用户名: 密码: 验证码:
云南省腾冲热海地热田水化学及同位素特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腾冲热海地热田位于中国西南边陲,云南腾冲县西南14 km处。其目前的水热活动十分活跃、热显示丰富,具有十分重要的地球化学的理论研究意义。
     热海地热田热水的Cl、B、Na等溶质具有很好的线性相关性,表明热储水源统一、冷热水混合过程单一,混合端元分别为深部高Cl水、富CO_2蒸汽以及雨水三个端元。热水的~(18)O、D同位素显示地热田的补给主要来自大气降水,部分混有幔源水的成分,补给区位于高黎贡山和北侧高山,补给高程在1600 m~2300 m之间。
     热海地热田逸出CO_2气体和水溶总CO_2(TDC)的δ~(13)C值分布在-5‰~1.99‰之间。TDC的δ~(13)C值在瑞利去气或绝热沸腾去气过程中都会降低,降低程度与系统温度、开启状态有关,温度越低,开启状态越好,降低速度越快,反之亦然。本文反演得出深部热储CO_2气体的δ~(13)C值在-2~0‰之间,明显具有幔源碳的特征。同时我们发现水中δ~(13)C-TDC与腾冲火山区断裂带和中更新世英安岩分布有很好的空间相关性,说明热海地热田底部的岩浆囊可能同早更新世喷发有内在的联系。
     热海地热田逸出气体的~3He/~4He值同样显示出了与断裂带、岩浆囊的分布有很好的空间相关性,断裂带越深,比值越大。近期水热爆炸(1993-2008年)反映出有向深部发展的趋势,表明岩浆囊活动可能加剧,应引起重视。
     根据氚法测定深层热水的补给有早于1952年前的雨水。大部分泉点因冷热水混合导致氚含量升高,亦或是1952到1961年的氚高峰期没有过去,导致部分泉点的氚含量高于当地雨水年平均氚含量。
     结合地热温标揭示的热储层温度,以及地热区的水化学、气体特征反映出的热储层赋存条件,本文提出了热海底热田热储的概念模型。地热田热储可分为深部热储和浅部热储两层。浅部热储温度在220~230℃之间,水循环较快,埋深在250~320 m;深部热储温度应为270~280℃,埋深660~785 m,水循环较慢。热源温度为320~450℃。而深部流体的温度可达400~450℃。
The Rehai geothermal field lies about 14 km from the Tengchong Town, Southwestern Yunnan, China. The field is still very rich in active manifestations such as boiling spring, fumoroles and hydrothermal explosion and is of high significance due to its theoretical research sense.
     Cl, B and other elements of the spring water demonstrate very good linear correlation, implying that the springs share a same deep hot reservoir and get mixed with groundwaters at different levels. ~(18)O and D isotopes of the hot springs form a line dipping towards to the "andesitic water", indicating an obvious contribution of mantle water. Also, with the inverse modeled ~(18)O and D of the reservoir, we identify that the geothermal field is charged from the Northern and Eastern mountainous areas at altitude of 1600 m to 2300 m. The more enriched ~3H in some hot springs than the annual mean ~3H of the local precipitation should be noted. Greater part of the deep hot water may be recharged before 1951; otherwise, the reservoir may be very young, with very quick circulation of precipitation.
     ~(13)C of total dissolved carbon (TDC) in hot spring water and CO_2 diffused from the springs or fumaroles is also investigated to estimate the process subground. It can be concluded that ~(13)C of TDC in water decreases with the progressively degassing of CO_2. The decreasing rate will be accelerated either due to continuing temperature dropdown or to larger extent of gas degassing. Also, we find that the springs with high ~(13)C-TDC cover areas which are either distributed with deep faults or intruded by the acid volcanic rocks.
     ~3He/~4He of the gas diffused from water or fumaroles demonstrate good spaticial correlation with faults and magma below. The deeper the faults reveals, or the nearer the spring is to the magma, the higher the ratio of ~3He/~4He is.
     Chemical and isotopic geochemistry of spring water and gas provide us a deep insight into the reservoir and the subsurface process. Together with geothermometries of Na-K, SiO_2, CO_2-CH_4 etc, we put forward a conception model of the hot reservoir. The reservoir can be recognized as two aquifers at different depth; the shallower one is about 250-320 m subground with temperature of about 220-230℃and very quick water circulation; the deeper one is distributed at depth more than 660-785 m with temperature of 270-280℃, and the deep fluid is about 400-450℃.
引文
Alessandro Aiuppa et al, 2005. Trace metal modeling of groundwater-gas-rock interactions in avolcanic aquifer: Mount Vesuvius, Southern Italy. Chemical Geology 216:289- 311;
    
