Signal transudation by the TGF-beta supeffamily. Science. 2002; 296: 1646-1647.
    7. Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002; 82:85-91.
    8. Frand S, Madlener M, Wemer Set al. Transforming growth factorsβ 1, β 2and β 3and their receptors and differentially regulated during normal and impaired wound healing. J Biol Chem, 1996, 271(17): 10188-10193
    9. Grande JP. Role of transforming growth factor-β in tissue injury and repair. Proc Soc Exp Biol Med, 1997, 241:27-40
    10. Li L, Artlett GM, Jitnenes SA, et al. Positive regulation of human alphal (Ⅰ) collagen promoter activity by transcriptional factor SP1. Gene, 1995,164:229-232
    1. Haichao Wang, Ona Bloom, Minghuang Zhang, et al. HMG-1 as a Late Mediator of Endotoxin Lethality in Mice. Science, 1999, (285): 248-252
    2. Li J, Wang H, Mason JM, et al. Recombinant HMGB1 with cytokine-stimulating activity. J Immunol Methods. 2004; 289: 211-223.
    3. Yang H, Ochani M, Li J, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA, 2004; 101: 296-301.
    4. Luis Ulloa, Davorka Messmer. High-mobility group box 1 (HMGB1) protein: Friend and foe. Cytokine & Growth Factor Reviews. 2006, 17:189-201
    5.徐佳,刘志锋,姜勇.高迁移率族蛋白与真核基因表达调控.生物化学与生物物理进展.2005;32(5):397-403
    6. Mitsouras K, Wong B, Arayata C, Johnson RC, Carey M. The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhanceosome assembly. Mol Cell Biol. 2002 Jun; 22:4390-4401
    7.肖湘文,周建林,周畅.高迁移率族蛋白.细胞生物学杂志,2006,28(4):501—506
    8. McKinney K, Prives C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol Cell Biol. 2002;22:6797-808.
    9. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002; 418: 191-195.
    10. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005; 5: 331-42.
    11. Kokkola R, Andersson A, Mullins G, et al. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Stand J Immunol. 2005; 61:1-9.
    12. Yu, Man; Wang, Haichao; Ding, Aihao; et al. HMGB1 Signals Through Toll-Like Receptor (TLR) 4 And TLR2. Shock. 2006, 26:174-179
    13. Li J, Kokkola R, Tabibzadeh S, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med. 2003; 9: 37-45.
    14. Haichao Wang, Wei Li, Jianhua Li, et al. The Aqueous Extract of a Popular Herbal Nutrient Supplement, Angelica sinensis, Protects Mice against Lethal Endotoxemia and Sepsis. Nutritional Immunology. 2005, 360-365
    15. Wang H, Ma G. Ochani M, et al. Ancient Chinese herbal medicine as a modern hope for the treatment of sepsis: extract of Angelica sinensis as an antagonist for a newly discovered late mediator of sepsis. Ann Emerg Med. 2004 Oct; 44(4):S52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700