用户名: 密码: 验证码:
绿色木霉LTR-2 42kDa几丁质酶基因的克隆及转基因番茄的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄作为一种主要的经济作物和遗传学上的模式生物,具有重要的研究价值,在植物基因工程研究上被广泛利用。通过插入外源抗性基因,构建转基因抗病番茄,是降低农药使用量和培育新优良作物品种的有效途径。几丁质酶(Chitinase)是一类细胞壁降解酶,普遍存在于各种动物、植物和微生物中。利用几丁质酶编码基因构建的转基因植物能有效地抵抗多种病原菌。然而不同来源的几丁质酶抗病效果差异很大,因此发现一种合适的几丁质酶编码基因对于构建转基因抗病植物具有重要意义。木霉作为一种重要的生防真菌,在其重寄生过程中产生的几丁质酶能够降解多种病原微生物细胞壁。研究证实,在木霉产生的多种几丁质酶中,42kDa几丁质酶被认为是降解病原菌细胞壁效果最好的一种。因此将木霉中的42kDa几丁质酶编码基因整合到植物染色体中,获得抗性植株是目前构建转基因植物研究的重要内容之一。
     绿色木霉LTR-2(Trichoderma virede)由本实验室从蔬菜植物根系土壤中筛选获得,其制剂已经获得国家发明专利授权,并已经在农业部登记注册为新农药,对多种病原菌具有较好的拮抗作用,其作用机制之一就是产生多种细胞壁降解酶,尤其是42kDa几丁质酶。根据GenBank上已有的42kDa几丁质酶编码基因序列设计适宜的引物,通过PCR技术,从绿色木霉LTR-2基因组DNA中扩增到一段序列,测序结果表明,该编码基因片段大小为1508bp,其中包括一个1459bp的开放阅读框,起始密码子位于45bp,终止密码子位于1501bp,共编码氨基酸424个。通过GenBank进行序列比对,发现该序列同已发表的其他Trichoderma Viride 42kDa几丁质酶氨基酸序列具有99%的同源性,因此确定该序列为42kDa几丁质酶编码基因,该序列已在GenBank上登记(GenbankID:EF635427)。
     将42kDa几丁质酶基因同质粒pCAMBIA1300中的CaMV35S启动子和35S-polyA终止子连接后,插入植物表达载体pCAMBIA1302多克隆位点中,构建成植物表达载体pCHI1302-42,利用冻融法将载体pCHI1302-42导入根癌农杆菌LBA4404中。利用农杆菌介导的叶盘转化法将42kDa基因导入番茄,组织培养后获得了番茄的再生植株。最后采用PCR及Southern杂交对再生转化番茄进行检测,证明42kDa几丁质酶基因已经插入番茄的染色体基因组中。
As an important economic crop and a biological model in genetics,tomato is of considerable value in science research and is widely studied in plant genetic engineering.Construction of transgenic tomato by inserting foreign resistant genes cloned from other organisms to its genome is an effective method in developing new disease-resistant species to reduce the chemical pesticide application.Chitinase is one of the fungal cell wall degrading enzymes which exist in animals,plant,and microorganisms.Transgenic plants expressing chitinase encoding gene can resist many kinds of pathogens efficiently.However,chitinases coming from different organisms have quite variable effects in resisting pathogens and/or diseases.Thus,to choose the most effective chitinase gene is one of the most important steps in constructing pathogen-resistant transgenic plant.Trichoderma is an important biocontrol fungus which produces various chitinases to degrade the cell wall of the fungal pathogens in the process of hyperparasitization.Among all the chitinases produced by Trichoderma, 42kDa chitinase is considered to be the most effective one in degrading the cell wall of pathogens.