    Bai Denghai, Liao Zhijie, Zhao Guoze et al. 1994. The inference of magmatic heat sourcebeneath the Rehai field of Tengchong from the result of magnetotelluric sounding. ChineseScience Bulletin. 39(7): 572-577;
    
    Craig, H. 1961. Isotopic variations in meteoric waters. Science, 133: 1702-1703;
    
    Craig,H. 1963.The isotopic geochemistry of water and carbon in geothermal areas.In:E.Tongiorgi,(Ed.),Nuclear Geology on Geothermal Areas, Spoleto,1963.ConsiglioNazionale delle Ricerche, Laboratorio di GeologiaNucleare,Pisa: 17-53;
    
    David Dolejs, Thomas Wagner, 2008. Thermodynamic modeling of non-ideal mineral-fluidequilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures andpressures: Implications for hydrothermal mass transfer in granitic rocks. Geochimica etCosmochimica Acta. 72: 526-553;
    
    Fabrizio Gherardi et al,2005. Isotope systematics of C-bearing gas compounds in the geothermalfluids of Larderello, Italy.Geothermics 34:442-470;
    
    G. Capasso, M. L. Carapezza, C. Federico S. Inguaggiato, A. Rizzo.Bull Volcanol (2005) 68:118-134 DOI 10.1007/s00445-005-0427-5;
    
    G. Chiodini, P. Allard, S. Callro, and F. Parello,2000. Geochimica et CosmochimicaActa.64(14):2479-2488;
    
    Giggenbach, W. F., 1992. Isotopic shifts in waters from geothermal and volcanic systems alongconvergent plate boundaries and their origin. Earth Planet Sci.Lett.,113:495-510;
    
    Giggenbach, W. F., 1988. Geothermal solute equilibaria. Derivation of Na-K-Mg-Cageoindicators. Geochimica et Cosmochimica Acta.52:2749-2765.
    
    Giorgio Capasso,Rocco Favara and Salvatore Invuagiato, 1997. Chemical features and isotopiccomposition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: An??interpretative model of fluid circulation. Geochimica et Cosmochimica Acta. 61(16):3425-3440;
    
    Ian Clark and Peter Fritz, Environmental Isotopes in Hydrogeology, CRC Press LCC, 1997;
    
    Ian G.Donaldson Malcolm A.Grant,地热系统——原理和典型地热系统分析,地质出版社, 1986:105-130;
    
    J. K. AGGARWAL, et al. 2000. The boron isotope systematics of Icelandic geothermal waters: 1.Meteoric water charged systems. Geochimica et Cosmochimica Acta.64(4):579-585;
    
    J.ZHANG, P.D.QUAY, and D.O. WILBUR. 1995.Carbon isotope fractionation during gas-waterand dissolution of CO_2 .Geochimica et Cosmochimica Acta.59(1): 107-114;
    
    James D. Webster and Charles W. Mandeville, 2007. Fluid Immiscibility in VolcanicEnvironments. Reviews in Mineralogy & Geochemistry Vol. 65, pp. 313-362,2007;
    
