用户名: 密码: 验证码:
电弧放电法制备洋葱状富勒烯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米洋葱状富勒烯作为富勒烯家族中的新成员,自1992年被发现以来,已在全世界范围内引起了各国学者的广泛关注和极大兴趣,这一领域的研究已成为炭素界以至整个新材料科学研究的前沿和热点。然而,由于缺乏有效宏量制备纳米洋葱状富勒烯的方法,使其应用研究进展缓慢。基于此,本文采用传统的直流电弧放电法,通过设计合理的实验方案,得到了制备洋葱状富勒烯的理想工艺。
     在实验中,以较廉价的氮气作为载气进行电弧放电,通过调节载气压力、放电电流和电压等实验细节,以实现洋葱状富勒烯的大量制备;同时,采用Fe、Ni、Al微粒作催化剂,对其催化性能进行比较,以确定催化剂对洋葱状富勒烯产量、质量的影响。利用XRD和HRTEM对所得样品进行分析表征,讨论了电弧放电过程中,各工艺参数(载气种类及压力、放电电流和电压、催化剂种类等)对洋葱状富勒烯形成的影响情况。得
    
     太原理工大学硕士论文
    到制备洋葱状富勒烯的理想工艺条件:放电电流为150一160A,
    电压为25一30v,气氛压力为0.04MPa;同时发现Fe最有利于
    制备纯度高、石墨化程度高的洋葱状富勒烯,其催化效果最好,
    Ni其次,Al的催化效果最差。
     本文对洋葱状富勒烯的生长机理也作了探讨,认为洋葱状
    富勒烯的形核、生长与环境温度、催化剂的种类、性质密切相
    关,为洋葱状富勒烯的性能及应用研究奠定了基础。
As a new member of the fullerene family, nano-onion-like fullerenes have attracted wide attentions and great interests of many scientists in the world, and have been focus of the new materials studies since it was found in 1992. However, the application studies of onion-like fullerenes develop slowly for the lack of effective preparation methods. In this paper, ideal technics parameters of producing nano-onion-like fullerenes were obtained, using arc discharge, by designing rational experiment project.
    In the experiments, we used cheap N2 as preserving gas, and
    
    
    adjusted gas pressure, discharge current, voltage and so on, to produce the large quantities of onion-like fullerenes. At the same time, we used Fe, Ni , Al as catalysts, and compared their catalyst properties to ascertain the catalyst effects on the yields and qualities of onion-like fullerenes. X-ray diffraction(XRD) and high resolution transmission electron microscope(HRTEM) were used to characterize and analyze the morphologies and microstructure of the products. We discussed the effects of technics parameters such as the pressure of transfer gas, the discharge current and voltage, and the kind of the catalysts, on the formation of onion-like fullerenes during arc discharging. And optimun experimental conditions were obtained : the current is 150~160A, voltage is 25-30V, gas pressure is 0.04MPa. Meanwhile, we found that onion-like fullerenes prepared with Fe as catalyst were pure and highly graphitized.
    The growth mechanisms of onion-like fullerenes were also discussed in this paper. We found that the temperature and catalyst
    
    
    nature both affect the nucleation and growth of onion-like fullerenes. This prepared for the studies on properties and applications of onion-like fullerenes.
引文
1. ajayan P M, Ravikumar V, Charlier J C, Phys. Rev. Lett, 1998, 81:1437
    2. Ebbesen T W, Lezec H J, Hiura H, et al, Electrical conductivity of individual carbon nano tubes, Nature, 1996, 383:54
    3. Huang Y H, Okada M, Tanaka K, Yamabe T, Estimation of superconducting transition temperature in metallic carbon nano tubes, Phys. Rev. B, 1996, 53: 5129
    4. Murakami Y, Shibata T, Okuyama K, et al, Structural, magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds, J. Phys. Chem. Solids, 1993, 54: 1861
    5. Chai Y, Guo T, Jin C, et al, Fullerenes with metals inside[J], J. Phys.Chem., 1991,95(20): 7564~7568
    6. Majetich S A, Artman J O, Mcenry M E, et al, Preparation and properties of carbon coated matnetic nanocrystallites[J]. Phys.Rev.B, 1993, 48: 16845~16848
    7. Brunsman E M, Sutton R, Bortz E, et al, Magnetic properties of carbon coated, ferromagnetic nanoparticles produced by a carbon arc method[J], J Appl. Phys., 1994, 75: 5882~5884
    8.大泽映二,化学(日),1970,25:854
    9. Kroto H W, Heath J R, Brien SCO, et al, Nature, 1995, 318:162
    10. Kratschmer W, Lamb LD, Fortiropoulos K, et al, Nature, 1990, 347:354
    11. Hughes T V, Chamber C R, US Patent, 1889, 405:480
    12. Gibson JAE, Nature, 1992, 359:369
    13. Bacon R, J Appl Phys. 1960, 31:283
    14. Wiles P G, Abrahamson J, Carbon, 1978, 16:341
    
