用户名: 密码: 验证码:
C_3/C_4光合作用差异表达基因的鉴定与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
和C3植物相比,C4植物具有更高的光合作用效率。利用基因工程手段将C4核心循环相关酶导入C3植物被认为是提高C3植物光合作用效率的有效手段之一。但是对于潜在的C4光合作用调控机制(如光合作用组织的结构形成机制和叶肉(维管束鞘)细胞叶绿体分化与定位)却了解甚少。莎草属中有不少种在不同的生长环境中采用C3和C4两种不同光合作用模式,这些特征使其成为研究C3/C4光合作用分子调控机制方面的良好体系。本研究分别用抑制差减杂交和第二代测序技术鉴定Eleocharis baldwinii(陆生为C4模式,水生为C3-C4兼性模式)C3/C4差异表达基因。研究主要目的是分析C3/C4代谢水平差异,并为后续调控研究提供候选基因。主要研究结果如下:
     1.以陆生cDNA为tester,水生cDNA为driver,构建陆生上调表达差减文库。用陆生和水生总cDNA为探针,筛选出64个陆生上升表达ESTs。通过生物信息学分析,共确认了56个单基因,其中52个具有注释,它们的功能主要涉及C4核心循环基因,转运子,光系统相关蛋白和调控基因,如转录因子。但是抑制差减杂交所能提供的信息相对有限;
     2.利用第二代测序技术对陆生,ABA诱导和水生3种材料转录组进行深度测序。经过序列拼接,共获得61747条单一序列,长度分布在200bp-3000bp之间,平均长度为471bp。最后我们共得到24204条差异表达序列;
     3.对差异表达基因进行聚类分析。结果显示ABA诱导样品的表达模式与陆生更为相近。同时根据表达谱的差异将差异基因分为9个cluster,其中Ⅰ,Ⅲ和Ⅵ类代表了C3/C4主要表达差异基因,而Ⅸ类则代表了可能跟环境相关的差异基因;
     4.对代谢相关差异表达基因进行功能分析。结果发现:1)C4核心循环相关酶类和大批跟代谢物相关的转运子在陆生和ABA诱导材料中出现上调表达,表明这些转运子可能在C4光合作用代谢流和发育调控中起着重要作用;2)卡尔文循环,柠檬酸循环和糖酵解循环相关的酶也表现出C4上调表达,它们主要的功能可能是提高C4光合作用的碳固定能力及为C02固定提供部分碳骨架;3)核糖体复合体在C4条件下下调表达暗示着更少的蛋白质合成和更高的氮素利用效率;4)与光吸收相关的基因(如叶绿素结合蛋白基因,叶绿素合成基因,类胡萝卜素合成基因和光敏色素响应基因)和C2循环相关基因表现出水生环境(水生和ABA诱导)和陆生环境表达差异,这类基因反映了主要的环境差异,可能与C4光合作用代谢途径并没有直接的联系;5)ABA合成及分解代谢相关基因在陆生和ABA诱导材料中的表达差异暗示,可以通过提高ABA内源生物合成水平或体外补充,这两种不同的策略来维持体内ABA水平,进而对C4光合作用模式进行调控;
     5.鉴定了1205个C3/C4调控类差异表达基因,包括830个转录因子和375个蛋白激酶等。Real-time表达量检测结果表明部分差异表达基因的表达模式与光合作用组织的发育进程和叶绿体的积累分化过程一致,这类基因可能参与光合作用组织发育调控,将作为主要的候选基因在后续的实验中做进一步的功能验证;
     6.在C3/C4差异表达基因中检测到一些与表观修饰相关的基因。PPDK基因组DNA MSRE-PCR结果显示在水生和陆生条件下确实存在甲基化水平的差异。
Comparing to C3plants, C4plants have higher photosynthesis efficiency.and introducing the C4core cycle related enzymes into C3plants by genetic engineering was considered as one of the effective efficient strategy to increase its photosynthesis efficiency. However, the potential photosynthetic regulation mechanisms, such as the photosynthetic apparatus formation and the differentiation and positioning of mesophyll chloroplast and bundle sheath chloroplast, are remaining unknown. Many species in Eleochairs use different photosynthetic models in different environments and this feature make them to be an ideal system in C4regulatory research. In this study, SSH and NGS were used to identify the C3/C4differentially expressed genes in Eleocharis baldwinii. The main aims are to analysis the C3/C4metabolic differentiation and obtain candidate genes for C4regulatory research. The main results are as follow:
     1. A terrestrial up regulated SSH library was constructed using terrestrial cDNA as the tester and submerged cDNA as the driver.64terrestrial up regulated ESTs were identified by the total cDNA probes of terrestrial and submerged. After bioinformatics assay,56unigenes were confirmed and52of them have GO annotations. These genes mainly involved in C4core cycle, metabolic transportation, photosystem and regulatory genes, such as transcription factor. However, the information that SSH supplied was very limited;
