用户名: 密码: 验证码:
天水盆地新近纪沉积演化与地化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天水盆地为青藏高原东北缘山前盆地,是陇中盆地的东南组成部分,其西部边缘为祁连-秦岭褶皱带,东部边缘为海源断裂-六盘山褶皱带,北部边缘为华家岭,基底为祁连山加里东褶皱带,为一近NNW向挤压盆地。西秦岭北缘断裂系穿盆而过,控制着天水盆地的形成和演化。本文根据沉积物岩性、粒度、沉积结构和构造特点,结合沉积相分析原理,对甘泉和尧店剖面新近系地层进行初步沉积相分析,主要划分为河流沉积体系、扇三角洲沉积体系、湖泊沉积体系。并根据盆地沉积特征、岩层接触关系及岩浆活动为标志,揭示了天水盆地构造—沉积演化的6个阶段:古近纪盆地受挤压在低洼的地方沉积了麦积山组;22Ma左右盆地再次受到挤压抬升和断陷使早期麦积山组地层发生变形剥蚀,此后沉积了区内广泛分布的甘泉组地层;12Ma左右构造活动使盆地持续凹陷,在整个陇中盆地沉积了“斑马层”尧店组沉积;7.4Ma左右盆地开始萎缩,在区内沉积了广泛分布的湖滩泥坪相的杨集寨组;4.07-3.6Ma构造活动使盆地开始消亡,大部分地区开始遭受剥蚀,3.6Ma以来盆地再次断陷接受喇嘛山组的沉积,第四纪构造抬升形成现在的地貌格局;另一方面,通过新近系碎屑沉积物地化特征研究表明:下山剖面泥岩富MgO、CaO、Nb、Sr、Th,贫SiO_2、Al_2O_3、Ba、Cr、Ni、Rb,高Al_2O_3/TiO_2、Cr/Zr、Cr/Th、Th/Sc,根据稀土元素和特征元素的含量,初步认为盆地南区西秦岭北缘各时代花岗质闪长岩和偏中性岩控制着该区的沉积物地球化学组成,而古秦岭洋闭合期蛇绿岩岩套中的基性—超基性岩有很大的影响,其结果是它们高度混合的物质给盆地提供物源,泥岩样品中K_2O的含量随时间增长而增高,说明物源区在溯源侵蚀的过程中富钾值岩大量出现;CIA和ICV值指示天水盆地碎屑沉积物的物源区中新世风化程度较强,源区沉积再循环的物质很少或几乎不存在,而上新世到更新世之间存在风化作用减弱的趋势。这些研究不仅天水盆地新生代沉积演化的研究有一定的参考价值,而且对青藏高原东北部构造隆升过程以及内陆干旱化和东亚季风形成和演化研究提供基础资料。
The Northeast margin of Qinghai-Tibetan plateau is consists of a series of mountain chains such as Qilian mountain,west Qinling,Xiangshan, Liupanshan and lots of basins such as Lanzhou,Linxia,Xining,Guide,Tianshui basin.In this paper we choise the tianshui basin to study the uplift of the Qinghai-Tibetan plateau.Tianshui basin was surround by three mountain chains which are qilian,west of qinling,liupanshan.In a more large scale it is the jont part of the huabei plate,Yangtze plate and qiangtang geological mass. The north of the tianshui basin is part of the Ordus and alashan mass,south of the basin is Yangtze palte and southwest is qiangtang mass.Tianshui baisin is also part of the Longzhong basin,Some main fault that across the north margin of west qinling control the basis structure of the basin.According to the rock property,rock granularity,sedimentary structure and texture,we have analysised the profile of the Ganquan,and demarcate the sedimentary face into 3 category,they are fluvial deposit system,alluvial fan deposit system and lacustrin deposit syetem.They present three main steps that Qinghai-Tibetan plateau was deformed by the process of India-Eurasia collision happened during 35-30Ma,15-10Ma,8-6Ma.In orde to fully understand the structure of the basin we have checked 22 profiles across the basin,From the south to north of the basin,the stratm is thinning,it is accordance to the model of forland basin.And the sediments record the uplift of the mountain adjacent the basin,According to the mountain -basin coupling hypothesis,it is the best way to reconstruct the uplift of the Tibetan plateau.This paper presents geochemistry data of neogene clastic sedimentary rocks in Tianhui basin, systematic research leads to the following conclusion:(1)MgO、CaO、Nb、Sr、Th are rich and SiO2、Al2O3、Ba、Cr、Ni、Rb are deplete in the samples,the ratio Al2O3/TiO2、Cr/Zr、Cr/Th、Th/Sc in samples are also very high.These characters indicate that granitic diorite generated in all epoch located at south of Tianshui basin(west margin of Qinling mountain)control the geochemical composition of main provenance of the neogene sedimentary rocks,and another minor parent rock is basic-super basic ignenous rock generated as the ancient Qinling paleoocean closed.The ratio K2O have been increasing in Tianshui Xiashan mud stone as time goby is another apparent character,we deem it result from the river that discharge into the basin exhumation K-rich magma rock gradually.(2)Low CIA and high ICV value indicate that weak chemical weathering in sourc region and low maturity of sedimentary rocks, then,with other evidence we can infer that the deposit rate is also low and Lack of sedimentary recycled product.(3)The thickness of strata become more and more thin from the south to north of the basin,and the sedimentary faces is also change from deep lake faces into lacustrine plain,combine with geochemistry tectonogram,we can infer Tianshui Xiashan mud stone are deposited in foreland tectonic setting.The geochemical signature of sedimentary rocks is mainly controlled by the parent petrology which generate in different tectonic setting.The early authors erect lots of element tectonic setting discrimination diagrams to infer the past tectonic activity of surrounding mountains under which sediments formed.Those diagrams have been widely used for twenty years.Studies have been carried to test the reliability of those diagrams.In this paper,we surveyed 173 samples from the same sedimentary basin,but in the twelve plot(Al2O3/SiO2、TiO2、K2O/Na2O、Al2O3/(CaO+Na2O)--(Fe2O3+MgO)diagram,K2O/Na2O--SiO2、SiO2/Al2O3--K2O/Na2O、Ti/Zr—La/Sc and Th-Co-Zr/10、La-Th、La/Y-Sc/Cr、Th-Sc-Zr/10、La-Th-Sc diagram)173 samples from the same sedimentary basin fell in different tectonic field.They do not work properly.So we can infer that it is the complex he nature of the source rocks,intensity and duration of weathering,sedimentary recycling,diagenesis,sorting and mixing cause the disagreement.We therefore recommend that these diagrams be used with prudence.
引文
1. Alonso-Zarza A M. Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Sri Rev, 2003,60:261-298
    