    
    15. Abrahamson J, Wiles P G., Rhoades B I. Abstrast in proceedings of 14th Biennial Conf. On Carbon(USA)1979
    16. Fowler P W, Chem Soc-Faraday Trans, 1990, 86:2073
    17. Mintmire J W, Dunlap B I, White C T, Phys Rev Lett, 1992, 68:631
    18. Dresselhaus M S, Dresselhaus G, Saito R. Phys Rev B, 1992, 45:6234
    19. Wang S, Buseck P R, Chem Phys Lett, 1991, 182:1
    20. Oberlin A, Endo M, J Cryst Growth., 1976, 32:335
    21.刘华,气相生长碳纤维的结构及生长机理的研究:[学位论文],沈阳:中国科学院金属研究所,1985
    22. Iijima S, Nature, 1991, 354:56
    23. Iijima S, Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy, J Cryst Growth, 1980, 50:675
    24. Ugarte D, Curling and closure of graphite networks under electron beam irradiation, Nature, 1992, 359(6397): 707-709
    25. Xu B S, Tanaka S-I, Pt cluster bonding and fullerene formation in HRTEM. Proc Int Conf 6th BCEIA, on Electron Microscopy, Beijing 1995, A33-34
    26. lijima S, Helical microtubules of graphitic carbon. Nature, 1991, 354:56-58
    27. Colbert D T, Zhang J, Mcclure S M, Nikolaev P, Chen Z, Hafner J H, Owens D W, Kotulo P G. Carter C B, Weaver J H, Rinzler A G, Smalley R E, Growth and sintering of fullerene Nan tubes, Science, 1994(266): 1218-1222
    28. Ishigami M, Cumings J, Zettle A, et al, A simple method for the continuous production of carbon Nan tubes, Chem.Phys.Lett., 2000, 319:457-459
    29. Liu C, Cong H T, Li F, et al, Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method, Carbon, 1999, 37:1865-1868
    
    
    30. Ando Y, Zhao X L, Hirahara K, et al, Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chem.Phys.Lett., 2000, 323(5-6): 580-585.
    31. Sano N, Wang H, Alexandrou I, et al, Properties of carbon onions produced by an arc discharge in water, J.Appl.Phys., 2002, 92(5): 2783-2788
    32. Lange H, Sioda M, Huczko A, Zhu Y Q, Kroto H W, Walton DRM, Nanocarbon production by arc discharge in water, Carbon, 2003, 41: 1617-1623
    33. Ugarte D, Curling and closure of graphitic networks under electron beam irradiation, Nature, 1992, 359(6397): 707-709
    34. Ugarte D, Morphology and structure of graphitic soot particles generated in arc-discharge C_(60) production, Chemical Physics Letters, 1992, 198(6): 596-602
    35. Ugarte D, Heer de W A, Generation of graphitic onions, In:Kuzmany Het al(Eds): Electric properties of fullerenes, 1993, 73-82
    36. Ugarte D, Formation mechanism of quasi-spherical carbon particles induced by electron bombardment, Chemical Physics Letters, 1993, 207(4,5,6): 473-479
    37. Xu B S, Tanka S-I, Pt clusure bonding and fullerene formation in HRTEM, Proc. Int. Conf.6th BCEIA, on Electron Microscopy, Beijing, 1995, A33-A34
    38. Xu B S, Tanka S-I, Control of nanoscale in terphase boundaried by an electron beam, Materials Science Forum, 1996, 7:137
    39. Xu B S, Tanka S-I, Formation of a new electric material: fullerene/metallic polycrystalline film, Mat.Res.Soc.Symp, 1997, 472:179
    40. Xu B S, Tanka S-I, Multiple-nuclei onion-like fullerenes cultivated by electron beam irradiation, Pro. Int. Conf. ICSE, Cambridge, 1997, 355
    41. Xu B S, Tanka S-I, Formation of giant onion-like fullerenes under Al nanoparticles by electron irradiation, Acta. Mater, 1998, 46(15): 5249-5257
    42. Xu B S, Jia H S, Zhou H F, et al, Transformation of active carbon to onion-like fullerenes under electron beam irradiation. MRS Spring 2001 Meeting, San Francisco, 2001
    43. Terrons H, Terrones M, The transformation of polyhedral particles into graphitic onions, J.Phys.Chem Solids, 1997, 58(11): 1789-1796
    
