用户名: 密码: 验证码:
电动汽车蓄电池的建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,能源危机和环境污染促使以电动汽车(EV,Electric Vehicle)为主的低排放节能汽车得到了重视和发展。在电动汽车的前期开发中,计算机模拟仿真具有重要作用。作为电动汽车的能量存储系统,蓄电池性能是决定整车性能的重要因素,且蓄电池是电、化学、热力学的综合系统,动态特性异常复杂,因此蓄电池建模仿真是电动汽车建模仿真的重要环节和困难部分。作者在参与科研项目的实践中,通过深入研究,将键合图(Bond Graph)理论应用到蓄电池的建模中,收到了很好的效果,开辟了蓄电池建模仿真的新思路。
     作者在文中简要介绍了电动汽车蓄电池及其温度管理系统的建模仿真的现状,对几种常用的电池模型的特点进行了论述。详细探讨了键合图理论基础及其在工程中的应用,并重点深入研究了键合图在电系统和热力学系统中建模的特点、方法和步骤,包括传导传热的键合图表示和对流传热的键合图表示,并进一步讨论了键合图的增广定向和系统的数学模型——状态方程的推导。对蓄电池建模方式进行探讨并采用等效电路法建模,在分析比较几种常用等效电路的基础上,采用精度高、更加合理的参考模型(ReferenceModel),并建立了参考模型等效电路的键合图模型。研究了电池温度管理系统的常用的平行气流风冷方式的热力学状态和能量流动,并建立了键合图模型。进而将蓄电池等效电路的键合图模型和温度管理系统的键合图模型耦合,得到蓄电池系统的键合图模型。由蓄电池系统的键合图模型推导出系统的数学模型。对SOC(State of Charge)的影响因素及其定义进行分析探讨,比较讨论了几种常用的SOC预测方法后采用更加合理的算法。利用MATLAB/SIMULINK仿真平台,由蓄电池系统的数学模型建立了仿真模型。实现了某Ni-Zn蓄电池的动态仿真,并与实验结果进行比较得到了很好的效果。将蓄电池仿真模型接入到整车模型中,实现了整车的仿真。
     基于上述工作,作者建立了一套完善的电动汽车蓄电池建模与仿真的体系,为整车及控制策略的仿真提供可靠的依据。所建模型适合于所有液体电化学电池。作者的工作为研究模拟蓄电池复杂的动态特性进行了有效的尝试,开辟了新的思路,也为键合图理论的发展做出了贡献。
With the emergence of energy crisis and environmental pollution, the low-emission and energy-conservation car relying mainly on electric vehicle (EV) has been paid attention to and developed. In the earlier period of electric vehicle development, the modelling and simulation with computer has the vital role. As the energy storage system of EV, the battery performance is the important attribute of deciding the entire vehicle performance, and the battery is the integrated system of electricity, chemistry, the thermodynamics, the dynamic characteristic exceptionally complex, therefore the battery modelling and simulation really is the important link and difficult partial of the electric vehicle modelling and simulation. In the practice of scientific research item, the author applies the theory of bond graph to the modeling of the battery of EV after further researching, and has received the very good effect, also opens up the new train of thought of the battery modelling and simulation.
    The author briefly introduces the present situation of modelling and simulation of the battery and its temperature management system on EV. And discusses the rationale of bond graph and its application in engineering emphasis on the use in the electricity system and the thermodynamic system in detail, and obtains the state equation at last. The means of battery modelling is discussed and the method of equivalent circuit is applicable, and the reference model is adopted because of its higher precision and more reasonable after comparing the several kinds of commonly used equivalent circuits, moreover the bond graph model of the equivalent circuit of reference model is established. Also the thermodynamics condition and energy flow of the parallel-flow air cooling mode that is one of the modes of battery's temperature management system is studied, and the bond graph model of the temperature management system is built. The bond graph model of the battery system is obtained by coupling the bond graph model of the equivalent circuit and the bond graph model of the temperature management system. Furthermore the mathematical model of the battery system is deduced. The more reasonable algorithm of SOC is applied after discussing the influence factor the definition of SOC and comparing and analyzing several commonly
    
    
    
