用户名: 密码: 验证码:
风力机定常与非定常气动问题的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入系统地研究和掌握风力机的能量吸收规律是保证风力机的安全可靠性、提高风力机性能的关键。目前,CFD方法以其突出的优势在风力机空气动力学问题研究和工程应用的各个方面发挥着越来越重要的作用,保证风力机数值模型的计算精度至关重要。由于运行工况下风力机叶片转捩类型多样,对边界层发展、流动分离及气动力等影响显著,因此转捩研究及其模型的发展和应用有助于进一步提高CFD计算精度,提升风力机设计水平。而鉴于风切变和塔影效应对风力机性能的剧烈影响,采用接近实际情况的风轮乃至整机模型,系统分析这些因素的影响规律和影响机理,将为风场选址、风力机设计和选型乃至发电量出力预报等各方面提供详细指导和参考。为此,本文采用CFD商用软件Fine/TurboTM,系统研究了均匀风速下叶片定常绕流场,切变风速对风轮气动性能、以及均匀和切变风速条件下整机塔影效应对风力机气动性能的非定常影响。
     均匀风速下叶片定常绕流数值模拟的研究从计算域尺度、网格数目、湍流和转捩模型以及风力机机舱的影响几个方面展开。首先以失速型风力机NORDTANK 500/41为研究对象,在高风速条件下,分析了计算域尺度和网格数目对叶片定常气动载荷数值模拟结果的影响;进而采用全湍流Spalart-Allmaras (S-A)模型、k-ωSST模型以及在S-A模型中计及转捩Abu-Ghannam & Shaw (AGS)模型,对风力机翼型FFA-W3-241和NORDTANK500/41风力机叶片进行多个工况下的边界层流态、性能参数和流动细节的详细分析;最后以NREL Phase VI风力机为研究对象,进行了机舱对叶片气动性能影响的数值分析。以上研究的结果显示:当计算域外边界距离旋转中心10倍风轮旋转半径以上时,基本可以满足气动计算结果与计算域尺度的无关性;当定常计算的性能参数收敛曲线呈大幅振荡的周期性收敛时,可靠的数值结果应为振荡周期内的平均值而非某一个迭代步上的计算结果;全湍流S-A模型及其转捩AGS模型可以较好的预计风力机气动性能及流场细节;机舱会影响叶根流动分离和旋涡结构,以及径向流动沿叶片展向的发展,尤其是分离区的流态,进而影响风轮气动性能和载荷预估值,在研究模型中加入机舱将提高数值模拟准确性。
     在对切变风速下风轮的非定常气动性能研究中,除了对NREL Phase VI风力机进行三维非定常CFD模拟分析外,还提出了一种准三维非定常数值模型并进行了验证,进而采用这种模型分析了不同风速廓线指数和展向位置处风切变的影响规律及影响机理,并与三维风轮模型的非定常CFD模拟结果进行了对比分析。结果显示:准三维模型可以很好的反映截面气动特征,适用于叶片边界层无分离或分离较小的展向截面处风切变下的气动性能分析;切变风速使得风力机性能、载荷和流动参数波动振幅增大,随方位角呈近似余弦函数型式的周期性波动,波动波幅随风速廓线指数和展向位置而增加,在整个风轮旋转平面内呈上下不对称式分布,且幅值方位角普遍滞后风速极值;与不同展向位置处线性增加的线速度引起的流动参数变化相比,风切变影响相对较小,不改变载荷的展向分布规律,对叶片结构稳定性的影响也不至于过大。
     在对均匀和切变风速条件下整机塔影效应的非定常数值模拟中,以上风向风力机DF90为研究对象,详细分析了包括叶片和风轮总体性能参数、压力分布、壁面极限流线图和截面流线图谱等流场细节。结果显示,均匀风速条件下,塔架的阻碍作用导致叶片载荷的剧烈变化,呈现塔前的突然增加,继而快速下降,进而是相对缓慢的回复过程。风轮的旋转作用使得塔前来流始终发生偏转,引起塔架两侧受力的不均匀以及塔后涡街3p脱落。塔影效应下的周期性脉冲载荷容易引起叶片和塔架的动态响应,对机组的寿命和运行安全不利。切变风速条件下,载荷波动幅值增加,相对均匀风速条件下增长近倍,并呈上部较大、下部较小,沿展向增加的趋势。同时,切变风速波动缓和了塔架附近载荷的剧烈波动,而三叶片相位差的叠加作用使得切变前后风轮载荷平均值及波动波幅变化不大。
     综上,本文所研究的几何模型自叶片、风轮到整机,物理现象自均匀风速下的定常流动到切变风速下的非定常流动,再到更为复杂的风切变与塔影非线性综合作用,层层递进,逐渐接近真实物理模型。研究结果为采用CFD数值方法进行翼型和叶片气动载荷分析与设计提供参考,为认识风切变、塔影等复杂非定常空气动力学问题的影响提供依据,为深入系统的掌握风力机的能量吸收规律,保证风力机的安全可靠性、提高风力机性能提供支持。
The development of wind energy is a long-term strategic task in China. Systemic investigations and good understanding of the energy transform to ensure the reliability of wind turbine and to improve wind turbine performance are keystones of the sustainable development of wind energy industry. Due to the importance of CFD applications in wind turbine aerodynamics, a very important issue is the accuracy of CFD simulations. However, there exist many types of transition which has considerable impact on the development of boundary layer, separation flow and the aerodynamic performance. The investigation on transition and the development of transition models may improve the accuracy of CFD simulations and the design of wind turbine. In view of the dramatic impact of the wind shear and tower shadow effect on wind turbine performance, a numerical model close to the actual wind turbine, which contains the rotor, nacelle as well as the tower, should be used to analysis the influence of laws and mechanism systematically. The analysis results could provide detailed guidance and reference for wind farm micro-siting, turbine design and type selection as well as wind power prediction. Therefore, the present thesis is devoted to the investigation of the steady flow field under uniform wind speed, the unsteady influence of wind shear on rotor performance, and further the unsteady influence of tower shadow effect on turbine performance under uniform and shear wind speeds, by using commercial CFD software Fine/TurboTM.
     The steady simulations on wind turbine blade under uniform wind speed focus on the computational domain scale, grid size, turbulence and transition models, as well as the influence of turbine nacelle. Firstly, the influences of computational domain scale and grid size on the aerodynamic performance and load distributions of steady simulations under high wind speed is investigated, where the stall-controlled wind turbine NORDTANK 500/41 is taken as the test case. Detailed analysis on the boundary layer, performance and details of the flow field of the FFA-W3-241 airfoil and NORDTANK 500/41 wind turbine blade are performed using full turbulence Spalart-Allmaras (S-A) model、k-ωSST model, as well as the transition model Abu-Ghannam & Shaw (AGS) in S-A. The influence of nacelle on the aerodynamic performance of the blade are analysised using the model of NREL Phase VI wind turbine. The simulation results show that the simulated aerodynamic performance is independent to the computational domain scale when the computational domain is larger than 10 rotor radii. When the performance convergence history of steady computations has large periodic variations, the result averaged of a period is more reliable than one of the certain time step. Full turbulence S-A model and transition AGS model have good performance on the predication of aerodynamic performance and flow details. The nacelle has influence on the separated flow and vortex structure at the hub of blade, as well as the spanwise development of radial flow, especially the flow in the separation region. Taking the influence of nacelle into account will improve the accuracy of CFD simulations。
     A quasi-three dimensional unsteady numerical module is imposed and validated on the wind shear influence investigation of rotor performance. Based on this model, the influence law and mechanism of different wind profiles and the wind shear effects on different spanwise locations are analysised. The results are further validated by full three-dimensional unsteady simulations. The test case used above is NREL Phase VI wind turbine. The comparison shows that the quasi-three dimensional model proposed can capture the aerodynamic characteristics, which can be used in the aerodynamic analysis of wind shear at specific spanwise position without boundary layer separation or with small separation region. The wind shear increases the fluctuations of wind turbine performance and loads, as well as the flow parameters, with their variations along azimuth angle is of periodic approximately in cosine function, and the amplitude increases with the wind shear exponent and along the span, which cause an asymmetric feature in the rotating plane and phase lagged compared with the peak of wind speed. Nonetheless, The effect of wind shear is relatively small on the flow parameters compared with that of linear velocity increase along span, which will not change the load distribution along span, and do harmless impact on the blade structural stability.
