用户名: 密码: 验证码:
水稻胚乳发育中珠心凋亡与胚乳细胞构建的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是中国及亚洲地区主要的粮食作物之一,在粮食生产中占有举足轻重的地位。胚乳细胞的发育状况直接影响籽粒的产量和品质。本论文以籼稻品种:胜泰1号为材料,对水稻胚乳发育过程中胚乳细胞的构建,胚乳细胞中淀粉质体的发生发育以及胚乳发育中珠心细胞的细胞程序性死亡及它与胚乳发育的关系,进行结构和功能的研究。主要研究结果如下:
     1.水稻胚乳细胞的构建 花后约两天,游离核胚乳开始细胞化。中央细胞壁产生钉状垂周内突,延伸入中央细胞腔。内质网线状排列,通过电子致密小泡相互连接;同时,小泡将内质网和壁内突融合,成为垂周壁,将合胞体的胚乳分隔成一个个向心开口的圆柱体。圆柱体内的核分裂,伴随产生成膜体,在成膜体的基础上融合小泡产生平周壁,形成一个个单核的细胞。平周壁的产生还有另一个来源,即通过垂周壁的游离末端分支相互融合而成。携带有壁物质的电子致密小泡可来源于高尔基体分沁的携带有壁物质的小泡;内质网自身囊腔膨大而缢缩形成的球状体;周围珠心细胞PCD降解后产生的,包含有降解物质的电子致密小泡,通过中央细胞壁内突而运输入中央细胞。还观察到细胞化过程中酸性磷酸酶(AcPase)的定位变化。在新形成的细胞壁上观察到强烈的AcPase的活性,而早已形成的细胞壁上几乎没有酶活。
     2.胚乳细胞中淀粉质体的发生水稻淀粉粒属复粒淀粉,淀粉质体除来源于质体、淀粉质体外,还来源于线粒体。,花后约60小时,胚乳细胞中开始出现淀粉体。淀粉体可通过出芽和中间缢缩断裂两种方式进行增殖。用AcPase定位表明,完全淀粉化的胚乳细胞中,细胞核被淀粉质体挤压变形而解体,其余细胞器被吞噬或解体,直至整个胚乳细胞中只含有淀粉质体、蛋白质体和脂体,而表现为一种凋亡表形。不同发育时期稻米籽粒胚乳细胞中,淀粉粒大小的动态变化表明:花后3~12天是水稻胚乳细胞中淀粉粒的发育的高峰期,在该时段,淀
    水稻胚乳发育中珠心凋亡和胚乳细胞构建的研究粉粒直径的增加几乎接近于直线增长。12天以后,淀粉粒的直径维持在一个接近恒定的水平。胚乳中央部分与周围部分的细胞中淀粉粒的形状有所不同。中央部分的多为多面体形,且排列紧密;而周围部分的淀粉粒多为圆球形,排列较为疏松 3.胚乳发育过程中,珠心细胞的细胞程序性死亡珠心细胞PCD始于大抱子时期。用超微细胞化学的方法,对珠心细胞PCD过程中,酸性磷酸酶(aeid phosphatase,Aepase)进行研究表明,随着pen进行的程度的不同,AcPase依次定位于核膜、核质、胞质、细胞质膜、液泡膜、内质网膜和线粒体膜,并伴随有典型的凋亡细胞表形。表现为:染色体固缩且周缘化,线粒体腔膨大,内质网槽库膨大,细胞质膜和细胞壁分离,出现大量吞噬泡,细胞器被降解或吞噬,最终产生凋亡小体,其中包含有降解的核质或胞质,胞壁破裂,凋亡小体释放。同时,还用线粒体标志酶一细胞色素氧化酶(cytochrome oxidase)对线粒体进行超微细胞化学的定位研究,证明了在PCD过程中确有线粒体晴模糊,腔膨大,线粒体膜破裂等线粒体解体现象的存在。观察表明珠心细胞的PCD降解产物对胚乳细胞构建的哺乳关系。
Rice(Oryza Sativa L.) is one of the main resources of cereal grown in China and even in the Asian. It plays a very important role in food supply. Endosperm is the most primary part of the rice grain that can be eaten, so the developmental pattern of endosperm influence the grain quantity and quantily directly. Starch is both the major component of the yield in the world's main crop plants and an important raw material for many industrial processes.
    In this thesis, we report the structural and functional research about nucellar cells PCD, endosperm cells construction, and amyloplasts initiation and development during the development of the endosperm of the rice. The main research results were as followed.
    1.Construction of the rice endosperm cells Cellularization of the free-nuclear endosperm was initiated about 2 days after pollination(DAP) with the form of the peg-like anticlinal ingrowths on the central cell wall. These ingrowths extended into the lumen of central cell and fused with the linear endoplasmic reticulum(ER) by many electron-dense vesicles. Periclinal walls were formed by two mechanisms: (1) formation of the phragmoplasts followed the kynokinesis, (2) fusion of the free-edges of the opposing anticlinal walls. It was speculated that the electron-dense vesicles had three resources. From the Golgi apparatus, ER or degenerated nucellar cells which were transported through the ingrowths of central cell wall. By the means of cytochemistry of ultrastructure, We observed the location change of the AcPase. During the proceeding of the cellularization, the new-formed cell walls had distinct aggradation of the AcPase, but on the cell walls which were formed a longer time ago, we could not observe the aggr
    adation of the AcPase.
    2. The resource and development of amyloplasts in the
    