    2. An Zhisheng,John E.Kutzbach,Warren L.Prell,et al.Evolution of Asian Monsoons and phased uplift of the Himalaya-Tibetan plateau since Miocene times.Nature,2001,411:63-66
    
    3. Coleman & Hodges 1995. Evidence for Tibetan uplift before 14 Ma ago from a new minimum age for east-west extension. Nature, 374:49 -52
    
    4. Ding Z L,Sun J M,Yang S L et al.Preliminary magnetostratigraphy a thick eolian red clay-loess sequence at Lingtai,the Chinese Loess Plateau.Geophysical Research Letters, 1998, 25(8): 1225-1228
    
    5. DUPONT2N IVET G , HORTON B K , BU TL ER R F , et al .Cretaceous to Tertiary vertical2axis tectonic rotation of Xining2Lanzhou basin and nort heastern Tibet from preliminary Paleo2magnetic result s[A ]. A bst racts for the A GU Fall Meeting [ C ] .2002.
    
    6. Harrison T,Copeland P,Kidd W S F et al.Raising Tibet.Science,1992,255:1663-1670
    
    7. Iman.Measures for describing the size distribution of sediments.Journal Sediments of Petrology,1952,22:125-145
    
    8. Metivier, F., Gaudemer, Y., Tapponnier, P. and Meyer, B., 1998. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, 17: 823-842.
    
    9. Meyer, B., Tapponnier, P., Bourjot, L., Metivier, F., Gaudemer, Y., Peltzer, G., Guo, S. and Chen, Z.; 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau, Geophys. J. Int., 135:1-47.
    