     Trichoderma viride strain LTR-2 isolated from the rhizosphere of vegetable field is effective in controlling various plant pathogens,and its preparation has been patented in China Bureau for Patent and registered as a new bio-pesticide in China Ministry of Agriculture.One of the important mechanisms of LTR-2 is the production of chitinases. A fragment from Trichoderma viride LTR-2 was successfully cloned by the method of PCR amplification with a pair of primers designed for 42kDa chitinase encoding sequence.The PCR product is 1508 bp and contains an open reading frame of 1459 nucleotides starting with the initiation codon ATG at position 45 and ending with the termination codon TAA at position 1501,and the number of deduction amino acid is about 424.DNA sequencing analysis shows that the sequence has a homology of 99%to those Trichoderma 42kDa chitinase encoding genes published in GenBank,and thus the PCR fragment was verified as the 42kDa chitinase encoding gene and was published in Genebank(GenbankID:EF635427).
     The fragment was ligated with CaMV35S promoter and 35S-polyA terminator,and then was inserted into the vector of the pCAMBIA1302.Then,the vector of pCHI1302-42 was introduced into Agrobacterium tumefaciens LBA4404 by freezing-thawing method.Leaf disc method was adopted to transfer 42kDa chitinase gene into tomato.Finally,the insertion of the target gene in tomato chromosomal DNA was verified by PCR and Southern blotting methods.
引文
[1]王建荣,张曼夫,黄涛.绿色木霉纤维素霉CBHⅡ基因的结构研究[J].遗传学报,1995,22(1):74-80.
    [2]Gabriel R.Vellicce,Juan C.Di'az Ricci,La'zaro Herna' ndez,et al.Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry[J].Transgertic Research,2006,15:57-68
    [3]Hiramatsu K.Vancomycin-resistant Staphylococcus aureus:a new model of antibiotic resistance [J].Lancet Infect Dis,2001,1(3):147-150.
    [4]Benecke U.Bacillus chitinvorus,eien chitin zemetzenden spahpilz[J].Bot Ztg,1905,63:227-230.
    [5]单立波,贾旭.几丁质酶及其在抗真菌病基因工程中的应用[J].生物工程进展,1998,18(3):37-39.
    [6]韩放,李景鹏.植物几丁质酶的研究进展[J].生物技术,2001,11(5):25-28.
    [7]MeinsF J,Bernard F,Linthorst H U M,et al.Plant chitinase genes[J].Plant Mol.Bio.Reptr,1994,12(2):S22-S28.
    [8]王金生,分子植物病理学[M].北京中国农业出版社,1999.217-230.
    [9]任文彬,张世清,黄俊生.金龟子绿僵菌(Metarhizium anisopliae HN1)几丁质酶基因的克隆及高效表达[J].中国生物工程杂志,2006,26(7):31-36。
    [10]J.Jayaraj.Z,K.Punja.Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens[J].Geneti Transfromation and Hybridization,2007,26(10):1539-1564.
    [11]许明辉,唐祚舜,谭亚玲等.几丁质-葡聚糖酶双价基因导入滇型杂交稻恢复系提高稻瘟病抗性的研究[J].遗传学报,2003,30(4):330-334.
    [12]黄玉杰,杨合同,丁爱云.几丁质酶和葡聚糖酶生物学特性及其编码基因的克隆和转化[J].山东科学,2002,15(1):28-33.
    [13]黄锡志,寿森炎,廖乾生.转基因番茄研究进展[J].北方园艺,2001,3:29-31.
    [14]卢建平,林服刑,李德葆.转几丁质酶基因毛壳菌的抗病原真菌作用[J].浙江大学学报,2006,32(2):127-133
    [15]Wu JH,Zhang XL,Luo XL,et al.Transgenic cotton plants of chitinase and glucanase genes and their performance of resistance to Verticillium dahliea[J].Yi Chuan Xue Bao.2004,31(2):183-188.
    [16]郭润芳,李多川.嗜热真菌Thermomyces lanuginosus热稳定几丁质酶基因的cDNA的克隆及表达[J].微生物学报,2006,46(1):99-103.
    [17]徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用[J].植物病理学报,2002,32, (2):97-102.
    [18]Omumasaba CA,Yoshida N,Ogawa K.Purification and characterization of a chitinase from Trichoderma viride[J].Journal of General and Applied Microbiology,2001,47(2):53-61.