    
    endosperm cells The amyloplasts of rice were compound starch granules. We observed that the amyloplasts could be initiated not only from the plastids, proplastids and amyloplasts, but also from the mitochondria. They appeared in the endosperm cell after 60 hours after pollination, and propagated by the formation of gemma or by contraction in the middle before splitting. The ultrastructural location of AcPase suggested that the nucleus and other cell apparatus were degenerated in the mature endosperm cells, which were filled with amyloplasts and protein bodies. So they showed another kind of phenomena of PCD.
    The compare of the starch granules of different stage of development showed that the 3-12 days after pollination was the fastigium of the development of the starch granules. During this period, the augmentation of the diameter of the starch granules was approximate the pattern of beeline. But after 12 DAP, the diameter of the starch granules maintained at a invariable level. The shape of the starch granules in the medial region of the endosperm was different from the ambient region of that. Most of the starch granules in the medial region of the endosperm was polyhedral, crystalline and compact arranged; but the starch granules in the ambient region were almost ball shape, loose arrangement.
    3. The proceeding of Programmed Cell Death (PCD) of nucellar cells during the development of the endosperm PCD of nucellar cells initiated in 2 days after pollination (2DAP). By the means of ultrastructure cytochemistry, we researched the variation of AcPase (Acid phosphatase) in nucellar cells. During the proceeding of PCD, AcPase was located on the nuclear membrane, nucleus, cytoplasma membrane, ER membrane, Mitochondria membrane, and cytoplasm in respectively. At the same time, it accompanied with phenomena of apoptosis which included, chromatin condensation and margination, cytoplasm vacuolation, mitochondria swelling and alveolation. endoplasmic reticulum(ER) cisterna swelling, cytoplasma membrane and cell wall separation, cell apparatuses
    
    degeneration, apoptosis bodies produce, which contained the degenerated material from cell apparatuses and cell nucleus. At last, the cell walls were broken, and apoptosi
引文
广东省农科院水稻所。优质、超高产水稻新品种胜泰1号的特性特征与栽培要点。中国稻米,1999,4:18
    尤瑞麟。小麦珠心细胞衰退过程的超微结构观察。植物学报,1985,27(4):345-353
    王忠,李卫芳,顾蕴洁,陈刚,石火英,高煜珠。水稻胚乳的发育及其养分输入的途径。作物学报,1995,21(5):520-526
    王忠,李卫芳,顾蕴洁,陈刚,石火英,高煜珠。水稻胚乳游离核的分裂。江苏农学院学报,1996,17(1):11-20
    田国伟,申家恒。小麦珠心细胞衰退过程中ATP酶的超微细胞化学定位。植物学报,1996,38(2):100-104
    田国伟,申家恒,尤瑞麟。小麦珠心细胞衰退过程中酸性磷酸酶的超微细胞化学定位。植物学报,1999,41(8):791-794
    宁顺斌,宋运淳,王玲,刘立华。药物诱导的玉米根尖细胞凋亡。植物学报,2000,42(7):693-696
    刘向东,卢永根,徐雪宾,徐是雄。单多胚水稻珠心组织消长变化的比较研究。中国水稻科学,1996,10(4):213-219
    刘向东,徐是雄,卢永根。水稻胚囊壁的形成与发育观察。植物学报,1997,39(11):985-990
    伍时照,黄超武,欧烈才,孔宪扬,鄢鸿鸣,林喻钊。水稻籼型品种淀粉粒性状的扫描电镜观察。植物学报,1986,28(2):145-149
    汤圣祥,江云珠,李双盛,余汉勇,张云康。早籼胚乳淀粉体的扫描电镜观察。作物学报,1999,25(2):269-271
    孙英丽,赵允,刘春香,翟中和。细胞色素C能诱导植物细胞编程性死亡。植物学报,1999,41(4):379-383
    张伟成,严文梅,娄成后。小麦珠心组织中原生质细胞间运动机理的探讨。中国科学B辑,1986,6:527-532
    张伟成,严文梅,高小彦。小麦胚乳细胞化初期胞壁形成特征的观察。
    