     An upwind wind turbine DF90 is used as the simulation model in the unsteady simulations on the tower shadow effect. The analysis focus on the variation of total performance parameter, distribution of pressure, limiting streamline close to the wall and section streamline patterns. The results show that the block of tower will cause dramatic changes of blade load when the wind speed is uniform, showing a sudden increase before the tower and then decrease rapidly and slow recovery afterwards. Income flow deflection always exists due to the rotating of turbine, which results in the unbalance of forces at both sides of tower and 3p vortex shedding after tower. The periodic load under the impact of tower easily leads to the dynamic response of blade and tower, which will do harm to the operation and life of machine. Under the wind shear, the increase of the load amplitude is nearly two times than that of the uniform wind speed, with the fluctuation increases along span. This results in imbalance load distributions of the rotor plane, where the upper half is larger then that of the lower. Meanwhile, the shear winds reduce the load dramatic variation acceleration near the tower, and the mean value and variation of load before and after the wind shear effect change little due to the phase difference of three blades.
     The present thesis investigates systematically on both steady and unsteady flows of wind turbine based on the model from single blade to rotor, and finally the turbine contains tower. The complicated wind shear and nonlinear effect of tower also investigated, which prove a more accurate model close to the real physical one. The simulated results can be used as the guidance and reference for the load analysis and aerodynamic design from airfoil to blade by using CFD simulations, which also give the basis of understanding of the complicated unsteady aerodynamic features of wind shear and tower shadow effects, so as to the support to the reliable and high performance design of wind turbine.
引文
[1]原鲲,王希麟.风能概论[M].北京:化学工业出版社,2010
    [2]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006
    [3]Global Wind Energy Council. Global Wind Report-Annual market update 2010[R]. Global Wind Energy Council,2011
    [4]刘毅.风能资源详查结果:我国风能开发潜力逾25亿千瓦[EB/OL]. (2010-01-04). [2010-01-05]. http://www.cma.gov.cn/mtjj/201001/t20100105_55807.html
    [5]陈雪,牟迈.中国风电地标:达坂城1989[J].风能,2010,(5):18-25
    [6]中国可再生能源学会风能专业委员会.2010年中国风电装机容量统计[R].中国可再生能源学会风能专业委员会,2011
    [7]李俊峰,等.中国风电发展报告2010[R].海南:中国资源综合利用协会可再生能源专业委员会,2010
    [8]贺德馨.中国规模化风电场发展中的几个问题与对策[J].风能,2010,(8):34-36
    [9]Munk M. M., Miller E. W. The Variable Density Wind Tunnel of The National Advisory[R]. NACA Report No.227,1926
    [10]Drela M. XFOIL:An Analysis and Design System for Low Reynolds Number Airfoils[A]. Conference on Low Reynolds Number Airfoil Aerodynamics[C]. University of Notre Dame:1989
    [11]Eppler R. Airfoil Design and Data[M]. Berlin:Springer-Verlag,1990
    [12]van Rooij R. P. J. O. M. Modification of the Boundary Layer Calculation in RFOIL for Improved Airfoil Stall Prediction[R]. Netherlands:Delft, Rapport IW-96087R,1996
    [13]Miley S. J. A Catalog of Low Reynolds Number Airfoil Data For Wind Turbine Applications[M]. Springfield:National Technical Information Service, U.S. Dept. of Commerce,1982
    [14]Eastman J. N. The Aerodynamic Characteristics of Eight Very Thick Airfoils from Tests in The Variable Density Wind Tunnel[R]. NACA Report No.391, 1932
    [15]Freudenreich K., Kaiser K., Schaffarczyk A. P. Reynolds Number and Roughness Effects on Thick Airfoils for Wind Turbines[J]. Wind Engineering, 2004,28(5):529-546
    [16]黄继雄.风力机专用新翼型及其气动特性研究[D].汕头:汕头大学,2001
    [17]Somers D. M., Maughmer M. D. Theoretical Aerodynamic Analyses of Six Airfoils for Use on Small Wind Turbines[R]. NREL/SR-500-33295,2003
    [18]李杰.风力机叶片翼型气动特性数值研究[D].北京:华北电力大学,2009
    [19]Fuglsang P., Bak C. Development of the Riso Wind Turbine Airfoils[J]. Wind Energy,2004,7(2):145-162
    [20]Zhang Yan, Igarashi T., Hu Hui. Experimental Investigations on the Performance Degradation of a Low-Reynolds-Number Airfoil with Distributed Leading Edge Roughness[A].49th AIAA Aerospace Sciences Meeting[C]. Orlando:2011:18
    [21]卞于中,唐敏中,何克敏,白存儒.湍流度和雷诺数对附面层转捩位置的影响[J].流体力学实验与测量,1997,11(1):25-29
    [22]Corten G. P., Veldkamp H. F. Insects can Halve Wind Turbine Power[J]. Nature, 2002,412:42-43
    [23]Khalfallah M. G., Koliub A. M. Effect of dust on the performance of wind turbines[J]. Desalination,2007,209-220
    [24]van Rooij R P.J.O.M., Timmer W. A. Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils[R].2003, AIAA-2003-0350:10
    [25]Somers D. M. Effects of Airfoil Thickness and Maximum Lift Coefficient on Roughness Sensitivity[R]. NREL/SR-500-36336,2005
    [26]Peter Fuglsang, Kristian S. Dahl, Ioannis Antoniou. Wind Tunnel Tests of the Riso-A1-18, Riso-A1-21 and Riso-Al-24 Airfoils[R]. Riso-R-1112,1999
    [27]Timmer W. A., van Rooij R. P. J. O. M. Summary of the Delft University Wind Turbine Dedicated Airfoils[J]. Journal of Solar Energy Engineering-Transactions of the ASME,2003,125(4):488-496
    [28]Baker J. P., Mayda E. A., van Dam C. P. Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils[J]. Journal of Solar Energy Engineering, 2006,128(4):422-431
    [29]Kerho M. F., Bragg M. B. Airfoil Boundary-Layer Development and Transition with Large Leading-Edge Roughness[J]. AIAA Journal,1997,35(1):75-84
    [30]包能胜,倪维斗.风力机翼型前缘表面粗糙度对气动性能影响[J].太阳能学报,2008,29(12):1465-1470
    [31]Johansen J., Sφrensen N. N., Zahle F., Kang S., et al. KNOW-BLADE Task-2 Report:Aerodynamic Accessories[R]. Risφ-R-1482,2004
    [32]田家彬.面向设计的风力机翼型气动特性数值研究[D].北京:华北电力大学,2011
    [33]Antoniou I., Asimakopoulos D., Frangoulis A., et al. Turbulence measurements on Top of a Steep Hill[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,39:343-355