    Janina Szaran,1997.Achievement of carbon isotope equilibrium in the system HCO3-(solution)-CO_2(gas). Chemical GeoIogy.142(1-2):79-86;
    
    Jianguo Du,et al., Variations of geothermometry and chemical-isotopic compositions of hotspring fluids in the Rehai geothermal field, southwestern China,Journal of Volcanology andGeothermal Research 142 (2005) :243- 261;
    
    Juske Horita, 2001. Carbon isotope exchange in the system CO_2-CH_4 at elevated temperaturesGeochimica et Cosmochimica Acta. 65(12) : 1907-1919
    
    Kyser, T. K. Short course in stable isotope geochemistry of low temperature fluids,Mineralogical Association of Canada,Toronto, 1987;
    
    L.L.THATCHER. The distribution of tritium fallout in precipitation over North America.U.S.Geological Survey;
    
    M.R. Burton, H.M. Mader, M. Polacci, 2007. The role of gas percolation in quiescent degassingof persistently active basaltic volcanoes.Earth and Planetary Science Letters 264(2007) :46-60;
    
    Mahendra P. Verma, 2000. Chemical thermodynamics of silica: a critique on its geothermometer.Geothermics 29:323-346;
    
    P. Jean-Baptiste, P. Allard, R. Coutinho, T. Ferreira et al., 2007. Helium isotopes inhydrothermal volcanic fluids of the Azores archipelago.Earth and Planetary Science Letters281(2009)70-80
    
    Pang zhonghe, 2001. Isotope and chemical geothermometry and its application.vol.44 supp.Science in china (series E);
    
    Peter Deines, Donald Langmuir, Russell S. Harmon, 1974. Stable carbon isotope ratios and theexistence of a gas phase in the evolution of carbonate ground waters. Geochimica etCosmochimica Acta, 38(7): 1147-1164;
    
    Roberr O.Fournier,地热系统——原理和典型地热系统分析,地质出版社,1986:82-88;
    
    S. Inguaggiato, G. Pecorainob , F. D'Amore,2000.Chemical and isotopical characterisation offluid manifestations of Ischia Island (Italy).Journal of Volcanology and GeothermalResearch 99 (2000) 151-178;
    
    Shinohara, H., A missing link between volcanic degassing and experimental studies on chloridepartitioning, Chem.Geol. (2009), doi: 10.1016/. chemgeo.2008.12.001;
    
    Stefan Arn6rsson, Andri Stefansson,2007.Fluid-Fluid Interactions in Geothermal Systems.Reviews in Mineralogy & Geochemistry.65:259-312;
    
    Stefen Aronorsson, Isotopic and Chemical Techniques in Geothermal Exploration, Developmentand Use. International Atomic Energy Agency, Vienna, 2000;
    
    Tedesco, D., 1996. Chemical and isotopic investigation of fumarolic gases from Ischia island(southern Italy): evidences of magmatic and crustal contribution. J. Volcanol. Geotherm.Res. 74, 233-242;
    
    Tobias P. Fischer, Bernard Marty, 2005. Volatile abundances in the sub-arc mantle: insightsfrom volcanic and hydrothermal gas discharges. Journal of Volcanology and GeothermalResearch 140 (2005) 205- 216;
    
    W. P. Leeman, S. Tonarini, M. Pennisi and G. Ferrara,2005. Boron isotopic variations infumarolic condensates and thermal waters from Vulcano Island, Italy: Implications forevolution of volcanic fluids. Geochimica et Cosmochimica Acta, 69(1): 143-163;
    
    W.G. Mook, J.C. Bommerson and W.H. Staverman,1974. Carbon isotope fractionation betweendissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters22(2): 169-176;
    
    Y.Xu. et al., 1998. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I.the origin of thiosulfate in hot spring waters.Geochimica et CosmochimicaActa.62(23/24):3729-3743;
    
    Zhang, G., et al., Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province,China, Geothermics (2007), doi:10.1016/j.geothermics.2007.09.002;
    