     2. Three RNA samples including terrestrial, ABA induced and submerged were deeply sequenced by NGS (Next Generation Sequencing). After clean reads assembly, we totally obtained61747unigenes with an average length of471bp and the length distributed between200bp to3000bp. At last,24204DE (Differentially Expressed) genes were identified;
     3. The clustering results of DE genes showed the gene expression profiles in ABA induced sample was more similar to those in terrestrial. At the same time, the DE genes can be divided into9clusters according the different expression profiles. The cluster I, III and VI represented the most of C3/C4differentiation and the genes in cluster IX might relate to the environment responding;
     4. After gene functional assay, we found:1) The C4core cycle related enzymes and a huge of metabolic reporters were up regulated in terrestrial and ABA induced samples and these transporter may contribute to C4photosynthesis in both metabolism fluxes and developmental regulatory;2) The genes related to Calvin cycle, the citrate cycle and glycolysis were also up regulated in C4culms and their roles in C4photosynthesis may relate to the increasing photosynthetic efficiency and supply carbon skeleton for CO2fixation;3) The down regulated ribosome complex related genes suggested a less protein synthesis and a higher N use efficiency in C4culms;4) The different expression profiles of light harvesting and C2cycle related genes between terrestrial and under water (both submerged and ABA induced) may relate to the environment responding and not directly relate to C4photosynthesis, such as genes of chlorophyll binding protein, biosynthesis of chlorophyll and carotenoids and phytochrome responding genes;5) The different expression profiles of ABA biosynthesis and catabolism related genes in terrestrial and ABA induced sample indicated that an increasing endogenous ABA biosynthesis and additional exogenous ABA complementation were two different strategies to maintain endogenous ABA homeostasis in C4photosynthetic regulatory pathway in E. baldwinii.
     5.1205C3/C4differentially accumulated regulation genes were identified including830transcriptional factors and375protein kinases. The Real-time results suggested that some regulation genes were co-expressed with the development procedure of photosynthetic apparatus and chloroplast accumulation and differentiation. These kind of genes may involve in the development controlling of photosynthetic apparatus and will be served as the candidate genes in the gene functional validation;
     6. In this study, some genes related to epigenetic modification were also differentially expressed in C3/C4samples. The MSRE-PCR results of PPDK genomic DNA showed there were indeed different methylation levels in terrestrial and submerged environments.