    [34]Noda M, Flay R. G. J. A Simulation Model for Wind Turbine Blade Fatigue Loads. Journal of Wind Energy and Industrial Aerodynamics,1999,83: 527-540
    [35]Kaimal J.C., Finnigan J. J. Atmospheric Boundary Layer Flows:Their Structure and Measurement A]. Oxford University Press[C]. New York,1994
    [36]Sicot C., Aubrun S., Loyer S., et al. Unsteady characteristics of the static stall of an airfoil subjected to freestream turbulence level up to 16%[J]. Experiments in Fluids,2006,41:641-648
    [37]Mish P. F., Devenport W. J. Mean Loading Effects on the Surface Pressure Fluctuations on an Airfoil in Turbulence[A]. Proceedings of the 7th AIAA/CEAS Aeroacoustics Conference[C], Maastricht, Netherlands:2001
    [38]Stack J. Tests in the Variable Density Wind Tunnel to Investigate the Effects of Scale and Turbulence on Airfoil Characteristics[R]. NACA T. N. No.364,1931
    [39]Jancauskas E. D. The Cross-Wind Excitation of Bluff Structures and the Incident Turbulence Mechanism[D]. Clayton:Monash University,1983
    [40]Swalwell K. E., Sheridan J., Melbourne W. H. The Effect of Turbulence Intensity on Stall of the NACA 0021 Aerofoil[A].14th Australasian Fluid Mechanics Conference[C]. Adelaide, Australia,2001
    [41]Devinant Ph., Laverne T., Hureau J. Experimental Study of Wind-Turbine Airfoil Aerodynamics in High Turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(6):689-707
    [42]Ouahiba Guerri, Khadidja Bouhadef, Ameziane Harhad. Turbulent Flow Simulation of the NREL S809 Airfoil[J]. Wind Engineering,2006,30(4): 287-302
    [43]Loftin L. A. Airfoil Section Characteristics at High Angle of Attack[R]. USA: NACA-TN-3241,1954
    [44]Pope A. The Forces and Pressures over an NACA 0015 Airfoil Through 180 Degrees Angle of Attack[J]. Aero Digest,1949,58(4)
    [45]Knight M, Wenzinger C. J. Wind Tunnel Tests on a Series of Wing Models Through a Large Angle of Attack Range Part 1 Force Tests[R]. NACA Report 317,1929
    [46]Timmer W. A., Van Rooij R. P. J. O. M. Some Aspects of High Angle-of-attack Flow on Airfoils for Wind Turbine Application[A]. Proceedings of EWEC[C]. Copenhagen:European Wind Energy Conference & Exhibition,2001
    [47]Hand M., Simms D., Fingersh L., et al. Unsteady Aerodynamics Experiment Phase VI:Wind Tunnel Test Configurations and Available Data Campaigns[R]. NREL/TP-500-29955,2001
    [48]Gross A., Fasel H. F., Friederich T., et al. Numerical Investigation of S822 Wind Turbine Airfoil[R]. AIAA-2010-4478,2010
    [49]Moriarty P. J., Hansen A. C. AeroDyn Theory Manua[R]. NREL/TP-500-36881, 2005
    [50]Montgomerie B. Methods for Root Effects Tip Effects and Extending the Angle of Attack Range to±180deg with Application to Aerodynamics for Blades on Wind Turbines and Propellers[R]. FOI-R-1305-SE,2004
    [51]李媛,康顺,范忠瑶,等.全迎角风力机翼型气动特性数值分析[J].太阳能学报,2012(已录用)
    [52]Law S. P., Gregorek G. M. Wind Tunnel Evaluation of a Truncated NACA 64-621 Airfoil for Wind Turbine Applications[R]. NASA CR-180803,1987
    [53]McCroskey W. J. The Phenomenonof Dynamic Stall[R]. NASA-TM-81264, 1981
    [54]Christensen H. F., Sorensen N. N. A Comparative Study between a Dynamic Stall Model and Experiments on a HAWT[A]. Greece:European Wind Energy Association Conference,1994
    [55]钱炜祺,Randolph C. K. Leung考虑转捩影响的翼型动态失速数值模拟[J].空气动力学学报.2008,26(1):50-55
    [56]Xie Zhengtong. Wind Turbine Blade Flow in Abnormal Environments [EB/OL]. (2009-10-15). http://cmg.soton.ac.uk/research/projects/wind-turbine-blade-flow-in-abnormal-environments/
    [57]Soltani M. R., Marzabadi F. R. Effect of Reduced Frequency on the Aerodynamic Behavior of an Airfoil Oscillating in a Plunging Motion[J]. Scientia Iranica,2009,16(1):40-52
    [58]Soltani M. R.; Marzabadi F. R. Experimental Investigation of Transition on a Plunging Airfoil[J]. Transaction B:Mechanical Engineering,2010,17(6): 468-479
    [59]Bertagnolio F., Sorensen N. N., Rasmussen F. New Insight Into the Flow Around a Wind Turbine Airfoil Section[J]. Journal of Solar Energy Engineering, 2005,127(2):214-222
    [60]Langtry R. B. A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes[D]. Ottawa, Kanada:Institut fur Thermische Stromungsmaschinen und Maschinenlaboratorium,2006
    [61]Brodeur R. R., van Dam C. P. Transition Prediction for a Two-Dimensional Reynolds-averaged Navier-Stokes Method Applied to Wind Turbine Airfoils[J]. Wind Energy,2001,4(15):61-75
    [62]邓磊,乔志德,熊俊涛RANS方程和附面层方程耦合求解转捩位置的方法[J].航空计算技术,2009,39(1):27-38
    [63]侯银珠,宋文萍,张坤.考虑转捩影响的风力机翼型气动特性计算研究[J].空气动力学学报.2010,28(4):234-237
    [64]B(?)k P., Fuglsang P. Experimental Detection of Transition on Wind Turbine Airfoils[A]. Marseille, France:European Wind Energy Conference & Exhibition,2009
    [65]Michel R., et al. Stability Calculations and Transition Criteria on Two-or Three-Dimensional Flows[J]. Laminar-Turbulent Transition,1984, (7):455-461
    [66]张士昂.基于面元法对风力机翼型设计方法的研究[D].兰州:兰州理工大学,2009
    [67]Bertagnolio F., Sorensen N., Johansen J., et al. Wind Turbine Airfoil Catalogue[R]. Riso-R-1280,2001
    [68]Chen K. K., Thyson N. A. Extension of Emmons' Spot Theory to Flows on Blunt Bodies[J]. AIAA Journal of Propulsion and Power,1971,9(5):821-825
    [69]Wolfe W. P., Ochs S. S. CFD Calculations of S809 Aerodynamic Characteristics [R]. AIAA-97-0973,1997
    [70]钱炜祺,詹浩,白俊强.一种基于湍流模式的转捩预测方法[J].空气动力学学报,2006,24(4):502-507
    [71]Langtry R. B. Prediction of Transition for Attached and Separated Shear Layers in Turbomachinery[D]. Carleton, Canada: Carleton University.2002
    [72]Langtry R. B., Menter F. R., Likki S. R. A Correlation-Based Transition Model Using Local Variables-Part Ⅱ:Test Cases and Industrial Applications[J]. Journal of Turbomachinery,2006,128(12):423-434
    [73]Sorensen N. N.3D CFD computations of transitional flows using DES and a correlation based transition model[R]. Riso-R-1692,2009
    [74]Bertagnolio F., Sorensen N. N., Johansen J. Profile Catalogue for Airfoil Sections Based on 3D Computations[R].2006