    
    44. Stephan O, Bando Y, Dussarrat C, et al, Onion-like structures and small nested fullerenes formation under electron irradiation of turbostratic BC_2N, Appl.Phys.Lett, 1997, 70(18): 2383-2385
    45. Banhart F, Fuller T, Ajayan P.M, et al, The formation, annealing and self-compression of carbon onions under electron irradiation, Chem.Phys.Lett, 1997, 269:349-355
    46. Golberg D., Bando Y., Kurashima K., et al, Fullerene and onion formation under electron irradiation of boron-doped graphite, Carbon, 1999,37:293-299
    47. Bertand M, Alain D, Christine L, et al, Submicronic powders containing carbon, boron and nito\rogen: their preparation by chemical vapor deposition and their characterization, Carbon, 2000, 38:145-156
    48. Virgine S, Rik B, Andrew S, et al, Evidence for the solubility of boron in graphite by electron energy loss spectroscopy, Carbon, 2000, 38:547-554
    49. Li B Y, Wei B Q, Liang J, et al, Transformation of carbon nanotubes to nanoparticles by ball milling process, Carbon, 1997, 37:493-497
    50. Huang Y J, Yasuda H, Mori H, Highly curved carbon nanostructures produced by ball milling, Chem.Phys.Lett, 1999, 303:130-134
    51. Chen X H, Yang H S, Wu G T, et al, Generation of curved or closed-shell carbon nanostructured by ball-milling of graphite, Journal of Crystal Growth, 2000, 218: 57-61
    52. Cabioc'h T, Riviere J P, Delafond J, A new technique for fullerene onion formation, J.Mater.Sci, 1995, 30:4787-4792
    53. Cabioc'h T, Girard J C, Jaouen M, et al, Carbon onions thin film formation and characterization, Europhys Lett, 1997, 38(6): 471-475
    54. Cabioc'h T, Jaouen M, Girard J C, et al, Thin film of spherical carbon onions onto silver, Carbon, 1998, 36(5-6): 499-502
    55. Cabioc'h T, Thune E, Riviere J P, et al, Structure and properties of carbon onion layers deposited onto various substrates, Journal of Applied Physics, 2002, 91(3): 1560-1567
    56. Cabioc'h T, Thune E, Jaouen M, Carbon-onion thin-film synthesis onto silica substrates, Chemical Physics Letters, 2000, 320:202-205
    
