用户名: 密码: 验证码:
静电累积法α能谱空气测仪的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对人体健康的危害已经引起广泛关注,因此空气的测量成为环境监测的热门技术。本文瞄准国内外空气现有的测量方法和测量仪器,分析其中不足:目前常用的空气测方法多为总量测量,这种方法难以将及其子体区分开来;而现有的能谱测仪如美国产的RAD7型α能谱测仪由于其采用动态泵吸方式收集气,对测量环境气场扰动较大,因此测量结果有一定误差。
     为了克服现阶段大多数空气测仪的技术不足,针对空气浓度测量需要测量系统灵敏度高、区分及其子体等特点,设计了静电累积法α能谱空气测仪。
     本论文首先阐述了空气中的α能谱测量理论基础,再从理论上证实和提出了静电累积法α能谱测量:使α辐射体被吸附到探测器表面,在其表面发生α衰变,这个α衰变产生的α粒子的能量基本上不会损耗在空气射程中,这样就能保持α射线能量线性特性,使α能谱测量成为可能。然后基于这一方法,设计了一款使用金硅面垒型半导体探测器的空气测仪。
     该静电累积法α能谱空气测仪是以单片微处理系统为核心,进行空气中α能谱数据采集与处理的综合应用系统,该数据采集系统能够完成α能谱数据的获取和分析的整个过程。该仪器利用大探测灵敏面积探测器以及大容积带静电气收集腔来提高测量灵敏度;采用温湿度同步测量来对浓度测量值进行修正,提高测量数据的准确性;通过α能谱测量,能有效的区分及其子体的能谱特性,能够分别测出子体218Po和214Po的α计数,提高了子体尤其是218Po的测量精度,从而确定空气中的浓度。
     本论文主要做了以下工作:选择仪器的探测元件,确定所要应用的测量原理;设计并调试低噪声信号调理电路、多道脉冲幅度分析器、微处理器系统、低功耗电源管理模块以及相应的软件系统;集成环境空气温湿度测量模块、实时时钟模块和最新OLED自发光显示屏;制作气收集装置,并将气收集装置和α能谱测量分析系统进行一体化设计;对仪器系统进行性能测试,发现不足并进行修改。
     经过标准室标定,得到该仪器的能量刻度曲线、能量分辨率、转换系数和测量灵敏度等重要信息,特别是测量灵敏度已经超过RAD7。实验数据表明静电累积法理论可行,仪器性能基本满足国家相关标准规定的对空气检测的要求。
     本论文中的静电累积法α能谱空气测仪可直接从显示屏读出测点空气浓度,适用于民用建筑工程室内辐射环境水平监测及污染控制、标准浓度监测、矿井坑道及地铁浓度监测等领域,具有测量灵敏度高、结构简单合理、功耗低、体积小、重量轻、使用方便等优点。
In recent years, radon hazards to human health have attracted wide attention, so air radon measurements become a popular technology for environmental monitoring. In this paper, author aims at the existing domestic and international air radon measurement methods and measuring instruments, and analyzes their deficiencies: The commonly used method for air radon measurement is the total amount measurement of radioactive particles, which is not able to distinguish between radon and its daughters. The existing radon monitors inαEnergy Spectrum, such as the RAD7 radon monitor inαEnergy Spectrum produced by the United States, use dynamic pumping way to collect radon gas, and then destroy the radon gas field balance in the measurement environment, so the measurement error will exist.
     In order to overcome the technical deficiencies of most of the air radon monitor, we design a kind of air radon monitor inαenergy spectrum based on static electricity accumulation method aiming at air radon concentration measurement requirements of high measurement sensitivity, ability of distinguishing between radon and its daughters.
     In this paper, the air radonαspectrum measurement theory is elaborated in the first. And then,αenergy spectrum measurement based on static electricity accumulation method is theoretically confirmed and proposed: Whenαradiator, which be adsorbed to the detector surface, decays on the surface of the detector surface, energy ofαparticles produced from theαdecay basically will not lose in the air, so thatαspectrum measurement is feasible. Based on this method, a kind of air radon monitor using gold silicon surface barrier semiconductor detector is designed.
     The air radon monitor inαenergy spectrum based on static electricity accumulation method, using a single-chip micro-processing system as its core, is a integrated applications system for acquisition and processing of theαenergy spectrum data. The data acquisition system can accomplish the whole process of acquisition and analysis of theαenergy spectrum data. We improve the measurement sensitivity of the instrument using the detector with large sensitive detect area and large volume electrostatic chamber of radon gas collection. The simultaneous measurements of temperature and humidity are used to modify the radon concentration measurement, so improve the accuracy of measurement data. Theαspectrometry measurement can effectively distinguish between radon and its daughters and measure respectivelyαcounts of radon daughters 218Po and 214Po, so especially increase 218Po measurement accuracy, and then the concentration of radon in air can be determined.
     The work is done as follow: The instrument detection device is selected. The application of measurement principle is determined. We designed and debugged low-noise signal conditioning circuit, multi-channel analyzer, microprocessor systems, low-power power management module and the corresponding software system. Environmental air temperature and humidity measuring module, real-time clock module and the latest self-luminous OLED display are integrated in the instrument. Radon gas collection device produced and theαenergy spectrum analysis system are integrated together. System performance of the equipment is test and the deficiencies found will be changed.