    [75]Reza Taghavi Z., Mahmood Salary, Amir Kolaei. Prediction of Boundary Layer Transition Based on Modeling of Laminar Fluctuations Using RANS Approach[J]. Chinese Journal of Aeronautics,2009,22(8):113-120
    [76]Soltani M. R., Marzabadi F. R. Experimental Investigation of Transition on a Plunging Airfoil[J]. Transaction B:Mechanical Engineering,2010,17(6): 468-479
    [77]宋文萍,杨永,乔志德,等.双时间法求解大迎角翼型绕流非定常N-S方程[J].空气动力学学报,1999,17(4):466-471
    [78]Zheng X., Liu C., Liu F., etc. Turbulent Transition Simulation Using the k-w Model[J]. International Journal for Numerical Methods in Engineering,1998, 42(20):907-926
    [79]Langtry R. B., Menter F. R. Transition Modeling for General CFD Applications in Aeronautics[R]. Reno, Nevada:AIAA Paper 2005-522,2005
    [80]卞于中,唐敏中,何克敏,等.湍流度和雷诺数对附面层转捩位置的影响[J].流体力学实验与测量,1997,11(1):25-29
    [81]Kim Bum-suk, Eum Hark-jin, Won Jong-bum, et al. Navier-Stokes Simulation of Wind Turbine Consider Laminar-Turbulent Transition Effects[R].2006
    [82]TPI Composites, Inc. Parametric Study for Large Wind Turbine Blades[R]. SAND2002-2519,2002
    [83]National Advisory Committee for Aeronautics. First Annual Report of the National Advisory Committee for Aeronautics[R]. NACA,1915
    [84]Munk M. M., Miller E. W. Model Tests with a Systematic Series of 27 Wing Sections at Full Reynolds Number[R]. NACA Rep.221,1925
    [85]Theodorsen T. Theory of Wing Sections of Arbitrary Shape[R]. NACA Rep. 411,1932
    [86]Eppler R. Airfoil Program System "PROFIL00." User's Guide[Z].2000
    [87]Subsonic Airfoil Design[EB/OL]. www.airfoils.com/design.pdf
    [88]Tangler J. L, Somers D. M. NREL Airfoil Families for HAWTS[R].1995
    [89]张维智.兆瓦级风力机组关键技术问题的研究[A].工程院风能发展战略论坛[C].北京:中国工程院,2006
    [90]乔志德.WA风力机翼型族设计[A].2010北京国际风能大会暨展览会[C].北京:2010
    [91]李宏利.水平轴风力机专用翼型族的设计及其气动性能研究[D].北京:中国科学院工程热物理所,2009
    [92]白井艳,杨科,徐建中.水平轴风力机专用薄翼型族试验分析及优化设计[A].工程热物理年会热机气动与流体机械[C],南京:2010
    [93]Selig, Tangler, Giguere. Steady-State Aerodynamics Codes for HAWTs[R]. NREL NWTC Golden CO,1999
    [94]江学忠,叶枝全,叶大均.二维叶片襟翼增升的试验研究[J].工程热物理学报,1998,19(2):170-174
    [95]申振华,夏商周,桂巧昳,等.带Gurney襟翼翼型改型的气动性能的数值研究[J].太阳能学报,2007,28(9):988-991
    [96]张磊,杨科,徐建中.涡流发生器对风力机专用翼型气动特性的影响[J].工程热物理学报,2010,31(5):749-752
    [97]张磊.风力机钝尾缘叶片及其气动性能改进研究[D].北京:中国科学院工程热物理研究所,2010
    [98]Buhl T., Gaunaa M., Bak C. Potential Load Reduction Using Airfoils with Variable Trailing Edge Geometry[J]. Journal of Solar Energy Engineering, 2005,127(4):503-516
    [99]Andersen P. B., Gaunaa M., Bak C., et al. Load Alleviation on Wind Turbine Blades using Variable Airfoil Geometry[J]. Wind Engineering,2005,29(2): 169-182
    [100]Abdallah I. Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge Geometry: Sensoring Techniques[D]. Denmark:Technical University of Denmark,2006
    [101]Johansen J., Sorensen N. N., Zahle F., Kang S., et al. KNOW-BLADE Task-2 Report: Aerodynamic Accessories[R]. Riso-R-1482(EN),2004
    [102]霍福鹏,刘红,陈佐一.振荡射流提高风力机叶型升力的实验研究[J].清华大学学报(自然科学版),2002,42(12):1663-1666
    [103]程永卓,李宇红,霍福鹏,等.振荡扰流提高风力机翼型气动性能的研究[J].太阳能学报,2003,24(1):94-98
    [104]TPI Composites. Innovative Design Approaches for Large Wind Turbine Blades[R]. Report No. SAND2003-0723,2003
    [105]Standish K. J., van Dam C. P. Aerodynamic Analysis of Blunt Trailing Edge Airfoils[J]. ASME J. Sol. Energy Eng.,2003,125(4):479-487
    [106]Jackson K., Zuteck M., van Dam C. P., et al. Innovative Design Approaches for Large Wind Turbine Blades[J]. Wind Energy,2005,8(2):141-171
    [107]杨瑞,李仁年,张士昂,等.钝尾缘风力机翼型气动性能计算分析[J].机械工程学报,2010,46(2):106-110
    [108]Gomez A., Alvaro P. Aerodynamic Characteristics of Airfoils with Blunt Trailing Edge[J]. Rev. Ing.,2006, (24):23-33
    [109]Nash J., Quincey V., Callinan J. Experiments on Two-Dimensional Base Flow at Subsonic and Transonic Speeds[A]. Aeronautical Research Council[C]. ARC R&M No.3427,1966
    [110]van Dam C. P. Drag Reduction of Blunt Trailing-Edge Airfoils[D]. California: University of California,2008
    [111]van Dam C. P., Kahn D. L., Berg D. E. Trailing Edge Modifications for Flatback Airfoils[R]. SAND2008-1781,2008
    [112]Christiansen P. The Tjaereborg Wind Turbine-Final Report[R]. Elsamprojekt EP92/334,1992
    [113]Butterfield C. P., Musial W. P., Simms D. A. Combined Experiment Phase I Final Report[R]. NREL/TP-257-4655,1992
    [114]Butterfield C. P., Musial W. P., Scott G. N., et al. NREL Combined Experimental Final Report-Phase Ⅱ[R]. NREL/TP-442-4807,1992
    [115]Schepers J.G., et al. Final Report of the IEA Annex XVIII:Enhanced field rotor aerodynamics database[R]. ECN-C-02-016,2002
    [116]Hand M., Simms D., Fingersh L., et al. Unsteady Aerodynamics Experiment Phase VI:Wind Tunnel Test Configurations and Available Data Campaigns[R]. NREL/TP-500-29955,2001
    [117]Hansena M. O. L., So>ensena J. N., Voutsinasb S., et al. State of the Art in Wind Turbine Aerodynamics and Aeroelasticity[J]. Progress in Aerospace Sciences, 2006,42:285-330
    [118]Snel H., Schepers J. G., Montgomerie B. The MEXICO project (Model Experiments in Controlled Conditions):The Database and First Results of Data Processing and Interpretation[A]. Journal of Physics:Conference[C].2007
    [119]Dahlberg Jan-Ake, Ronsten G., He Dexin, et al. Wind Tunnel Measurements of Load Variations for a Yawed Wind Turbine with Different Hub Configurations[A]. European Wind Energy Conference Proceedings[C],1989: 95-100
    [120]Ronsten G., Dahlberg Jan-Ake, Meijer S. Pressure Measurements on a 5.35m HAWT in CARDC 12×16m Wind Tunnel Compared to Theoretical Pressure Distributions[A]. European Wind Energy Conference Proceedings[C],1989: 729-735
    [121]刘洋.风力机风轮三维气动性能数值计算方法的研究[D].北京:清华大学,2010
    [122]Hansen A. C., Butterfield C. P. Aerodynamics of Horizontal-Axis Wind Turbines[J]. Annual Review of Fluid Mechanics,1993,25(4):115-149