    [19]Lorito M,Harman G E,Hayes C K,et al.Chitinolytie enzymes produced by Trichoderma harzianum:antifungal activity of purified endochitinase and chitobiosidase[J].Phytopathology,1993,83:302-307.
    [20]柳良好,徐同.哈茨木霉几丁质酶诱导及其对水稻文库病菌的拮抗作用[J].植物病理学报,2003,33(4):359-364.
    [21]陶刚,刘杏忠,王革等.木霉几丁质酶对烟草赤星病菌的作用[J].中国生物防治,2004,20(4):252-255.
    [22]Liu Mei,Sun Zong-xiu,Zhu Jie et al.Enhancing rice resistance to fungal pathogens by transformation with cell wall degradeing enzyme genes from Trichoderma atroviride[J].Journalof Zhejiang University SCIENCE,2003,18:133-136.
    [23]Hayes C K,Klemsdal S,Lorito M,et al.Isolation and sequence of an endochitmase-encoding gene from a cDNA library of Trichoderma hazianum[J].Gene,1994,138:143-148.
    [24]Carsolio C,Gutierrez A,Jimenez B,et al.Characterization of ech-42,a Trichoderma harzianum endochitinase gene expressed during mycoparasitism[J],Proc.Natl Acad Sci USA,1994,91(23):1093-1097.
    [25]Limon M C,Lora JM,Garcia I,et al.Overexpression of chitinase by Trichoderma harzianum strains used as biocontrol fungi[J].Mycological research,1996,245-252.
    [26]Jong-Min B,Charles R,Howell,C M.The role of an extracellular chitinase from Trichoderma virens Gv29-8 inthe biocontrol of Rhizoctonia solani[J].Current Genetics,1999,35(1):41-50.
    [27]Gabor Giczey,Zoltan Kerenyi,Geza Dallmann,et al,Homologous transformation of Trichoderma hamatum with an endochitinase encoding gene,resulting in increased levels of chitmase actwity[J].FEMS Microbiology Letters 2001,165(2),247-252.
    [28]Garrcia I,Lora J M,Delacruz J,et al.Cloning and characterization of a chitinase(CHIT42)cDNA from the mycoparasitic fungus Trichoderma hazianum[J].Curr.Genet,1994,27:83-89.
    [29]刘丕钢,杨谦.哈茨木霉几丁质酶cDNA基因的克隆及在酿酒酵母中的表达[J].微生物学报,2005,45(2):253-257.
    [30]陈振明,王政逸,郭泽建等.绿色木霉内切几丁质酶基因的克隆及其毛壳菌转化[J].菌物系统,2002,21(3):375-382.
    [31]Matteo Lorito,et al.Genes from mycoparasitic fungi as a source for irnprovmg plant resistance to fungal pathogens[J].Agricultural Sciences,1998,95(7):7860-7865.
    [32]Carolina Carsolio,Nicole Benhamou,Shoshan Haran,et al.Role of the Trichoderma harzianum Endochitmase Gene ech42 in Mycoparasitism[J].Applied and Environmental Microbiology,1999,56(3):929-935.
    [33]李莉,曲延英,陈全家等.新疆陆地棉转木霉几丁质酶基因变化的初步筛选[J].新疆农业学报,2005,42(3):178-180.
    [34]戴富明,徐同.农杆菌介导木霉几丁质酶基因转化拟南芥及其T1代对油菜菌核病抗性提高[J].上海交通大学学报(农业科学版),2005,23(1):36-40.
    [35]徐春晖,夏光敏,贺晨霞.农杆菌转化系统研究进展[J].生命科学,2002,8(4):223-225.
    [36]Ham IL,Ton C M.Stable transfer of intact high molecular weight DNA into plant chromosome[J].Proc Natl.Acad.Sci.USA.,1996,93:9975-9979.
    [37]黄永芬,汪清胤,傅桂荣等.美洲拟蝶抗冻蛋白基因(AFP)导入番茄的研究[J].中国生物化学与分子生物学学报,1997,13(4):418-422.