引文
1.李合生.现代植物生理学:高等教育出版社,2006
    2.王镜岩,朱圣庚,徐长发.生物化学:高等教育出版社,2002
    3.周云龙.植物生物学:高等教育出版社,1999
    4. How to Feed the World in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
    5. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell,2003,15:63-78
    6. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell,1997,9:1859-1868
    7. Akyildiz M, Gowik U, Engelmann S, Koczor M, Streubel M, Westhoff P. Evolution and function of a cis-regulatory module for mesophyll-specific gene expression in the C4 dicot Flaveria trinervia. Plant Cell,2007,19:3391-3402
    8. Aloni R, Schwalm K, Langhans M, Ullrich C I. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta,2003,216:841-853
    9. Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol,1990,215:403-410
    10. Andrews T J, Whitney S M. Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch Biochem Biophys, 2003,414:159-169
    11. Aubry S, Brown N J, Hibberd J M. The role of proteins in C3 plants prior to their recruitment into the C4 pathway. JExp Bot,2011, Online
    12. Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Res,1997,7:986-995
    13. Bar-Even A, Noor E, Lewis N E, Milo R. Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci U S A,2010,107:8889-8894
    14. Blasing O E, Westhoff P, Svensson P. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. JBiol Chem,2000, 275:27917-27923
    15. Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta,2004,218:683-692
    16. Botha C E J. Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta,1992,187:348-358
    17. Bouton J H, Brown R H, Evans P T, Jernstedt J A. Photosynthesis, leaf anatomy, and morphology of progeny from hybrids between C3 and C3/C4 panicum species. Plant Physiol,1986,80:487-492
    18. Bowes G, Rao S K, Gonzalo, Estavillo M, Reiskind J B. C4 mechanisms in aquatic angiosperms:comparisons with terrestrial C4 systems. Funct Plant Biol,2002,29: 379-392
    19. Brautigam A, Hofmann-Benning S, Weber A P. Comparative proteomics of chloroplasts envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol,2008,148:568-579
    20. Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber K L, Carr K M, Gowik U, Mass J, Lercher M J, Westhoff P, Hibberd J M and Weber A P. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol,2011,155:142-156
    21. Brautigam A, Weber A P. Do metabolite transport processes limit photosynthesis?. Plant Physiol,2011,155:43-48
    22. Brown N J, Newell C A, Stanley S, Chen J E, Perrin A J, Kajala K, Hibberd J M. Independent and parallel recruitment of preexisting mechanisms underlying C4 photosynthesis. Science,2011,331:1436-1439
    23. Brown N J, Parsley K, Hibberd J M. The future of C4 research-maize, Flaveria or Cleome? Trends Plant Sci,2005,10:215-221
    24. Brown R H, Bassett C L, Cameron R G, Evans P T, Bouton J H, Black C C, Sternberg L O, Deniro M J. Photosynthesis of F1 hybrids between C4 and C3-C4 species of Flaveria. Plant Physiol,1986,82:211-217
    25. Brutnell T P, Sawers R J, Mant A, Langdale J A. Bundle sheath defective2, a novel protein required for post-translational regulation of the rbcL gene of maize. Plant Cell,1999,11:849-864
    26. Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis:A model for C4 photosynthesis. Plant Cell,2010, Online
    27. Cameron R G, Bassett C L, Bouton J H, Brown R H. Transfer of C4 photosynthetic characters through hybridization of Flaveria species. Plant Physiol,1989,90: 1538-1545
    28. Chastain C J, Fries J P, Vogel J A, Randklev C L, Vossen A P, Dittmer S K, Watkins E E, Fiedler L J, Wacker S A, Meinhover K C, Sarath G and Chollet R. Pyruvate, orthophosphate dikinase in leaves and chloroplasts of C3 plants undergoes light-/dark-induced reversible phosphorylation. Plant Physiol,2002,128:1368-1378
    29. Chen T, Ye R, Fan X, Li X, Lin Y. Identification of C4 photosynthesis metabolism and regulatory associated genes in Eleocharis vivipara by SSH. Photosynth Res, 2011,108:157-170
    30. Chollet R, Vidal J, O'Leary M H. Phosphoenolpyruvate carboxylase:a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Biol,1996,47:273-298
    31. Cousins A B, Badger M R, Von Caemmerer S. A transgenic approach to understanding the influence of carbonic anhydrase on C18OO discrimination during C4 photosynthesis. Plant Physiol,2006b,142:662-672
    32. Cousins A B, Badger M R, Von Caemmerer S. Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis. Plant Physiol,2006a,141:232-242