     After calibration of standard radon chamber, we get energy calibration curve, the energy resolution, conversion factors and measurement sensitivity and other important information of the instrument. In particular, it is found that measurement sensitivity of the instrument over RAD7 radon monitor. Through the analysis of experimental data, we can conclude that static electricity accumulation method is feasible, and instrument performance basically complies with the relevant national standard of radon detection in air.
     The air radon concentration in some point can be read directly from the display of air radon monitor inαenergy spectrum based on static electricity accumulation method. It applies to lots of fields, such as environmental radiation surveillance of civil engineering indoor radon levels, pollution control, radon concentration surveillance in standard radon chamber, and radon concentration surveillance in mine tunnels and Subway. It has the characteristics of high measurement sensitivity, simple structure, low power consumption, small size, light weight, being easy to operate.
引文
[1]赵亚民,等译.环境中来源及危害[M].北京:中国环境科学出版社.1990.7.
    [2]宋刚,邓令蓉,等.广州市新建民用建筑工程土壤浓度调查[J]环境监测管理与技术,2007,(8).
    [3]吴慧山,等.的测量方法与应用[M].北京:原子能出版社, 1995.
    [4]李艳宾.室内对人体健康的影响[J].中国辐射卫生,2007,(3).
    [5]环境空气中的标准测量方法,中华人民共和国国家标准,GB/T 14582-93.
    [6] FD-3017测仪使用说明书.中国原子能工业公司上海电子仪器厂.
    [7] Model 1027连续测仪使用说明书.美国Sunnuclear公司。
    [8] RAD7测仪操作手册.上海劳瑞仪器设备有限公司.
    [9] DOSEman测仪使用说明书.德国萨拉德公司.
    [10]吴慧山,章晔.核技术勘查[M].北京:原子能出版社, 2008.2.
    [11]贾文懿,许祖润,方方,等.核地球物理仪器[M].北京:原子能科学出版社,1998.1.
    [12]凌球,郭兰英.核辐射探测[M].北京:原子能出版社.1992.
    [13]李刚,林凌.与8051兼容的高性能、高速单片机-C8051Fxxx[M].北京:北京航空航天大学出版社, 2002.5.
    [14]潘琢金,译.C8051F340操作手册[J/OL].新华龙电子有限公司,2006.1.
    [15]黄秋,丁卫撑,方方,等. SPI接口的FLASH ROM与C8051F340的接口设计[J].自动化技术与应用,2010(4).
    [16]周建斌,任家富,童运福.一种新型测仪-α谱仪的研制[J].核电子学与探测技术,2005(6).
    [17]吴慧山.关于若干问题的讨论[J].世界核地质科学,2005,(7).
    [18]章晔,华荣洲,石柏慎.放射性方法勘查[M].北京:原子能出版社, 1990.6.
    [19]石玉春,吴燕玉.放射性物探[M].北京:原子能出版社,1986.
    [20]贾文懿,方方,苗放.核地球物理的理论与实践[M].成都:四川大学出版社,1998.1.
    [21]程业勋,王南萍,侯胜利.核辐射场与放射性勘查[M].北京地质出版社,2005.
    [22]康华光,陈大钦.电子技术基础模拟部分(第四版)[M] .北京:高等教育出版社,1999
    [23]阎石.数字电子技术基础(第四版)[M].北京:高等教育出版社,1998.
    [24]孙淑霞,何建军,肖阳春.C/C++程序设计教程[M].北京:电子工业出版社,2005.
    [25]张毅坤,陈善久,裘雪红.单片微型计算机原理及应用[M].西安:西安电子科技大学出版社,1998.
    [26]民用建筑工程室内环境污染控制规范,中华人民共和国国家标准,GB 50325-2001.
    [27]室内及其衰变产物测量规范,中华人民共和国国家标准,GBZ/T 182-2006.
    [28]金硅面垒型探测器,中华人民共和国国家标准,GB/T 13178-91
    [29]及其子体测量规范,中华人民共和国国家标准,EJ/T 805-91.
    [30]张望英.室内污染在城市现代化建设中的危害[J].内蒙古环境科学,2007,(4).
    [31] UNSCEAR 1982 Report. Ionizing Radiation: Sources and biological effects[R], NewYork: UN1982, P15-244.
    [32] CameronE.Lawrence, RiazA.Akber, Andreas Bollhofer, Paul Martin.2009.Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics[J].Journal of Environmental Radioactivity,100,1-8.
    [33] Mason,G.C.,Elliot,G.,Gan,T.H.,1982.A Study of Radon Emanation from Waste Rock at Northern Territory Uranium Mines[J],p.27.Australian Radiation Laboratory Report Number ARI.TR044.
    [34] Maraziotis,E.,1996.Effects of intraparticle porosity on the radon emanation coefficient[J].Environmental Science and Technology 30,2441-2448.
    [35] Guo,Q.,Sun,K.,Cheng,J.,2004.Methodology study on evaluation of radon flux from soil in China[J].Radiation Protection Dosimetry 112,291-296.
    [36] Zhang,L.,Guo,Q.,Iida,T.,2004.Atmospheric radon levels in Beijing,China[J].Radiation Protection Dosimetry 112,449-453.
    [37] Tanner,A.,1964.Radon migration in the ground:a review[J].In:The Natural Radiation Environment.University of Chicago Press,Chicago,pp.161-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700