    
    57.杨修春,张效彬,张泽等,纳米碳化硅高温真空热分解法,物理学报,1998,47(6):1052-1055
    58. Kuznetsov V L, Chuvilin A L, Butenko Y V, Mal'kov I Y, Titov V M, Onion-like carbon from ultra-disperse diamond, Chem.Phys.Lett, 1994, 222:243
    59. Satoshi T, Andrzej B, John C.D, et al, Diamond nanoparticles to carbon onions transformation:X-ray diffration studies, Carbon, 2002, 40:1467-1474
    60. Ugarte D, High-temperature behavior of "fullerene black", Carbon, 1994, 32(7): 1245-1248
    61. Selvon R, Unnikrishnan R, Ganapathy S, et al, Macroscopic synthesis and characterization of giant fullerenes, Chem.Phys.Lett., 2000, 316:205-210
    62. Semih E, Orhan A, Bhabendra K.P, Formation of carbon Nano tubes from jet fuel on superalloys at moderate temperature and high pressure, Carbon, 2000, 38:1512-1515
    63. William J.G, Jack B.H, Lenore C.R, et al, Fullerenic carbon in combusion-generated soot, Carbon, 2000, 38:597-614
    64. Pontier Johnson M, Donnet J B, Wang T K, et al, A dynamic continuum of nanostructured carbons in the combustion furnace, Carbon, 2002, 40:189-194
    65. Takeo O, Masaki K, Hidehiko K, et al., Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. International Journal of Inorganic Materials, 2001, 3:597-612
    66. Yuki K, et al, Production and structural characterization of carbon soot with narrow UV absorption feature, Carbon, 2004, 42:33-38
    67. Tatiana G, Sabine U, Fritz F, et al, Carbon onions produced by laser irradiation of amorphous silicon carbide, Chemical Physics Letters, 2003, 373: 642-645
    68. Chen X H, Deng F M, Wang J X, et al, New method of carbon onion growth by radio-frequency plasma enhanced chemical vapor deposition, Chemical Physics Letters, 2001,336:201-204
    69. Zhang Q L, O'Brien S C, Hearth J R, Liu Y, Curl R F, Kroto H W, Smalley R E., Reactivity of large carbon clusters:spherical carbon shells and their possible relevance to the formation and morphology of soot, J.Phys.Chem, 1986, 90(4): 525-528
    70. Kroto H W, Mckay K, The formation of quasi-icosahedral spiral shell carbon particles, Nature, 1988, 331:328-331
    
    
    71. Kroto H W, Carbon onions introduce new flavor to fullerene studies, Nature, 1992, 359: 670-671
    72. Saito Y, Yoshikawa T, Inagaki M, Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem.Phys.Lett., 1993, 204(3,4): 277-282
    73.许并社,闫小琴,王晓敏等,电弧放电中纳米洋葱状富勒烯生成机理的研究,材料热处理学报,2001,22(4):9-12
    74. Ugarte D, Formation mechanisam of quasi-spherical carbon particles induced by electron bombardment, Chem. Phys. Lett, 1993, 207(4,5,6): 473-479
    75. Chen X H, Yang H S, Wu G T, Wang M, et al.,Generation of curved or closed-shell carbon nanostructures by ball-milling of graphite, Journal of Crystal growth, 2000, 218:57-61
    76. Wang X K, Lin X W, Dravid V P, et al, Appl.Phys.Lett, 1995, 66:2430
    77. Zhao X, Ohkohchi X, Wang M, et al, Carbon, 1997, 35(6): 775-781
    78. Ando Y, lijima S, Jpn.J.AppI.Phys, 1993, 32, 107
    79. Yu R, Zhan M, Cheng D, et al, J Phys Chem, 1995, 99:7
    80. Zhao X, Wang M, Ohkohchi M., et al., Jpn J Appl Phys, 1996, 35:4451
    81. Yokomichi H, Matoba M, Sakima H, et al, Jpn J Appl Phys, 1998, 37(12A): 6492-6496
    82. Xu B S, Tanaka S-I, Multiple-Nuclei Onion-Like Fullerenes Cultived by Electron Beam Irradiation, Proc.Int.Conf.International Contennial Symposium on Electron, 1997, 355
    83. Selvan R, Unnikrishnana R, Ganapathyb S, Pradeep T, Macroscopic synthesis and characterization of giant fullerenes,Chemical Physics Letters, 2000, 316:205-210
    84. Wang Z X, Li X H Li J, et al.. Preparation conditions of fullerenes by discharge method. Transactions of central south university of technology, 1995, 26(2): 279-283
    85. Tang G S, Zhang H J, Cao Ch B, et al, The Effect of the Atmosphere on the Formation Fullerene. Journal of Beijing Institute of Technology, 1995,4 (2): 141-147
    86. Qiu J S, Li Y F, Wang Y P, et al, A novel form of carbon micro-balls from coal, Carbon, 2003, 41:767-772
    87. RuoffR S and Lorents D C, Carbon, 1995, 33(7): 925
    
    
    88. Verhoeven H, et al, Applied Physics Letters, 1996, 69(11):1562
    89. Goodson, K.E., et al, Applied Physics Letters, 1995, 66(23): 3134
    90. Goodson, K.E., et al, Journal of Applied Physics, 1995, 77:1385
    91. Despres J F, Daguerre E, et al, Carbon, 1995, 33(1): 87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700