    陈墨香、汪集旸、邓孝主编.1994.中国地热资源——形成特点和潜力评估.北京:科学 出版社;
    
    戴金星,戴春森,宋岩,廖永胜,1994.中国一些地区温泉中天然气的地球化学特征及碳、 氦同位素组成.中国科学(B辑)24(4)426-433;
    
    樊祺诚,刘若新,魏海泉等,1999.腾冲火山的岩浆演化.地质论评.45(增刊):895-904;
    
    樊祺诚,隋建立,刘若新,2001.五大连池、天池和腾冲火山岩Sr、Nd同位素地球化学 特征与岩浆演化.岩石矿物学杂志.20(3):233-238;
    
    皇甫岗,姜朝松,腾冲火山研究,云南科技出版社,2000;
    
    姜朝松,王绍晋,周瑞琦等,2000.腾冲火山活动构造动力学研究.地震研究.23(2):180-187;
    
    阚荣举,赵晋明,阚丹,1996.腾冲火山地热区的构造演化与火山喷发.地震地磁观测与 研究,17(4):28-33;
    
    李成波,施行觉,刘苏苏等,2007.腾冲火山区的GPS形变特征.地球物理学进展.22(3): 765-770;
    
    李恒忠,杨存宝,2000。腾冲热海地下流体观察研究。地震研究。23(2):231-238;
    
    廖志杰,沈敏子,过帼颖,1991.云南腾冲热海热田的热储特征.地质学报,1:73-84;
    
    廖志杰,尹正武,贾希义,吕维新,1997.腾冲热海地热田的概念模型.高校地质学报.3(2): 213-221;
    
    廖志杰,赵平等,滇藏地热带,科学出版社,1999;
    
    林旭书等,云南省地质矿产局第二水文地质工程地质大队,1987;
    
    楼海,王椿镛,皇甫岗,秦嘉政,2002.云南腾冲火山区上部地壳三维地震速度层析成像.地 震学报.24(3)::243-251;
    
    上官志冠,2000.热海地热田热储结构与岩浆热源的温度.岩石学报,16(1):83-90;
    
    上官志冠,白春华,孙明良,2000.腾冲热海地区现代幔源岩浆气体释放特征.30(4):407-417
    
    上官志冠,高清武,赵慈平,2004.腾冲热海地区NW向断裂活动性的地球化学证据.地 震地质.26(1):46-51;
    
    上官志冠,赵慈平,高玲,2006.中国活动火山区甲烷的碳同位素研究.岩石学报.22(6): 1458-1464;
    
    上官志冠,赵慈平,李恒忠等,2004a.腾冲热海火山地热区近期水热爆炸的阶段性演特 征. 矿物岩石地球化学通报.23(2):124-128;
    
    沈立成,袁道先,订悌平等,2007.中国西南地区CO_2释放点的He同位素分布不均一性 及大地构造成因.地质学报.81(4)475-487;
    
    王先彬,刘刚,陈践发,张成君,夏新宇,1996.地球内部流体研究的若干关键问题.地 学前缘.3(3-4):105-118;
    
    张天乐,王宗良,胡云中,1997.腾冲现代热源系统硅华的矿物学特征及其地质意义.岩 石矿物学杂志.16(2):170-178;
    
    章新平,姚檀栋,田立德,2003.水体蒸发过程中稳定同位素分馏的模拟.冰川冻 土.25(1):65-71;
    
    赵斌,高温高压实验地球化学译文集,科学出版社,1981;
    
    赵慈平,冉华,陈坤华,2006.由相对地温梯度推算的腾冲火山区现存岩浆囊.岩石学报 22(6)1517-1528;
    
    赵平,多吉,谢鄂军等,2003.中国典型高温热田热水的锶同位素研究.2003,19(3): 569-576;
    
    朱炳球,朱立新,史长义等,地热田地球化学勘查,地质出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700