    33. Covshoff S, Majeran W, Liu P, Kolkman J M, van Wijk K J, Brutnell T P. Deregulation of maize C4 photosynthetic development in a mesophyll cell-defective mutant. Plant Physiol,2008,146:1469-1481
    34. Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid:emergence of a core signaling network. Annu Rev Plant Biol,2010,61:26.21-26.29
    35. Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation:version II. Plant Mol Biol Rep,1983,1:19-21
    36. Dengler N G, Dengler R E, Donnelly P M, Hattersley P W. Quantitative leaf anatomy of C3 and C4 grasses (Poaceae):bundle sheath and mesophyll surface area relationships. Ann Bot,1994,73:241-255
    37. Detarsio E, Alvarez C E, Saigo M, Andreo C S, Drincovich M F. Identification of domains involved in tetramerization and malate inhibition of maize C4-NADP-malic enzyme. J Biol Chem,2007,282:6053-6060
    38. Diatchenko L, Lau Y F, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E D and Siebert P D. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA,1996,93: 6025-6030
    39. Ding X, Hou X, Xie K, Xiong L. Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses. Planta,2009,230:149-163
    40. Edwards E J, Osborne C P, Stromberg C A, Smith S A, Bond W J, Christin P A, Cousins A B, Duvall M R, Fox D L, Freckleton R P, Ghannoum O, Hartwell J, Huang Y, Janis C M, Keeley J E, Kellogg E A, Knapp A K, Leakey A D, Nelson D M, Saarela J M, Sage R F, Sala O E, Salamin N, Still C J and Tipple B. The origins of C4 grasslands:integrating evolutionary and ecosystem science. Science,2010,328: 587-591
    41. Edwards G E, Franceschi V R, Voznesenskaya E V. Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol,2004,55:173-196
    42. Evans J R, Seemann J R. Differences between wheat genotypes in specific activity of ribulose-1,5-bisphosphate carboxylase and the relationship to photosynthesis. Plant Physiol,1984,74:759-765
    43. Evert R F, Eschrich W, Heyser W. Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells of Zea mays L. Planta,1977,136:77-89
    44. Fabre N, Reiter I M, Becuwe-Linka N, Genty B, Rumeau D. Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in Arabidopsis. Plant Cell Environ,2007,30:617-629
    45. Ferreira F J, Guo C, Coleman J R. Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol,2008, 147:585-594
    46. Friedrich J W, Huffaker R C. Photosynthesis, leaf resistances, and ribulose-1, 5-bisphosphate carboxylase degradation in senescing barley leaves. Plant Physiol, 1980,65:1103-1107
    47. Friso G, Majeran W, Huang M, Sun Q, van Wijk K J. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts:large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol,2010,152:1219-1250
    48. Fukayama H, Tsuchida H, Agarie S, Nomura M, Onodera H, Ono K, Lee B H, Hirose S, Toki S, Ku M S, Makino A, Matsuoka M and Miyao M. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol, 2001,127:1136-1146
    49. Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Muller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B and Martinoia E. The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J,2001,20:1875-1887
    50. Ghannoum O. C4 photosynthesis and water stress. Ann Bot,2009,103:635-644
    51. Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol,2005, 56:99-131
    52. Gowik U, Brautigam A, Weber K L, Weber A P, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria:how many and which genes does it take to make C4?. Plant Cell,2011, Online
    53. Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell,2004,16:1077-1090
    54. Grobler J, Bauer F, Subden R E, Van Vuuren H J. The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast,1995,11:1485-1491
    55. Grodzinski B, Jiao J, Leonardos E D. Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2. Plant Physiol,1998, 117:207-215
    56. Guo S, Zheng Y, Joung J G, Liu S, Zhang Z, Crasta O R, Sobral B W, Xu Y, Huang S, Fei Z. Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics,2010,11:384
    57. Husler R E, Kleines M, Uhrig H, Hirsch H J, Smets H. Overexpression of phosphoenolpyruvate carboxylase from Corynebacterium glutamicum lowers the CO2 compensation point (Γ*) and enhances dark and light respiration in transgenic potato. J Exp Bot,1999,50:1231-1242
    58. Hall L N, Rossini L, Cribb L, Langdale J A. GOLDEN 2:a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell,1998,10:925-936
    59. Hatch M D, Burnell J N. Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis.Plant Physiol,1990,93:825-828