    [38]Moghaieb REA,Tanaka N,Saneoka H,et al.Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betame and contributes to themaintenance of the osmotic potential under salt stress[J].Soil Scince Plant Nutriention,2000,46(4):873-883.
    [39]Logemann G,Gubba A,Gonsalves C,et al.Combining transgenic and natural resistance to obtain broad resistance to tospovirus infection in tomato(L ycopersicon esculentum mill)[J].Mol Breeding,2002,9(1):13-23.
    [40]Thomzik JZ,Stenzel K and Stocker R.Synthesis of a grapevine phytoalexin in transgenic tomato conditions resistence against phytophthora infestans[J].Plant Pathol,1997,51(4):265-270.
    [41]Tabaeizadeh Z,Harrak H.transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae rece[J].Plant Cell Report,1999,19:197-202.
    [42]任春梅,张学文.细菌几丁质酶基因转化番茄的研究[J].湖南农业大学学报,2002,28(04):298-301.
    [43]欧阳波,李汉霞,叶志彪.转双价水解酶基因番茄植株对枯萎病抗性的提高[J].植物生理和分子生物学杂志,2003,29(3):179-184.
    [44]Powell AP,Nelson RS,De B,et al.Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene[J].Science,1986,232:738-743.
    [45]Nelson RS,McCormick SM,Delanney X,et al.Virus tolerance,plant growth and field performance of transgenic tomato plants expressing coat protein form tomato mosaic virus[J].Bio Technology,1988,6:403-409.
    [46]Sander PR.Field resistance of transgenic tomato expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes[J].Phytopathology,1992,82:683-690.
    [47]姜国勇,金德敏,翁曼丽等.天然花粉蛋白基因转化番茄的研究[J].植物学报,1999,41(3):334-336.
    [48]Kaniewski W,Ilardi V,Tomassoli L,et al.Extreme resistance to cucumber mosaic virus(CMV)in transgenic tomato expressing one or two viral coat proteins[J].Mol.Breeding,1999,5(2):111-119.
    [49]Jansens S,De Cleroq and Reynaerts A.Greenhouse evaluation of transgenic tomato plants expressing a Bacillus tharingiensis in secticidal crystal protein,for control of Helicoverpa armigera[J].MFLU G,1992,57(2B):515-522.
    [50]王淑芳,王峻岭,赵彦修等.胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定[J].植物生理学报,2001,27(3):248-252.
    [51]Lee JT,Prasad V,Yang PT,et al.Expression of Arabidopsis CBF regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield[J].Plant Cell and Environment,2003,26(7):1181-1190.
    [52]陈火英,庄天明,张晓宁等.HVA基因转化番茄及转基因番茄耐盐性的初步鉴定[J].上海交通大学学报,2006,2(24):01-05.
    [53]Shu-Feng Zhou,Xian-Yang Chen,Xing-Ning Xue,et al.physiological and growth responses of tomato progenies harboring the betaine alhyde dehydrogenase gene to salt stress[J].Journal of Integrative Plant Biology,2007,49(5):628-637.
    [54]Deutsh M,Long M,Intron-exon structures of eukaryotic model organisms[J].Nucleic Acids Res,1999,27(15):3219-3228.
    [55]Lykke-Anderson J,Aagaar C,Semionenkov M,et al.Archaeal introns:splicing,intercellular mobility and evolution[J].Trends Biochem Sci,1997,22:326-331.
    [56]Callis J,Fromm M,Walbot V.Intron increase gene expression in cultured maize cells[J].Gene and Development,1987,1:1183-1200.
    [57]李杨,苏乔,安利佳.基因组的“沙漠区域”内含子及其在植物基因工程中的应用[J].分子植物育种,2004,45(4):569-573.
    [58]Bourdon V.,Harvey A.,and Lonsdale D.M.Introns and their positions afect the translational activity of mRNA in plant cells[J].Scientific Report.2001,5:394-398.
    [59]谢先芝,吴乃虎.番茄蛋白酶抑制剂Ⅱ基因的分离及其内含子功能[J].科学通报,2001(46):934-938.