    10. Meyer B,Tapponnier P,Gaudemer Y, et al.Rate of left-lateral movement along the easternmost segment of the Altyn Tagh fault ,east of 960E(china)[J] .Geophysical Journal of International, 1996,124:29-44
    
    11. Miall A D. Lithofacies types and vertical profile models in braided river deposits: a summary. In: Miall A D (Ed.). Fluvial Sedimentology. Can Soc Petro Geol Mem 5,1978.597-604
    
    12. Miall A D. Principles of Sedimentary Basin Analysis. New York: Springer, 1984. 668
    
    13. Miall A D. The Geology of Fluvial Deposits. Berlin: Springer, 1996. 582
    
    14. Platt N H, Wright V P. Lacustrine carbonate: facies models, facies distributions and hydrocarbon aspects. In: Special publication Number 13 of the international Association of Sedimentologists, 1991,13: 57-74
    
    15. Tapponnier, P. et al. 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294, 1671-1677
    
    16. Z.T.Guo,William F.Ruddiman,Q.Z.Hao,et al.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China.Nature,2002,416:159-163
    
    17. Zhang Peizhen,B.C.Burchfiel,Peter Molnar,et al.Amount and style of late Cenozoic deformation in the Liupan Shan area,Ningxia autonomous region,China.Tectonics,1991,10(6):1111-1129
    
    18. Bhatia M R, Crook K A W. Trace element characteristics of gray-wackes and tectonic setting discrimination of sedimentary basins.Contributions to Mineralogy and Petrology, 1986, 92: 181-193
    