    60. Hatch M D, Kagawa T. Photosynthetic activities of isolated bundle sheath cells in relation to differing mechanisms of C4 pathway photosynthesis. Arch Biochem Biophys,1976,175:39-53
    61. Hatch M D, Slack C R, Johnson H S. Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugar-cane and its occurrence in other plant species. Biochem J,1967,102:417-422
    62. Hatch M D, Slack C R. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J,1966,101:103-111
    63. Hattori J, Boutilier K A, Van Lookeren Campagne M M, Miki B L. A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol Gen Genet,1998,259:424-428
    64. Hausler R E, Hirsch H J, Kreuzaler F, Peterhansel C. Overexpression of C4-cycle enzymes in transgenic C3 plants:a biotechnological approach to improve C3-photosynthesis. JExp Bot,2002,53:591-607
    65. Hay wood V, Yu T S, Huang N C, Lucas W J. Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J, 2005,42:49-68
    66. Hibberd J M, Covshoff S. The Regulation of gene expression required for C4 photosynthesis. Annu Rev Plant Biol,2010,61:1-27
    67. Hibberd J M, Sheehy J E, Langdale J A. Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol,2008,11:228-231
    68. Holaday A S, Bowes G. C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Plant Physiol,1980,65:331-335
    69. Holt R A, Jones S J. The new paradigm of flow cell sequencing. Genome Res,2008, 18:839-846
    70. Horst I, Offermann S, Dreesen B, Niessen M, Peterhansel C. Core promoter acetylation is not required for high transcription from the phosphoenolpyruvate carboxylase promoter in maize. Epigenet Chromatin,2009,2:17
    71. Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A, Godoski J, Kuhn J M, Schroeder J I. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol,2010,12:87-93; sup pp 81-18
    72. Hudspeth R L, Grula J W, Dai Z, Edwards G E, Ku M S B. Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco:effects on biochemistry and physiology. Plant Physiol,1992,98:458-464
    73. Ishiharu K, Ohkawa Y, Ishige T, ROhsugi. D J. Elevated pyruvate, orthophosphate dikinase (PPDK) activity alters carbon metabolism in C3 transgenic potatoes with a C4 maize PPDK gene. Physiol Plantarum,1998,103:340-346
    74. Ishikawa C M, Hatanaka T P, Misoo S P, Miyake C P, Fukayama H P. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of rubisco in transgenic rice. Plant Physiol,2011, Online
    75. Ishimaru K, Ichikawa H, Matsuoka M, Ohsugi R. Analysis of a C4 maize pyruvate, orthophosphate dikinase expressed in C3 transgenic Arabidopsis plants. Plant Sci, 1997,129:57-64
    76. Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase:a new era of structural biology. Annu Rev Plant Biol,2004,55:69-84
    77. Jeanneau M, Vidal J, Gousset-Dupont A, Lebouteiller B, Hodges M, Gerentes D, Perez P. Manipulating PEPC levels in plants. JExp Bot,2002,53:1837-1845
    78. Jiao D, Huang X, Li X, Chi W, Kuang T, Zhang Q, Ku M S, Cho D. Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynth Res,2002,72:85-93
    79. Kai Y, Matsumura H, Inoue T, Terada K, Nagara Y, Yoshinaga T, Kihara A, Tsumura K, Izui K. Three-dimensional structure of phosphoenolpyruvate carboxylase: a proposed mechanism for allosteric inhibition. Proc Natl Acad Sci U S A,1999,96: 823-828
    80. Kai Y, Matsumura H, Izui K. Phosphoenolpyruvate carboxylase:three-dimensional structure and molecular mechanisms. Arch Biochem Biophys,2003,414:170-179
    81. Kajala K, Brown N J, Williams B P, Borrill P, Taylor L E, Hibberd J M. Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. Plant J,2011,69: 47-56
    82. Kanehisa M, Goto S. KEGG:kyoto encyclopedia of genes and genomes. Nucleic Acids Res,2000,28:27-30
    83. Kanevski I, Maliga P, Rhoades D F, Gutteridge S. Plastome engineering of ribulose-1, 5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol,1999,119:133-143
    84. Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H J, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol,2007,25:593-599
    85. Kim H S, Jung M S, Lee K, Kim K E, Yoo J H, Kim M C, Kim D H, Cho M J, Chung W S. An S-locus receptor-like kinase in plasma membrane interacts with calmodulin in Arabidopsis. FEBS Lett,2009b,583:36-42
    86. Kim H S, Jung M S, Lee S M, Kim K E, Byun H, Choi M S, Park H C, Cho M J, Chung W S. An S-locus receptor-like kinase plays a role as a negative regulator in plant defense responses. Biochem Biophys Res Commun,2009a,381:424-428