    used calculating method. Using the MATLAB/SIMULINK simulation software, the simulation model of the battery system is established. The dynamic simulation of a kind of Ni-Zn battery is realized, and the results are very good comparison with the experimental result. Also the vehicle simulation is realized. Based on the above work, the author has established a set of perfect modelling and simulation system of the battery on EV, and it provides the reliable basis for the simulation of vehicle and the control strategy. The model suits to all liquids electro-chemical battery. Author's work has carried on the effective attempt for study and simulating the complex dynamic characteristic of battery, opened up the new train of thought and made the contribution for the development of bond graph theory.
引文
[1]赵清,徐衍亮,安忠良等.电动汽车的发展与环境保护.沈阳工业大学学报,2000.22(5):430~432
    [2]马宪民.电动汽车的电气驱动系统.西安公路交通大学学报,2001.21(3):83~86
    [3]阿布里提.阿布都拉,清水健一.电动汽车的发展现状和开发动向.电工电能新技术,2000.(1):49~53
    [4]钱立军,赵韩,高立新.电动汽车开发的关键技术及技术路线.合肥工业大学学报(自然科学版,2002.25(1):14~18
    [5]李国良,初亮,鲁和安.电动汽车续驶里程的影响因素.吉林工业大学自然科学学报,2000.30(3):20~24
    [6]陈勇,孙逢春.电动汽车续驶里程及其影响因素的研究.北京理工大学学报,2001.21(5):578~582
    [7]SUN Liqing, BAI Wenjie, SUN Fengchun. State-of-the-art Electric Vehicle Simulation Technology. In: EVS19 Secretariat. EVS19. Busan: Huronix Inc., 2002. 2064~2073
    [8]陶明大,叶德龙,王金国,等.电动汽车用镍氢蓄电池充电发热问题的研究.汽车电器,2001.(4):7~9
    [9]黄妙华,金国栋,邓亚东,等.混合动力电动汽车性能试验与仿真.汽车技术,2002.(4):20~23
    [10]陈晓东,何仁,杨正林.混合动力电动汽车性能仿真软件研究与开发.交通运输工程学报,2002.2(1):115~117
    [11]龚海峰.混合动力电动汽车能量存储系统分析与仿真:[硕士学位论文].武汉:武汉理工大学,2003
    [12]Johnson V H, Pesaran A A. Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries. In: Griffin D, Ma A, Masters A. EVS17. Montreal Canada: Electric Vehicle Association of the Americas, 2000. 1~16
    [13]Johnson V H, Zolot M D, Pesaran A A. Development and Validation of a Temperature-Dependent Resistance/Capacitance Battery Model for ADVISOR. In: Naunin D, Kahlen H. EVS 18. Berlin German: Electric Vehicle Association of the Americas, 2001.
    [14]Antoni Szmanowski.混合电动车辆基础,陈清泉,孙逢春编译.北京:北京理工大学出版社,2001.
    [15]廖权来,罗玉涛,高亮.电动汽车理论模型的建立及应用.汽车技术,1996.(3):
    
    11~26
    [16]李槟,陈世全.混合动力电动汽车中电池特性的研究.汽车技术,1999.(10):11~14
    [17]王文成.神经网络及其在汽车工程中的应用.北京:北京理工大学出版社,1998.
    [18]柳林,杨竹青.MATLAB6.5辅助神经网络分析与设计.北京:电子工业出版社,2003.
    [19]黄妙华,龚海峰.车用电池网格模型及其在ADVISOR中的实现.武汉理工大学学报(信息与管理工程版),2003.1
    [20]Aaron Brooker, Terry Hendricks, Valerie Johnson. ADVISOR document. NREL, 2001.8
    [21]潘亚东.键合图概论——一种系统动力学方法.重庆:重庆大学出版社,1990.
    [22]D.C.卡诺普,R.C.罗森堡.系统动力学——应用键合图方法,邓延光译.北京:机械工业出版社,1985.
    [23]Feenstra P J. A Library of Port-based Thermo-Fluid Submodels: [M.Sc.Thesis]. Netherlands: University of Twente, 2000.
    [24]杨强生,浦保容.高等传热学.上海:上海交通大学出版社,2001.
    [25]华自强.工程热力学(第2版).北京:高等教育出版社,1986.
    [26]程俊国,张洪济,张慕瑾,顾念祖.高等传热学.重庆:重庆大学出版社,1991.
    [27]Gawthrop P J. Thermal Modelling using Mixed Energy and Pseudo Bond Graphs. Glasgow: Centre for Systems and Control. 1998.
    [28]Gawthrop P.Bond Graph Based Control. Glasgow : Centre for Systems and Control. 1994.
    [29]Bouamama B O. Bond graph approach as analysis tool in thermofluid model library conception. Journal of the Franklin Institute, 2003 (340): 1-23.
    [30]Massimo Ceraolo, Carmine Miulli. A Dynamic Model of Nickel-Zinc Batteries. In: EVS19 Secretariat. EVS19. Busan: Huronix Inc., 2002. 1750~1759
    [31]Stefano Barsali, Massimo Ceraolo. Dynamic Models of Lead-Acid Batteries: Implementation Issues. IEEE Transactions on Energy Conversion, VOL.17, NO.1, March 2002
    [32]董雄鹤,齐国光,冯熙康,陈爱松.电动车用电池充电状态和功率强度估计.电源技术,2002.(3):137~141
    [33]Keiichi Minamiura, Osamu Takahashi, Kunio Kanamaru, Tadao Kimura. MATLAB Modeling of HEV Ni-MH Battery pack System.. In: EVS19 Secretariat. EVS19. Busan: Huronix Inc., 2002.616~625
    
    
    [34]M. Pasquali, M. Ceraolo, V. Slavo. Modelling and Test on E.V. Lead-Acid Batteries. University of Pisa
    [35]胡骅,宋慧.电动汽车.北京:人民交通出版社,2002.
    [36]汪存信,宋昭华,屈松生.物理化学——热力学·相平衡·统计热力学.武汉:武汉大学出版社,1997.
    [37]麻友良,陈全世,朱元.变电流下的电池荷电状态定义方法探讨.电池,2001.(1):7~9
    [38]朱元,韩晓东,田光宇.电动汽车动力电池SOC预测技术研究.电源技术,2000.(3):153~156
    [39]陈清泉,孙逢春,祝嘉光.现代电动汽车技术.北京:北京理工大学出版社,2002.
    [40]Yuang-Shung Lee, Jerry Wang, Tsung-Yuan Kuo. Lithium Ion Battery Model and Fuzzy Neural Approach for Estimating Battery State-of-Charge. In: EVS19 Secretariat. EVS 19. Busan: Huronix Inc., 2002. 1879~1890
    [41]王沫然.Simulink 4建模及动态仿真.北京:电子工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700