    [123]Lanzafame R., Messina M. Fluid Dynamics Wind Turbine Design:Critical Analysis, Optimization and Application of BEM theory[J]. Renewable Energy, 2007,32:2291-2305
    [124]Dumitrecu H., Cardos V. Wind Turbine Aerodynamic Performance by Lifting Line Method[J]. International Journal of Rotating Machinery,1998,4(3): 141-149
    [125]沈听.水平轴风力机气动性能预测[D].上海:上海交通大学,2007
    [126]Gupta S., Leishman J. G. Comparison of Momentum and Vortex Methods for the Aerodynamic Analysis of Wind Turbines[A].43rd AIAA Aerospace Sciences Meeting and Exhibit[C]. USA, Navada:2005
    [127]Miller R. H. The Aerodynamics and Dynamic Analysis of Horizontal-Axis Wind Turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983,15:329-340
    [128]Afjeh A. A., Keith T. G. A Simplified Free Wake Method for Horizontal-Axis Wind Turbine Performance Prediction[J]. Journal of Fluids Engineering,1986, 108:400-406
    [129]Schmitz S., Chattot J. J. Characterization of Three-Dimensional Effects for the Rotating and Parked NREL Phase Ⅵ Wind Turbine[J]. Journal of Solar Energy Engineering,2006,128:445-454
    [130]Chassapoyannis P. I., Rawlinson-Smith R., Voutsinas S. G. Validation Study of a Wide Range of Aerodynamic Models[A]. European Wind Energy Association Conference[C]. Thessaloniki, Greece, EWEC,1994:548-553
    [131]Tangler J. L. The Nebulous Art of Using Wind-tunnel Airfoil Data for Predicting Rotor Performance[R]. NREL/CP-500-31243,2002
    [132]仇永兴.风力机气动载荷及尾流场研究[D].北京:华北电力大学,2011
    [133]van Bussel G. J. W., van Holten Th., van Kuik G. A. M.. Aerodynamic Research on Tipvane Windturbines[A]. AGARD Conference Proceedings[C]. U.K.,1982
    [134]Hasegawa Y., Kikuyama K., Karikomi K., et al. Numerical Analysis of Wind Shear Effects on Horizontal Axis Wind Turbine Rotor Performanc[A]日本机械学会论文集(B编)[C].2002,68
    [135]Hasegawa Y., Murata J., Imamura H., et al. Aerodynamic Loads Calculation of a Horizontal Axis Wind Turbine Rotor in Combined Inflow Condition[A]. European Wind Energy Association Conference[C]. London, UK:EWEC,2004
    [136]Hasegawa Y., Murata J., Imamura H. Calculation of Aerodynamic Force on Horizontal Axis Wind Turbine Rotor Exerted by Tower Effect[A]. European Wind Energy Conference[C]. Athens, Greece:EWEC,2006
    [137]Duque E. P. N., Burklund M. D., Johnson W. Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment[J]. Journal of Solar Energy Engineering,2003,125:457
    [138]竺晓程,沈听,杜朝辉.带失速延迟模型的改进型升力线法预测风力机性能[J].太阳能学报,2007,28(5):544
    [139]Dumitrescu H., Cardo V. Predictions of Unsteady HAWT Aerodynamics by Lifting Line Theory[J]. Mathematical and Computer Modelling,2001,33(4-5): 469-481
    [140]Coton F. N., Wang Tongguang, Roderick A., et al. An Examination of Key Aerodynamic Modelling Issues Raised by the NREL Blind Comparison[J]. Wind Energy,2002,5(2-3):199-212
    [141]Jean-Jacques, Chattot. Effects of Blade Tip Modifications on Wind Turbine Performance Using Vortex Model[J]. Computers & Fluids,2009,38(7): 1405-1410
    [142]Ayati, A. A. Aerodynamic Effects on Wind Turbine Blades Using the Lifting-Line Theory[D]. Oslo, Norway:University of Oslo,2010
    [143]Hansen M. O. L., Sorensen J. N., Michelsen J. A., et al. A Global Navier-Stokes Rotor prediction model[R]. AIAA,1997
    [144]雷延生,周正贵.水平轴风力机气动性能的大涡模拟研究[J].能源研究与利用,2008,(5):15-18
    [145]Simms D., Schreck S., Hand M., et al. NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel:a comparision of predictions to measurements[R]. NREL TP-500-29494,2001
    [146]Sorensen N. N., Michelsen J. A., Schreck S. Navier-Stokes Predictions of the NREL Phase VI Rotor in the NASA Ames 80ft×120ft Wind Tunnel [J]. Wind Energy,2002,5(2-3):151-169
    [147]Snel H. Review of Aerodynamics for Wind Turbines[J]. Wind Energy,2003; 6: 203-211
    [148]Duque E. P. N., Burklund M. D., Johnson W. Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL phase VI Experiment J]. Journal of Solar Energy Engineering,2003; 125:457-467
    [149]Chao D. D., van Dam C. P. Computational Aerodynamic Analysis of a Blunt Trailing-Edge Airfoil Modification to the NREL Phase Ⅵ Rotor[J]. Wind Energy,2007,10:529-550
    [150]Le P. A., Gleize V. Improved Navier-Stokes Computations of a Stall-Regulated Wind Turbine Using Low Mach Number Preconditioning[A].44th AIAA Aerospace Sciences Meeting and Exhibit[C], Reno:AIAA 2006-1502,2006
    [151]雷延生.风力机流场数值计算与叶片设计[D].南京:南京航空航天大学,2009
    [152]Benjanirat S. Computational Studies of Horizontal Axis Wind Turbine in High Wind Speed Conditon Using Advanced Turbulence Models[D]. Georgia, USA: Georgia Institute of Technology,2007
    [153]Xu Guanpeng. Computational studies of horizontal axis wind turbines[D]. Georgia, USA:Georgia Institute of Technology,2001
    [154]Hansen M, Michelsen J, Reck M, et al. Task 1 "Improving Power Curve Predictions"-First Results[A]. European Wind Energy Conference and Exhibition[C]. Madrid, Spain:2003
    [155]Sorensen N. N. Transition Prediction on the NORDTANK 500/41 Turbine Rotor[R]. Riso-R-1365,2002
    [156]Tongchitpakdee C., Benjanirat S., Sankar L. N. Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines under Yawed Flow Conditions[J]. Journal of Solar Energy Engineering,2005,127(4):464-474
    [157]Sorensen N. N. CFD Modelling of Laminar-turbulent Transition for Airfoils and Rotors Using the γ-R eθt Model[J]. Wind Energy,2009,12:715-733
    [158]石磊.基于Richardson外推法的CFD网格误差研究[D].北京:华北电力大学,2011
    [159]Masson C., Ammara I., Paraschivoiu I. An Aerodynamic Method for the Analysis of Isolated Horizontal-Axis Wind Turbines[J]. International Journal of Rotating Machinery,1997,3(1):21-32
    [160]Alinot C., Masson C. Aerodynamic simulations of wind turbines operating in atmospheric boundary layer with various thermal stratifications[R]. AIAA 2002-0042,2002
    [161]Hu Danmei, Hua Ouyang, Du Zhaohui. A Study on Stall-Delay for Horizontal Axis Wind Turbine[J]. Renewable Energy,2006,31:821-836
    [162]Sugoi Gomez-Iradi. A CFD Method for Detailed Aerodynamic Analysis of HAWT[D]. Liverpool, UK. University of Liverpool,2007