    87. Kim T H, Bohmer M, Hu H, Nishimura N, Schroeder J I. Guard cell signal transduction network:advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol,2010,61:13.11-13.31
    88. Klingler J P, Batelli G, Zhu J K. ABA receptors:the START of a new paradigm in phytohormone signalling. JExp Bot,2010,61:3199-3210
    89. Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, Sentoku N, Tanifuji S, Uchimiya H, Toki S. Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res,1994,3:287-296
    90. Ku M S B, Schmitt M R, EdwardS G E. Quantitative determination of RuBP carboxylase-oxygenase protein in leaves of several C3 and C4 plants. J Exp Bot,1979, 30:89-98
    91. Ku M S, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol,1999,17:76-80
    92. Lalonde S, Wipf D, Frommer W. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol,2004,55:341-372
    93. Lane T W, Morel F M. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol, 2000,123:345-352
    94. Langdale J A, Kidner C A. Bundle sheath defective, a mutation that disrupts cellular differentiation in maize leaves. Development,1994,120:673-681
    95. Langdale J A. C4 cycles:past, present, and future research on C4 photosynthesis. Plant Cell,2011,23:3879-3892
    96. Leegood R C. C4 photosynthesis:principles of CO2 concentration and prospects for its introduction into C3 plants. JExp Bot,2002,53:581-590
    97. Leivar P, Tepperman J M, Monte E, Calderon R H, Liu T L, Quail P H. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell,2009, 21:3535-3553
    98. Lepiniec L, Keryer E, Philippe H, Gadal P, Cretin C. Sorghum phosphoenolpyruvate carboxylase gene family:structure, function and molecular evolution. Plant Mol Biol, 1993,21:487-502
    99. Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta S L, Kebrom T H, Provart N, Patel R, Myers C R, Reidel E J, Turgeon R, Liu P, Sun Q, Nelson T and Brutnell T P. The developmental dynamics of the maize leaf transcriptome. Nat Genet,2010, Online
    100.Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Yang H and Wang J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res,2009,20:265-272
    101.Li Y Y, Zhang H, Zhu X G. C4 rice:are we ready for the challenge? Acta Phytophysiologica Sinica,2011, Online
    102.Lipka V, Husler R E, Rademacher T, Li J, Hirsch H J, Kreuzaler F. Solanum tuberosum double transgenic expressing phosphoenolpyruvate carboxylase and NADP-malic enzyme display reduced electron requirement for CO2 fixation. Plant Science,1999,144:93-105
    103.Liu C, Young A L, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao B V, Rao K V, Berninghausen O, Mielke T, Hartl F U, Beckmann R and Hayer-Hartl M. Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature,2010,463:197-202
    104.Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y. Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol,2008,67:37-55
    105.Lu Y P, Li Z S, Drozdowicz Y M, Hortensteiner S, Martinoia E, Rea P A. AtMKP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites:functional comparisons with Atmrp1. Plant Cell,1998,10:267-282
    106.Lu Z, Hunter T. Degradation of activated protein kinases by ubiquitination. Annu Rev Biochem,2009,78:435-475
    107.Maai E, Shimada S, Yamada M, Sugiyama T, Miyake H, Taniguchi M. The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid. J Exp Bot,2011, Online
    108.Magnin N C, Cooley B A, Reiskind J B, Bowes G. Regulation and localization of key enzymes during the induction of kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol,1997,115:1681-1689
    109.Majeran W, Cai Y, Sun Q, van Wijk K J. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell, 2005,17:3111-3140
    110.Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan N H, Sun Q, Turgeon, R. and van Wijk, K.J. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in Maize. Plant Cell,2010, Online
    111.Majeran W, van Wijk K J. Cell-type-specific differentiation of chloroplasts in C4 plants. Trends Plant Sci,2009,14:100-109
    112.Majeran W, Zybailov B, Ytterberg A J, Dunsmore J, Sun Q, van Wijk K J. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics,2008,7:1609-1638
    113.Makino A, Mae T, Ohira K. Photosynthesis and ribulose 1,5-bisphosphate carboxylase in rice leaves:changes in photosynthesis and enzymes involved in carbon assimilation from leaf development through senescence. Plant Physiol,1983, 73:1002-1007