    19. Bhatia M R. Plate tectonics and geochemical composition of sandstones. Journal of Geology, 1983,91:611-627
    20. Nesbitt H W, Young G M. Early Proterozoic climates and platemotions inferred from major element chemistry of lutites. Nature,1982,299:715-717
    21. McLennan S M, Hemming S R, Taylor S R, et al. Early Protero-zoic crustal evolution: Geochemical and Nd-Pb isotopic evidencefrom metasedimentary rocks, southwestern North America. Geochimica et Cosmochimica Acta, 1995,59:1153-1177
    22. Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, withimplications for paleowearhering conditions and provenance. Geology, 1995,23: 921-924
    23. Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985.1-312
    24. Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Siena Nevada,California. Journal of Sedimentary Research. 1996,66 (1):107-118
    25. Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 1995,59: 2919-2940
    26. Wronkiewicz D J, Condie K C. Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidencefor a 3.0-Ga-old continental craton. Geochimica et CosmochimicaActa, 1989,53:1537-1549
    27. Fedo C M, Young G M, Nesbitt H W. Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse transition. Pre-cambrian Research, 1997, 86: 210-223
    28. Cullers R L. The controls on the major and trace element variation of shale, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sedimentin Kansas, USA. Geochimica et Cosmochimica Acta, 1994, 58:4955-4972
    29. Maynard J B, Valloni R, Yu H. Composition of modern deep-seasands from arc-related basins. Geological Society of London, Special Publication. 1982,10:551-561
    30. Blatt H, Middleton G V and Murray R C. Origin of sedimentary rocks. Prentice-Hall, Inc. Englewood Cliffs, 1972 ,New Jersey. 1 — 78
    31. Bhatia MR. Plate tectonics and geochemical composition of sandstones. J Geol 1983;91:611- 27.
    32. Bhatia MR. Plate tectonics and geochemical composition of sandstones: a reply. J Geol 1985;93:85- 7.
    33. Roser, B. P. and Korsch, R. J. 1986. Determination of the tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94 (5), 635-650.
    34. Floyd, P. A., Shail, R., Leveridge, B.E., and Fanke, W., 1991. Geochemistry and provenance of Rhenohercynian synorogenic sandstones: implications for tectonic environment discrimination. In: A. C. Morton, S. P. Todd and P. D. W. Haughton (eds.) Developments in Sedimentary Provenance Studies. Geological Society Special Publication
    35. Condie K C, Lee I, Farmer G L. 2001. Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Cottonwood groups, northern Utah; constraints from geochemistry, Nd isotopes, and detrital modes. Sedimentary Geology, 141142; 443 — 464
    36. McCann, T. 1991. Petrological and geochemical determination of provenance in the southern Welsh Basin. In: A. C. Morton, S. P. Todd and P. D. W. Haughton (eds) Developments in Sedimentary Provenance Studies., Geological Society Special Publication 57,1-11.
    37. Burnett DJ, Quirk DG Turbidite provenance in the Lower Palaeozoic Manx Group, Isle of Man: implications for the tectonic setting of Eastern Avalonia. J Geol Soc (Lond) 2001;158:913-24.
    38. Faundez V, Herve F, Lacassie JB. Provenance and depositional setting of pre-Late Jurassic turbidite complexes in Patagonia, Chile. NZ J Geol Geophys 2002;45:411- 25.
    39. Van de Kamp PC, Leake BE. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Trans R Soc Edinb Earth Sci 1985;76:411 - 49.
    40. Nesbitt HW, Young GM. Formation and diagenesis of weatheringprofiles. J Geol 1989;97:129-47.
    41. Valloni R, Maynard JB. Detrital modes of recent deep-sea sands and their relation to tectonic setting: a first approximation. Sedimentology 1981;28:75- 83.
    42. Holail HM, Moghazi AM. Provenance, tectonic setting and geochemistry of greywackes and siltstones of the Late Precambrian Hammamat Group, Egypt. Sediment Geol 1998;116:227-50.
    43. Haughton PDW. A cryptic Caledonian flysch terrane in Scotland. J Geol Soc (Lond) 1988;145:685-703.
    44. Winchester JA, Max MD. Tectonic setting discrimination in clasticm sequences: an example from the Late Proterozoic Erris Group, NW Ireland. Precambrian Res 1989;45:191- 201.