    [60]彭日荷,黄晓敏,李贤等.带内含子卡那霉素抗性基因双元载体构建及转化烟草[J].植物生理学报,2001,27(1):55-56.
    [61]陈振明,王政逸,郭泽建等.绿色木霉内切几丁质酶基因的克隆及其毛壳菌转化[J].菌物系统,2002,21(3):375-382.
    [62]黄冰艳,吉万全,郭蔼光等.转录后基因沉默及其在作物遗传改良中的应用[J].中国生物工程杂志,2005,25(5):1-5.
    [63]陈文,王东,何奕昆.RNA介导的转基因沉默原理及应用[J].遗传,2003,25:489-494.
    [64]Napoli C,Lemieux C,Jorgensen R.Introduction of a Chimeric Chalcone Synthase Gene into Petunia Result in Reversible Co-Suppression of Homologous Genes in trans[J].The Plant Cess,1990,2:279-289.
    [65]陈赟,李臻,刘文等.植物转基因沉默防止与抑制策略[J].内蒙古科技与经济,2007,4(8):77-79.
    [66]Baulcombe D.RNA silencing in plants[J].Nature,2004,431:356-363.
    [67]高立,张莉,杨本付.转基因作物与人类健康[J].济宁医学院学报,2007,30(1):81-82.
    [68]缪金伟,王红梅,丁莉.番茄基因工程研究进展[J].上海农业科技,2006,5:28-30.
    [69]陈双臣,刘爱荣,邹志荣.转葡聚糖酶和防御素基因的番茄植株及其对番茄灰霉病的抗性[J].植物保护学报,2006,33(4):357-362.
    [70]杨合同,唐文华,李纪顺等.绿色木霉LTR-2菌株的紫外线诱变改良[J].中国生物防治,2004,20(3):182-186.
    [71]赵蕾,杨合同.蔬菜灰霉病生防菌的筛选与防效实验初报[J].应用与环境生物学报,1999,5(1):85-88.
    [72]唐文华.植物病害生物防治菌-木霉菌的防病机理及其菌剂构建[D].中国农业大学,1998.
    [73]唐文华,M.Ryder.木霉菌与植物病害的生物防治[J].山东科学,1999,12(14):7-15.
    [74]Ben J.C.et al,Strategies for control of fungal diseases with transgenic plants[J].Plant Physiol.1993,101:709-712.
    [75]徐同.木霉分子生物学研究进展[J].真菌学报,1996,15(2):143-14.
    [76]蓝海燕,田颖川,王长海等.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究[J].遗传学报,2000,27(1):70-77.
    [77]卢伟,蔡峻,陈月华.苏云金芽孢杆菌几丁质酶的研究进展[J].微生物学通报 2007,34(1):143-145.
    [78]宋晓妍,孙彩云,陈秀兰.木霉生防作用机制的研究进展[J].中国农业科技导报,2006,8(6):20-25.
    [79]夏洪志,杨合同,黄玉杰.聚丙酰胺凝胶电泳配合荧光增白剂显色检测木霉几丁质酶同工酶谱[J].中国生物工程杂志,2007,27(6):61-65.
    [80]阮松林,马华升,王世恒等.植物蛋白质组学研究进展Ⅰ.蛋白质组关键技术[J].遗传,2006,28(11):1472-1486.
    [81]陈振明,王政逸,郭泽建等.绿色木霉内切几丁质酶基因的克隆及其毛壳菌转化[J].菌物系统,2002,21(3):375-382.
    [82]徐幼平,徐秋芳,蔡新忠.适于双向电泳分析的番茄叶片总蛋白提取方法的优化[J],浙江农业学报,2007,19(2):71-74.
    [83]杨奇志,陈少敏,赵琦.甜味蛋白thaumatin-PDI二价植物表达载体的构建[J].首都师范大学学报,2005,26(2):59-63.
    [84]赵淑珍,王昕,王革娇.由卫星互补DNA单体和双体构建的抗黄瓜花叶病毒的转基因番茄[J]. 中国科学(B辑),1990,7:706-713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700