    [163]Potsdam M. A. Unstructured Mesh CFD Aerodynamic Analysis of the NREL Phase VI Rotor[R]. AIAA 2009-1221,2009
    [164]Hansen M. O. L., Sorensen J. N., Voutsinas S., et al. State of the Art in Wind Turbine Aerodynamics and Aeroelasticity[J]. Progress in Aerospace Sciences, 2006,42:285-330
    [165]Masson C., Smaili A. Numerical Study of Turbulent Flow around a Wind Turbine Nacelle[J]. Wind Energy,2006,9:281-298
    [166]Rauch J., Kramer T., Heinzelmann B., et al.3D Numerical Simulation and Evaluation of the Air Flow Through Wind Turbine Rotors with Focus on the Hub Area[J]. Wind Energy Proceedings of the Euromech Colloquium,2007: 227-230
    [167]Xu Guanpeng., Sankar L. N. Computational Study of Horizontal Axis Wind Turbines[R]. AIAA 99-0042,1999
    [168]Sorensen J. N., Shen WenZhong. Numerical Modeling of Wind Turbine Wakes[J]. Journal of Fluids Engineering,2002,124(2):393-400
    [169]Jimenez A., Crespo A., Migoya E., et al. Large-eddy Simulation of Spectral Coherence in a Wind Turbine Wake[J]. Environmental Research Letters,2008, 1(1):015004
    [170]Ivanell S. Numerical Computations of Wind Turbine Wakes[R]. Elforsk Report, 2009
    [171]Calaf M., Meneveau C., Parlange M. Large Eddy Simulation Study of Fully Developed Thermal Wind-Turbine Array Boundary Layers[R]. EGU General Assembly[C],2011
    [172]Porte-Agel F., Wu Yuting, Lu Hao, et al. Large-eddy Simulation of Atmospheric Boundary Layer Flow through Wind Turbines and Wind Farms[A]. Journal of Wind Engineering and Industrial Aerodynamics[C]. Elsevier Ltd, 2011
    [173]Maheri A., Noroozi S., Toomer C. A., et al. WTAB, A Computer Program for Predicting the Performance of Horizontal Axis Wind Turbines with Adaptive Blades[J]. Renewable Energy,2006,31:1673-1685
    [174]He Zhijiang, Epureanu B., Pierre C. Fluid-Structural Coupling Effects on the Dynamics of Mistuned Bladed Disks[J]. AIAA Journal,2007,45(3):552-561
    [175]10th MpCCI user forum[Z], Sankt Augustin, Germany:2009
    [176]Garrad Hassan. Growth in Size of Commercial Wind Turbine Designs[EB/OL]. http://www.wind-energy-the-facts.org/en/part-i-technology/chapter-3-wind-turb ine-technology/evolution-of-commercial-wind-turbine-technology/growth-of-w ind-turbine-size.html
    [177]Jackson K., Zuteck M., van Dam C. P. Innovative Design Approaches for Large Wind Turbine Blades[J]. Wind Energy,2005,8(2):141-171
    [178]Karaolis, N. M., Mussgrove, P. J., and Jeronimidis, G. Active and Passive Aeroelastic Power Control using Asymmetric Fibre Reinforced Laminates for Wind Turbine Blades[A]. Proceeding of 10th British Wind Energy Conference[C]. London:1988:22-24
    [179]Larwood S., Zuteck M. Swept Wind Turbine Blade Aeroelastic Modeling for Loads and Dynamic Behavior[J]. Wind Power.2006:17
    [180]Basualdo S. Load Alleviation on Wind Turbine Blades using Variable Airfoil Geometry[J]. Wind Engineering,2005,29(2):169-182
    [181]Heinzelmann B. S., Gollnick B. Investigations into Boundary Layer Fences in the Hub Area of Wind Turbine Blades[A]. European Wind Energy Conference & Exhibition[C]. Brussels, Belgium:EWEC,2008
    [182]Fuglsang P., Lenz K. Wind Turbine Blade having a Spoiler with Effective Separation of Airflow[P]. Denmark:WO/2010/066501,2008
    [183]Gollnick B., Petsche M., Schubert C., et al. Numerical and Experimental Investigation of Spoilers and Stall Barriers in the Root Area of Blade[A].9th German Wind Energy Conference[C].2008
    [184]Piperas A. T. Investigation of Boundary Layer Suction on a Wind Turbine Airfoil using CFD[D]. Denmark:Technical University of Denmark,2010
    [185]Hansen M. O. L., Johansen, J. Tip Studies Using CFD and Comparison with Tip Loss Models[J]. Wind Energy,2004,7(4):343-356
    [186]Ferrer E., Munduate X. Wind Turbine Blade Tip Comparison using CFD[A]. Journal of Physics:Conference Series[C].2007,75(1)
    [187]汪建文;贾瑞博;吴克启.风力机叶尖加小翼动力放大特性的数值模拟研究[J].太阳能学报.2007,28(1):55-61
    [188]Johansen J., Sφrensen N. N. Aerodynamic Investigation of Winglets on Wind Turbine Blades using CFD[R]. Risφ-R-1543,2006
    [189]Hjort S., Laursen J., Enevoldsen P. Aerodynamic Winglet Optimization[R]. Siements Wind Power,2008
    [190]Johansen J., Madsen, H. A., Sφrensen, N. N., et al. Numerical Investigation of a Wind Turbine Rotor with an Aerodynamically Redesigned Hub-Region[A]. European Wind Energy Conference and Exhibition[C]. Athens, Greece:EWEC, 2006
    [191]NUMECA International. TheoryManual_FINETurbo_8.7-rev0[Z]. Brussels: NUMECA,2009
    [192]王晓东.透平机械内部复杂流动的数值模拟与叶片设计的鲁棒优化[D].北京:华北电力大学,2010
    [193]Chorin A. J. A Numerical Method for Solving Incompressible Viscous Flow Problems. Journal of Computational Physics,1967,2:12-26
    [194]Hakimi N. Preconditioning Methods for Time Dependent Navier-Stokes Equations[D]. Brussel:Vrije Universiteit Brussel,1997
    [195]Choi Y. H., Merkle C. L. The Application of Precondition in Viscous Flows[J]. Journal of Computational Physics,1992,105(2):207-223
    [196]Spalart P. R., Allmaras S. R. A One Equation Turbulence Model for Aerodynamic Flows[R]. AIAA 92-0439,1992
    [197]Ashford G. A., Powell K. G. An Unstructured Grid Generation and Adaptative Solution Technique for High-Reynolds Number Compressible Flow[R]. VKI (Von Karman Institute) Lecture Series 1996-06,1996
    [198]Menter F. Two-equation Eddy Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal,1994,32:1299-1310
    [199]Rai M. M. Application of Domain Decomposition Methods to Turbomachinery Flows[A]. ASME Advances and Applications in Computational Fluid Dynamics[C].1988
    [200]Wilcox D. C. Turbulence modeling for CFD[R]. Canada:DCW Industries,1993
    [201]Abu-Ghannam B J, Shaw R. Natural Transition of Boundary Layers-the Effect of Turbulence, Pressure Gradient, and Flow History. Journal of Mechanical Engineering and Science,1980,22(5):213-228