    植物学报,1990,32(1):76-78
    张伟成,李瑞秋,严文梅,高小彦。小麦胚乳细胞内、细胞间胞质骨架分布格局的超微结构观察。1998,40(4):298-302
    张云康。酿酒籼糯米胚乳淀粉粒的扫描电镜观察。作物学报,1997,23(2):237-239
    张莹,丁明孝。植物细胞的程序化死亡。细胞生物学,1997,19(4):158-164
    杨弘远。用整体染色与透明技术观察胚囊、胚、胚乳和胚状体。植物学报,1986,28(6):575-581
    汪仁,薜绍白。细胞生物学(第二版)。北京,北京师范大学出版社,1998。400
    吴昊,赵允,翟中和。小鼠肝细胞凋亡的超微结构观察。电子显微学报,2001,20(1):21-27
    罗玉英。玉竹花粉中造粉质体形成及增殖的超微结构研究。电子显微学报,1995,14(3):166-169
    季清娥,郑恒清,徐珍秀,蓝盛银。品质不同的稻米胚乳淀粉粒的微观结构观察。福建农业大学学报,1998,27(2):241-244
    星川清亲著,蒋彭炎,许德海译。解剖图说稻的生长。上海,上海科学技术出版社,1980。273
    赵允,沈延,吴昊,翟中和。细胞核凋亡过程中核基质的变化。电子显微学报,2001,20(2):87-93
    胡适宜。被子植物胚胎学。北京,高等教育出版社,1982。150-153
    徐是雄,黄炳权,叶秀麟。水稻胚囊发育过程中微管的变化。植物学报,1997,39(10):889-893
    徐丽云,胡适宜。环氧树脂厚切片的染色。植物学通报,1986,4(1-2):108-110
    袁莉民,朱庆森,王志琴,张祖建。亚种间杂交稻及其亲本胚乳淀粉粒性状的初步观察。江苏农学院学报,1994,15(2):45-50
    董健,杨弘远。水稻胚囊超微结构的研究。植物学报,1989,31(2):81-88
    
    
    蓝盛银,徐珍秀。水稻胚乳淀粉粒形态发育的亚显微结构研究。武汉大学学报(自然科学版),1997,Sup.2:73-74
    戴大临,张清敏等。生物医学电子显微镜样品制备方法。天津,天津大学出版社,1993。128-129,143
    Asaoka M, Okuno K, Sugimoto Y, Fuwa H, Developmental changes in the structure of endosperm starch of rice(Oryza sativa L.). Agric Biol Chem, 1985, 49(7):1973-1978
    Badenhuizen N E Encyclopaedia of plant physiology, Vol VI(Ruhland ed.). Berlin: Springer Verlag, 1958, 137-153
    Bechtel D B, Gaines R L, Pomeranz Y. Early stages in wheat endosperm formation and protein body initiation. Ann Bot, 1982, 50:507-508
    Brown R C, Lemmon B E, Olsen O A. Polarization predicts the pattern of cellularization in cereal endosperm. Protoplasma, 1996,192:168-177
    Brown R C, Lemmon B E, Stone B A, Olsen O A. Cell wall (1→3)-and (1→3, 1→4)-β-glucans during early grian development in rice(Oryza sativa L.). Planta, 1997, 202:414-426
    Butler R D, Simon E W. Ultrastructural aspects of senescence in plants. Adv Gerontol Res, 1971, 3:73-129
    Buttrose M S. Submicroscopic development and structure of starch granules. J Ultrastruc Res, 1960, 4:231-251
    Chamberlin M A, Horner H T. Nutrition of early embryo development in Glycine max(L.) Merr. Amer J Bot, 1990, 77(supp):20
    Chamberlin M A, Horner H T. An ultrastructural study of endosperm wall formation and degeneration in Glycine max(L.) Merr. Amer J Bot, 1990, 77(supp):83
    Chamberlin M A, Homer H T, Palmer R G. Nuclear size and DNA content of the embryo and endosperm during their initial stages of development in Glycine max(Fabaceae). Amer J Bot, 1993,80, (10):1209-1215
    Chamberlin M A, Homer H T, Palmer R G. Early endosperm, embryo, and ovule development in Glycine max(L.) Merr.. Int J Plant Sci, 1994,
    