    45. Toulkeridis T, Clauer N, Krfner A, Reimer T, Todt W. Characterization, povenance, and tectonic setting of Fig Tree greywackes from the Archaean Barbertone Belt, South Africa. Sediment Geol 1999;124:113- 29
    46. Argast S, Donnelly TW. The chemical discrimination of clastic sedimentary components. J Sediment Geol 1987;57:813-23.
    47. McLennan SM, Hemming S, McDaniel DK, Hanson GN. Geochemical approaches to sedimentation, provenance, and tectonics.In: Johnsson MJ, Basu A, editors. Processes controlling the composition of clastic sediments. Geol Soc Am Spec Pap, vol. 284; 1993. p. 21- 40.
    48. Kasper-Zubillaga J J, Carranza-Edwards A, Rosales-Hoz L. Petrography and geochemistry of Holocene sands in the westernGulf of Mexico: implications for provenance and tectonic setting. J Sediment Res 1999;69:1003-10
    49. Argand. La tectonique de l'Asie.Proc. Intern. Geol. Congress, 1924, E.,13:171-372
    50. Arnaud N O, Vidal Ph, Tapponnier P, Matte P, Deng W M. The high K20 volcanism of northwestern Tibet: geochemistry and tectonic implications. Earth Planet. Sci. Lett, 1992, 111: 351-367
    51. Barazangi M, Ni J. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan Plateau: possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology, 1982,10:179-185
    52. Bird P. Initiation of introcontinental subduction in the Himalayas. J. geophys. Res., 1978, 83: 4975-4987
    53. Bird P, Toksoz M N. Strong attenuation of Rayleigh Waves in Tibat. Nature, 1977,266:161-163
    54. Bird P, Toksoz M N. Structure and evolution of the Tibetan Plateau (abstract). Eos, Wash, 1975, 56: 397
    55. Burbank D W, Louis A D, Christian F L. Reduced himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 1993, 364: 48-50.
    56. Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res, 1995,100 (B4) :6093-6095
    57. Chen Wanping, Peter Molnar. Constraints on the Seismic wave velocity structure beneath the Tibetan Plateau. Bull. Seismol. Soc, 1981,65:1051-1057
    58. Coleman M,Hodges K.Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension.Nature,1995,374:49-52
    59. Deway J F, Bird J M. Mountain belts and the new global tectonics. J. Geophys. Res, 1970, 75: 2625-2647
    60. Deway J F, Burke K C A. Tibetan, Variscan and Precambrian basement reactivation: products of a contient collision. J.Geol, 1973,81: 683-692
    61. Deway J F, et al. The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. 1988,A732: 379-413
    62. Ding Zhongli, Yu Zhiwei, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews, 1994, (13): 39-70
    63. Einsele G,Ratschbacher L,Wetzel A. The Himalaya-Bengal fan denudation-accumulation system during the past 20 Ma.J Geol,1996,104:163-184
    64. England P C, Houseman G A. Extension during continental convergence, with application to the Tibetan plateau. J. geophys.Res. 1989, B94:17561-17579
    65. Giancarlo G B, Nicholas M I. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature, 1999,(397): 515-517
    66. Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002,416:159-163
    67. Kroon D,Steens T N F,Troelstra S R.Onset of monsoonal related upwelling in the western Arabian Sea.ProcODP,Sci,Results,1991,17:257-263
    68. Heller F, and T.S.Liu. Magnetism of Chinese loess deposits.Geophys. J.R.Astron. Soc. 1984, 77, 125—141
    69. Holmes. Principles of physical geology. 1965, London: Nelson. 2nd edn. 1288pp
    70. Imbrie J Z.Modeling the climatic response to orbital variations. Sciences, 1980,207:943-953
    71. Johnson N M,Opdyke N D,Johnson G D et al. Magnetic polarity stratigraphy and ages of Siwalik Group rocks of the Potwar,Pakistan. Paleogeogy. Paleoclimatol. Palaeoecol,1982, 93:27-40
    72. Kazuo A, Asahiko T. Two phase uplift of higher Himalayas since 17Ma. Geology, 1992, 20: 391-394.
    73. Metivier F, Gaudemer Y, Tapponnier P, Meyer B. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, 1998,17: 823-842
    74. Meyer B, Tapponnier P, Bourjot L et al. Crustal thickening in Gansu-Qinghai, lithospheric mantel subduction and oblique, strike-slip controlled growth of the Tibet plateau. Geophys. J. Int., 1998, 135: 1-47
    75. Nakayama K,Ulak P D. Evolution of fluvial style in the Siwalik Group in the foothills of the Nepal Himalaya. Sediment Geol, 1999,125:205-224