    [202]Dhawan S, Narasimha R. Some Properties of Boundary Layer During Transition From Laminar to Turbulent Motion. J. Fluid Mech.,1958, (3): 418-437
    [203]Kang S., Hirsch C. Features of the 3D Viscous Flow Around Wind Turbine Blade, Based on Numerical Solutions[A]. European Wind Energy Conference and Exhibition[C], Denmark:European Wind Energy Association,2001
    [204]史里希庭著.徐燕侯等译.边界层理论[M].北京:科学出版社,1991
    [205]Suzen Y. B., Huang P. G., Volino R. J., etc. A Comprehensive CFD Study of Transitional Flows in Low-Pressure Turbines Under a Wide Range of Operating Conditions[A].33rd AIAA Fluid Dynamics Conference[C]. Orlando,2003
    [206]范忠瑶,康顺,王建录.风力机叶片三维数值计算方法确认研究[J].太阳能学报.2010,(3):279-285
    [207]Fadaeinedjad R, Moallem M. The Impact of Tower Shadow, Yaw Error, and Wind Shears on Power Quality in a Wind-iesel System[J]. IEEE Transactions on Energy Conversion,2009,24(1):102-111
    [208]Smith K, Randall G, Malcolm D. Evaluation of Wind Shear Patterns at Midwest Wind Energy[R]. NREL,2002
    [209]Angulo A, Moreno P, Madueno D. Micro-Scale Effects over an Operational Wind Farm CFD Wind Shear Study[A]. Proceedings of the European Wind Energy Conference & Exhibition[C]. Marseille, Francuska: EWEC,2009
    [210]LaWhite N., Walls E., Cohn K. Characterizing Wind Speed and Direction Shear with SoDAR Data[R]. Second Wind Inc.,2007
    [211]Tindal A, Johnson C, LeBlanc M, etc. Site-Specific Adjustments to Wind Turbine Power Curves[a]. AWEA Windpower Conference[C]. Houston:AWE A, 2008
    [212]周良茂,卢文达,邓祖诚等.近地面风的实测与研究[R].水电部西安热工研究所,1982
    [213]Bailey B. H. Predicting Vertical Wind Profiles as a Function of Time of the Day and Surface Wind Speed[A]. Proceedings of an International Colloquium on Wind Energy[C]. Brighton, UK:BWEA,1981
    [214]Rehman S., Al-Abbadi N. M. Wind Shear Coefficients and Their Effect on Energy Production[J]. Energy Conversion and Management,2005,46(15-16): 2578-2591
    [215]IEC 61400-01, Wind Turbines-Part 1. Design Requirements[S]. International Electrotechnical Commission,2005
    [216]王泽军.低层大气急流的季节观测分析[A].科协论坛[C],2008
    [217]Hansen A. C. Yaw Dynamics of Horizontal Axis Wind Turbines Final Report[R]. NREL/TP-442-4822,1992
    [218]Ray M L, Rogers A L, McGowan J G. Analysis of Wind Shear Models and Trends in Different Terrains [A]. Conference Proceedings:AmericanWind Energy Association Windpower[C]. Pittsburgh, PA, USA:2006
    [219]Madsen H A, Fischer A. Wind Shear and Turbulence Characteristic from Inflow Measurements on the Rotating Blade of a Wind Turbine Rotor[A]. Proceedings of the European Wind Energy Conference & Exhibition[C]. Marseille, France: EWEC,2009
    [220]Rehmana S, Al-Abbadib N. M. Wind Shear Coefficient, Turbulence Intensity and Wind Power Potential Assessment for Dhulom, Saudi Arabia[J]. Renewable Energy,2008,33:2653-2660
    [221]Manomaiphiboon K. Investigation of Wind Shear Characteristics at Five 100-m[A]. The 5th Eco-Energy and Materials Science and Engineering Symposium (5th EMSES)[C]. Pattaya, Thailand:2007
    [222]Farrugia R. N. The Wind Shear Exponent in a Mediterranean Island Climate[J]. Renewable Energy,2003,28:647-653
    [223]Stig O. Tj(?)reborg Wind Turbine, First Dynamic Inflow Measurements[R]. AFM Notak,1991
    [224]Taylor P. A., Teunissen H. W. The Askervein Hill Project:Overview and Background Data[J]. Boundary-Layer Meteorology,1987,39(1-2):15-39
    [225]Torbjorn T., Jan-Ake D. Periodic Pulsations from a Three-Bladed Wind Turbine[J]. IEEE Transactions on Energy Conversion,2001,16(2):128-133
    [226]Rareshide E, Tindal A, Johnson C, etc. Effects of Complex Wind Regimes on Turbine Performance[A]. AWEA Windpower Conference[C]. Chicago, US: 2009
    [227]Kawabuchi H., Madeda T. Effect of Wind Shear on Characteristics of Rotating Blade of Field HAWT[A]日本机械学会论文集(B编)[C],2005,71
    [228]Ichikawa Y., Ito K., Sakaiya T., etc. An Investigation on the Wind Energy and Wind Behaviour around a Wind Turbine Site at a Col in Mountains[J]. Renewable Energy,1993:156-161
    [229]张玉良,杨从新等.风切变对风力机设计的无关性分析[J].西华大学学报(自然科学版),2007,(2)
    [230]尹景勋.水平轴风力机结构动力学研究[D].北京:华北电力大学,2008
    [231]Dolan D. S. L., Lehn P. W. Simulation Model of Wind Turbine 3p Torque Oscillations Due to Wind Shear and Tower Shadow[J]. IEEE Transactions on Energy Conversion,2006,21(3):717-724
    [232]Eggers A. J., Digumarthi R, Chaney K. Wind Shear and Turbulence Effects on Rotor Fatigue and Loads Control[J]. Journal of Solar Energy,2003,125(4): 402-409
    [233]Sezer-Uzol N., Uzol O. Effect of Steady and Transient Wind Shear on the Wake Structure[R]. AIAA09-1406,2009
    [234]Shen Xin, Zhu Xiaocheng, Du Zhaohui. Wind Turbine Aerodynamics and Loads Control in Wind Shear Flow[J]. Energy,2011,36(3):1424-1434
    [235]Zahle F., Sorensen N. N. Rotor Aerodynamics in Atmospheric Shear Flow[A]. Proceedings of the European Wind Energy Conference & Exhibition[C]. Brussels, Belgium:EWEC,2008
    [236]Sorensen N. N. UPWIND Aerodynamics and Aero-Elasticity Rotor Aerodynamics in Atmospheric Shear Flow[A]. Proceedings of the European Wind Energy Conference & Exhibition[C]. Milan, Italy: EWEC,2007
    [237]刘磊,石可重,杨科,徐建中.风切变对风力机气动载荷的影响[J].中国工程热物理学报.2010,31(10):1667-1670
    [238]Alinot C., Masson C. Aerodynamic of Wind Turbines in Thermally Stratified Turbulent[A]. A Collection of the 2002 ASME Wind Energy Symposium Technical Papers[C], Reno, US:ASME,2002
    [239]Castellani F., Cavaliere M. Wind Shear Investigaion in Complex Terrains Expermental and Numerical Analysis[A]. European Wind Energy Conference & Exhibition[C]. Brussels, Belgium:EWEC,2008
    [240]丁国安,朱兆瑞,薛桁.武汉地区低空风的特性[A].大气湍流扩散及污染 气象学论文集[C].北京:气象出版社,1982
    [241]Lysen E. H. Introduction to Wind Energy[R]. Amersfoort, Netherlands:1983
    [242]Manwell J. F., McGowan J. G., Rogers A. L. Wind Energy Explained:Theory, Design and Application[M]. West Sussex:John Wiley & Sons Inc.,2002