    155(4):421-436
    Chibbar R N, Baga M, Repellin A, Demeke T, Hucl P, Steele J L. Genetic engineering of wheat for starch modification. In: Proceedings of the international wheat quality conference, Manhattan, Kansas, USA, 18-22, May, 1997.1997,249-260
    Chitralekha P, Bhandari N N. Cellularization of endosperm in Asphodelus tenuifolius Cav.. Phytomorphology, 1992, 42(3-4): 185-193
    Chung M C. 水稻米粒的发育. National Science Council Monthly, 1983, 11 (10):959-976
    Dute R R, Peterson C M. Early endosperm development in ovules of soybean, Glycine max(L.) Merr.. Ann Bot, 1992, 69:263-271
    Fineran B A, Wild D J, Ingerfeld M. Initial wall formation in the endosperm of wheat, Triticum aestivum: a reevaluation. CAN J BOT, 1982, 60:1776-1795
    Folsom M W. Cass D D. Embryo sac development in soybean: cellularization and egg apparatus expansion. CAN J BOT, 1990, 68:2135-2147
    Folsom M W, Cass D D. Embryo sac development in soybean: the central cell and aspects of fertilization. Amer J Bot, 1992,79(12): 1407-1017
    Gartner P J, Nagl W. Acid phosphstase activity in platids (plastolysomes) of senescing embryo-suspensor cells. Planta, 1980, 149:341-349
    Gori P. The fine structure of the developing Euphorbia dulcis endosperm. Ann Bot, 1987, 60:563-569
    Greenberg J T. Progranned cell death: a way of life for plants. Proc Natl Acad Sci USA, 1996, 93:12094-12097
    Halac I N D. Fine structure of nucellarr cells during development of the embryo sac in Oenothera biennis. Ann Bot, 1980, 45:515-521
    Jensen C G. Dynamic of spindle microtubule organization: kinetochore fiber microtubules of plant endosperm. J Cell Bio, 1982, 92:540-557
    Kluck R M, Bossy-Wetzel E, Green D R, Newrneyer D D. The release of
    
    cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. SCINENCE, 1997, 275:1132-1136
    Knight M E, Harn C, Lilley C E R, Guan H, Singletary G W, Mu Forster C, Wasserman B P, Keeling P L. Molecular cloning of starch synthase I from maize(W64) endosperm and expression in Escherichia coli. Plant J, 1998, 14(5):613-622
    Lammeren V, M A A. Structure and function of the microtubular cytoskeleton during endosperm development in wheat: an immunofluorescence study. Protoplasm, 1988, 146:18-27
    Li P, Nijhawan D, Budihardjo I, Srinivasula S M, Ahmad M, Alnemeri E S, Wang X. Cytochome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptosis protaase cascade. Cell, 1997, 91:479-489
    Liu X, Kim C N, Yang J, Jemmerson R, Wang X. Induction of apoptosis program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996, 86:147-157
    Matile P, Ginsburg S, Schellenberg M, Thomas H. Catobolites of chlorophyⅡ in senescing barley leaves are localized in the vacuoles of mesophyⅡ cell. Proc Natl Acad Sci USA, 1988, 85:9529-9532
    Nakamura Y, Umemoto T, Takahata Y, Komae K, Amano E, Satoh H. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm. Possible role of starch debranching enzyme (R-enzyme) in amylopection biosynthesis. Physio Plantarum, 1996, 97(3):491-498
    Otegui M, Maldonado S. Lina C, Lederkremer R M. Development of the Myrsine laetevirens (Myrsinaceae). I. Cellularization and deposition of cell-wall storage carbohydrates, Int J Plant Sci, 1999, 160(3):491-500
    Ramachandran C, Raghavan V. Changes in nuclear DNA content of endosperm cells during grain development in rice (Oryza sativa). Ann Bot, 1989, 64(4):459-468
    
    
    Reed J C. Cytochrome c: can't live with it——can't live without it. Cell, 1997, 91:559-562
    Steller H. Mochanisms and genes of cellar suicide. SCINENCE, 1995, 276:1445-1462
    Smith A M, Denyer K, Martin C. The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48:67-87
    Thimann K V, Tetley R M, Krivak B M. Metabolism of oat leaves during senescence. Plant Physiol, 1977, 59:448-454
    Webb M C, Gunning B E S. The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in Arabidopsis thaliana(L.) Heynh. Palanta, 1991, 184(2):187-195
    Williams G T. Molecular regulation of apoptosis: genetic control on cell death. CELL, 1993, 74:777-779
    Wittenbach V A, Lin W, Hebert R R. Vacuolar localization of proteases and degradation of chloroplasts in mesophyⅡ protoplasts from senescing primary wheat leaves. Plant Physiol, 1982, 69:98-102
    Umemoto T, Nakamura Y, Ishikura N. Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry, 1995, 40(6): 1613-1616
    Zou H, Henzel W J, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome cdependent activation of caspase-3. Cell, 1997, 90:405-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700