    76. Opdyke N D, et al. Magnetic polarity stratigraphy and vertebrate paleontology of the upper Siwalik subgroup of northern Pakistan. Paleogeography Palaeoclimatology, 1979, 27:1-34
    77. Pagani M, Freeman K H, Arthur M A. Late Miocene atmospheric CO2 concentrations and the expension of C4 grasses. Science,1999,285:876-879
    78. Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000,406:695-699
    79. Powell C M. Continental underthrusting model for the rise of the Tibetan Plateau. Earth Planet. Sci Lett,1986,81:79-94
    80.Tapponnier P.et al.Oblique Stepwise Rise and Growth of the Tibet Plateau.Science,2001,294:405-410
    81.Zachos J P,Pagani M,Sloan L et al.Trends rhythms and aberrations in global climate 65 Ma to present.Science,2001,292:686-693
    82.陈骏,仇纲,季峻峰,等.最近130ka黄土高原夏季风变迁的Rb和Sr地球化学证据[J].科学通报,1996,41(21):1963-1966[Chen J,Chou G,Ji J F,et al.The loess plateau monsoon variation during last 130ka from geochemical character of Rb and Sr[J].Chinese Science Bulletin,1996,41(21):1963-1966]
    83.南京大学地质系,地球化学.北京,科学出版社.1977.6.327-328[Geology department of Nanjing university.Geochemistry.Beijing,Science publisher.1977.6327-328.]
    84.刘秀明,王世杰,孙承兴,贾玉鹤,黎廷宇。古-盐度研究的一种重要工具——锶同位素[J]。矿物学报,2000年01期:92-96
    85.李春荣,陈开远。潜江凹陷盐湖层序地层岩石地球化学古环境研究[J],海洋石油 2004.9:25-29 王子玉,程安进,卓二军,姚琬圭。太湖全新世沉积物的古盐度指标及其环境意义[J].地层学杂志,1994年03期:196-202
    86.韩凤清,黄麒,王克俊,王华,原力。柴达木盆地昆特依盐湖的地球化学演化与古气候变化[J]。海洋与湖沼,1995年05期:502-508
    87.李进龙,陈东敬。古盐度定量研究方法综述[J]。油气地质与采收率,2003年05期:1-3
    88.游海涛,程日辉,刘昌岭。古盐度复原法综述[J]。世界地质 2002.6:111-117
    89.沈吉,王苏民等.内蒙古岱海古盐度定量复原初探[J]..科学通报,2000,(17):18851888.:1886-1889
    90.夏娟娟。湖相介形虫壳的稳定同位素和微量元素在古气候研究中的应用[J]。第四纪研究,1996,4:345-350
    91.刘传联,成鑫荣。渤海湾盆地早第三纪非海相钙质超微化石的锶同位素证据[J].。科学通报。1996,4(10):908-910
    92.陈建徽,陈发虎。古温度定量重建的良好代用指标——湖泊沉积摇蚊化石记录研究进展[J]。地球科学进展,2004年05期:752-788
    93.孙青,储国强,李圣强,吕彩芬,郑绵平。硫酸盐型盐湖中的长链酮及古环境意义[J]。科学通报,2004年17期:1789-1792
    94.李丰江,邓金宪,温泉波,陈广善,李军敏。吉林双辽地区风沙堆积古温度研究[J]地理科学,2004年05期:615-619
    95.卢玉东,孙建中,李同录,张骏,Frakes L A。利用黄土中的碳同位素半定量地重建古温度[J]。海洋地质与第四纪地质学,2005年03期:139-143
    96.卢粤晗,孙永革,翁焕新。湖泊沉积有机质的地球化学记录与古气候古环境重建[J]。地球化学,2004年01期:20-28
    97.韦刚健,余克服,李献华,赵建新。南海北部珊瑚Sr/Ca和Mg/Ca温度计及高分辨率S S T记录 重建尝试[J]。第四纪研究,2004年03期:325-331
    98.韦刚健,李献华。高分辨率古海水温度记录——珊瑚Sr/Ca比值[J]。矿物岩石地球化学通报。1996年01期:18-21
    99.余克服,刘东生,沈承德 等。雷州半岛全新世高温期珊瑚生长所揭示的环境突变事件[J]。中国科学,D辑,2002,32(2):149-156
    100.韦刚健,余克服,赵建新。雷州半岛中晚全新世造礁珊瑚Sr/Ca比值的表层海水温度记录[J]。科学通报,2004年17期:1770-1775
    101.朱育新,吉磊,王苏民。介形类壳体中Sr/Ca及Mg/Ca比值的ICP-AES测定[J]。湖泊科学,1996年02期:179-183
    102.李彬,袁道先,林玉石,李红春,覃嘉铭。洞穴次生化学沉积物中Mg、Sr、Ca及其比值的环境 指代意义[J]。中国岩溶,2000年02期:115-122
    103.孙敏,李太枫,孙亚莉,聂宝符。西沙珊瑚锶温度计:便捷高精度海洋古水温代用指标[J]。地球化学,2001年01期:102-105
    104.张国仁。利用沉积地球化学特征分析古环境及海平面变化——以鲁西东部中下寒武统为例[J]辽宁地质,1997年01期:9-13
    105.郝青振,郭正堂。1.2 Ma以来黄土-古土壤序列风化成壤强度的定量化研究与东亚夏季风演化[J]。中国科学D辑。2001年06期:520-528
    106.宋春晖,白晋锋等。临夏盆地13~4.4Ma湖相沉积物颜色记录的气候变化探讨[J]。沉积学报。2005年03:507-513
    107.陈发虎。国际第四纪联合会第16届大会在美国召开[J],科学通报,3003年15期:1593-1594
    108.方小敏等。亚洲季风演化的突发性与不稳定性——以末次间冰期土壤发生为例[J],中国科学D辑,1996年02期:154-160
    109.陈骏,汪永进,季峻峰。陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义[J]。第四纪研究,1999年04期:350-356
    110.金章东,王苏民,沈吉,张恩楼。小冰期弱化学风化的湖泊沉积记录[J]。中国科学D辑2003.1:221-225
    111.陈骏,仇纲,季峻峰,鹿化煜。最近130ka黄土高原夏季风变迁的Rb和sr地球化学证据[J]。科学通报,1996年21期:1963-1966
    112.李福春,谢昌仁,潘根兴.南京老虎山黄土剖面的磁化率及Rb和Rb/Sr对古气候的指示意义[J]..海洋地质与第四纪地质,2002年04期:47-52
    113.陈骏,安芷生,汪永进,季峻峰,陈旸,鹿化煜。最近80010洛川黄土剖面中Rb/Sr分布和古季风变迁[J],中国科学D辑,1998年06期:499-504
    114.金章东,王苏民,沈吉,王银喜。湖泊沉积物Sr同位素记录的小冰期[J]。科学通报,200219期:1512-1516
    115.刘丛强,张劲,李春来。黄土中CaCO_3含量及其Sr同位素组成变化与古气候波动记录[J]。科学通报,1999年10期:1088-1092
    116.马英军,刘丛强。地壳风化系统中的Sr同位素地球化学。矿物学报[J],1998年03期:350-358秦建华,潘桂棠,杜谷,冉敬。新生代气候变化与陆地硅酸盐岩风化和海洋Sr同位素研究矿物岩石[J],。.2002年01期:31-35
    117.陆松年,李怀坤,陈志宏等.秦岭中.新元古代地址演化及对Rodinia超级大陆事件的响应。北京:地质出版社,2003,12:21-24。[Lu S N,Li H K,Chen Z H et al.Meso-Neo proterozoic Geological Evolution in The Qinling Orogeny and its Response To The Supercontinental Events of Rodinia.Beijing:Geological Publisher,2003,12:21-24.]
    118.李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学,D辑,1996,26(4):316-322[Fang X M,Li J J,Zhu J J,et al.The absolute dating and demarcation of the cenozoic stratigraphy in the Linxia basin,China.Chinese Science Bulletin,1997,42(14):1457-1471]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700