    [243]Madsen H. A. Low Frequency Noise from MW Wind Turbines-Mechanisms of Generation and its Modeling[R]. Roskilde, Denmark:Riso National Laboratory, 2008
    [244]Helmis C. G., Papadopoulos K. H., Asimakopoulos D. N., et al. An Experimental Study of the Near-Wake Structure of a Wind Turbine Operating over Complex Terrain[J]. Journal of Solar Energy,1995,54(6):413-428
    [245]McSwiggan D., Littler T., Morrow D. J., et al. A Study of Tower Shadow Effect on Fixed-Speed Wind Turbines[A]. Universities Power Engineering Conference[C]. Padova, Itay:2008
    [246]Sorensena P., Hansena A. D., Andre P., et al. Wind Models for Simulation of Power Fluctuations from Wind Farms[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12-15):1381-1402
    [247]Yoshida S., Kiyoki S. Load Equivalent Tower Shadow Modeling for Downwind Turbines[J]. Transactions of the Japan Society of Mechanical Engineers Part B, 2007,19(6)
    [248]丁勇钢.水平轴风力机塔影效应的数值模拟研究[D].北京:中国科学院工程热物理研究所,2009
    [249]贾斌,袁奇.风轮塔架干涉三维非定常数值模拟[A].中国工程热物理学会会议热机气动与流体机械论文集[C].南京:中国工程热物理学会,2010
    [250]Robinson M. C., Hand M. M., Simms D. A., et al. Horizontal Axis Wind Turbine Aerodynamics Three-Dimensional Unsteady and Separated Flow Influences[R]. NREL/CP-500-26337,1999
    [251]Michael J., Graham R. Aerodynamics of Horizontal Axis Wind-Turbine Rotors[Z].2008
    [252]Casalino D., Jacob M., Roger M. Prediction of Rod Airfoil Interaction Noise using the FWH Analogy[R]. AIAA 2002-2543,2002
    [253]Snyder M. H., Wentz W. H. J. Dynamics of Wakes Downstream of Wind Turbine Towers[R]. NASA,1981:369-373
    [254]Wang T., Coton F. N. An Unsteady Aerodynamic Model for HAWT Performance including Tower Shadow Effects[J]. Wind Energy,1999,23(5): 255-268
    [255]Chattot J. J. Tower Shadow Modelization with Helicoidal Vortex Method[J]. Computers & Fluids,2008,37:499-504
    [256]Casalino D., Jacob M. C. A Rod-Airfoil Experiment as Benchmark for Broadband Noise Modeling[J]. Theoretical Computational Fluid Dynamics, 2005,19:171-196
    [257]解克,李晓东,林大楷.圆柱/翼型干涉非定常流动机理实验研究[J].飞机设计.2009
    [258]Jan B., Eduard M. Analysis of Renewable-Energy Systems Using RPM-SIM Simulator [J]. IEEE Transactions on Industrial Electronics.2006,53(4): 1137-1143
    [259]Burton T., Sharpe D., Jenkins N., etc. Wind Energy Handbook[M]. Chichester, U.K.:Wiley,2001
    [260]Ekelund F. A. Hydrodynamik. Newtonske V(?)skers Mekanik[M]. Danmark: Den. Private Ingeniorfond,1968:322
    [261]Leishman J. G., Beddoes T. S. A Semi-Empirical Model for Dynamic Stall[J]. Journal of American Helicopter Society.1989,34(3):3-17
    [262]Gomez A., Seume J. R., Aerodynamic Coupling of Rotor and Tower in HAWTs[A]. Proceedings of the European Wind Energy Conference[C]. Marseille, France:EWEC,2009
    [263]Snel H. Review of Aerodynamics for Wind Turbines[J]. Wind Energy,2003, 6(3):203-211
    [264]张玉良,李仁年,巫发明.下风向风力机的塔影效应研究[J].山东建筑大学学报,2008,23(3):243-246
    [265]Parkinson G. V., Jandali T. A Wake Source Model for Bluff Body Potential Flow[J]. Journal of Fluid Mechanics,1970,40:577-594
    [266]Chinchilla M., Arnaltes S., Rodriguez-Amenedo J. L. Laboratory Set-up for Wind Turbine[A]. IEEE International Conference on Industrial Technology(ICIT)[C]. Hammamet, Tunisia:2004:553-557
    [267]Seung-Ho S., Byoung-Chang J., HyeO V. G. Emulation of Rotor Blades using a Hardware[A].12th Annual IEEE Conference Power Electronics[C]. APEC 2005:1791-1796
    [268]Dolan D. S. L., Lehn P. W. Real-time WT Emulator Suitable for Power Quality and Dynamic Control Studies[A]. Proceedings of the. International Conference on Power Systems Transients[C]. Canada:2005:19-23
    [269]Mohammad M., Hossein M. K., Hasan R. Static and Dynamic Wind Turbine Simulator using a Converter Controlled DC Motor[J]. Renewable Energy,2008, 33:906-913
    [270]Wang Tongguang, Coton F. N. A High Resolution Tower Shadow Model for Downwind Wind Turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89:873-892
    [271]Janajreh I., Qudaih R., Talab I. Aerodynamic Flow Simulation of Wind Turbine: Downwind versus Upwind Configuration[J]. Energy Conversion and Management,2010,51:1656-1663
    [272]解克,李晓东,林大楷.圆柱/翼型干涉流场的数值模拟与实验研究[J].飞机设计,2009,29(4):6-12
    [273]Isam J., Ilham T., Jill M. Numerical Simulation of Tower Rotor Interaction for Downwind Wind Turbine[J]. Modelling and Simulation in Engineering,2010, 2010:11
    [274]Lin S. Y., Shieh T. H. Study of Aerodynamic Interference for a Wind Turbine[J]. International Communications in Heat and Mass Transfer,2010, 37(8):1044-1047
    [275]Zahle F., Sorensen N. N., Johansen J. Wind Turbine Rotor-Tower Interaction Using an Incompressible Overset Grid Method[J]. Wind Energy,2009,12(6): 594-619
    [276]Shipley D. E., Miller M. S., Robinson M. C., et al. Techniques for the Determination of Local Dynamic Pressure and Angle of Attack on a Horizontal Axis Wind Turbine[R]. NREL/TP-442-7393,1995
    [277]Miyakawa T., Shinohara K., Yamamoto K., et al. A Suppression Method of Tower Shadow Effect in Wind Power System Using a Wound Rotor Induction Generator[A]. Electric Machines and Drives Conference[C]. Miami, Florida: 2009
    [278]赵静,潘树春,吕林,等.带横隔板圆柱绕流的三步有限元大涡模拟[J].中国海上油气,2009,21(5):348-351
    [279]Hu Changhong, Koterayama W. Numerical Study on a Two Dimensional Circular Cylinder with a Rigid and an Elastic Splitter Plate in Uniform Flow[J]. International Journal of Offshore and Polar Engineering,1994,4(3):193-199
    [280]李会知,潘友景,等.不同粗糙表面的圆柱风压分布试验研究[J].工程力学, 2002,19(2):129-132
    [281]张爱社,张陵.等边布置三圆柱绕流的数值分析[J].应用力学学报,2003,20(1):31-35
    [282]张群峰,何洪涛,吕志咏.二维圆柱层流绕流及其控制数值模拟[J].科学技术与工程,2009,9(5):1187-1193
    [283]杨烁,吴宝山.二维圆柱绕流数值模拟[J].中国造船,2007,48(11):533-540
    [284]Bossanyi E. A. GH Bladed Theory Manual[Z]. Garrad Hassan and Partners Limited,2007
    [285]廖明夫,徐可,吴斌,袁凯峰.风切变对风力机功率的影响[J].沈阳工业大学学报,2008,30(2):163-167
    [286]赵丹平.风力发电机组叶片模型气动载荷研究[D].呼和浩特:内蒙古农业大学,2009
    [287]谢园奇.不同翼型风电机组风轮叶片的气动设计与模拟实验[D].北京:华北电力大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700