    114.Marr I L, Suryana N, Lukulay P, Marr M I. Determination of chlorophyll a and b by simultaneous multi-component spectrophotometry. Fresenius J Anal Chem,1995, 352:456-460
    115.Marshall D M, Muhaidat R, Brown N J, Liu Z, Stanley S, Griffiths H, Sage R F, Hibberd J M. Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant J,2007, 51:886-896
    116.Masumoto C, Miyazawa S I, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA,2010,107:5226-5231
    117.Matsumura H, Izui K, Mizuguchi K. A novel mechanism of allosteric regulation of archaeal phosphoenolpyruvate carboxylase:a combined approach to structure-based alignment and model assessment. Protein Eng Des Sel,2006,19:409-419
    118.Matsuoka M, Furbank R T, Fukayama H, Miyao M. Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol,2001,52:297-314
    119.Matsuoka M, Nomura M, Agarie S, Miyao-Tokutomi M, Ku M S B. Evolution of C4 photosynthetic genes and overexpression of maize C4 genes in rice. J Plant Res,1998, 111:333-337
    120.Matsuoka M, Ozeki Y, Yamamoto N, Hirano H, Kano-Murakami Y, Tanaka Y. Primary structure of maize pyruvate, orthophosphate dikinase as deduced from cDNA sequence. JBio Chem,1988,263:110800-11083
    121.Mattsson J, Ckurshumova W, Berleth T. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol,2003,131:1327-1339
    122.Metzker M L. Sequencing technologies-the next generation. Nat Rev Genet,2010, 11:31-46
    123.Miyao M, Masumoto C, Miyazawa S I, Fukayama H. Lessons from engineering a single-cell C4 photosynthetic pathway into rice. JExp Bot,2011, Online
    124.Miyao M. Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot,2003,54:179-189
    125.Monson R K. Gene duplication, neofunctionalization, and the evolution of C4 photosynthesis. Int J Plant Sci,2003,164:S43-S54
    126.Morris E R, Walker J C. Receptor-like protein kinases:the keys to response. Curr Opin Plant Biol,2003,6:339-342
    127.Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods,2008,5:621-628
    128.Mueller-Cajar O, Whitney S M. Directing the evolution of Rubisco and Rubisco activase:first impressions of a new tool for photosynthesis research. Photosynth Res, 2008,98:667-675
    129.Murphy L R, Barroca J, Franceschi V R, Lee R, Roalson E H, Edwards G E, Ku M S B. Diversity and plasticity of C4 photosynthesis in Eleocharis (Cyperaceae). Funct Plant Biol,2007,34:571-580
    130.Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 2008,320:1344-1349
    131.Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol,2005,56:165-185
    132.Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature,2008,452:483-486
    133.Nelson N, Yocum C F. Structure and function of photosystems I and II. Annu Rev Plant Biol,2006,57:521-565
    134.Nelson T, Dengler N. Leaf vascular pattern formation. Plant Cell,1997,9: 1121-1135
    135.Nelson T. The grass leaf developmental gradient as a platform for a systems understanding of the anatomical specialization of C4 leaves. JExp Bot,2011, Online
    136.Newell C A, Brown N J, Liu Z, Pflug A, Gowik U, Westhoff P, Hibberd J M. Agrobacterium tumefaciens-mediated transformation of Cleome gynandra L., a C4 dicotyledon that is closely related to Arabidopsis thaliana. JExp Bot,2010, Online
    137.Nimmo H G. Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch Biochem Biophys,2003,414:189-196
    138.Offermann S, Dreesen B, Horst I, Danker T, Jaskiewicz M, Peterhansel C. Developmental and environmental signals induce distinct histone acetylation profiles on distal and proximal promoter elements of the C4-Pepc gene in maize. Genetics, 2008,179:1891-1901
    139.Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M. Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell,2003,15:2805-2815
    140.Oyama T, Shimura Y, Okada K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev,1997, 11:2983-2995
    141.Parks B M, Quail P H, Hangarter R P. Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol,1996,110:155-162
    142.Patel M, Corey A C, Yin L P, Ali S, Taylor W C, Berry J O. Untranslated regions from C4 amaranth AhRbcS1 mRNAs confer translational enhancement and preferential bundle sheath cell expression in transgenic C4 Flaveria bidentis. Plant Physiol,2004,136:3550-3561
    143.Penfield S, Clements S, Bailey K J, Gilday A D, Leegood R C, Gray J E, Graham I A. Expression and manipulation of phosphoenolpyruvate carboxykinase 1 identifies a role for malate metabolism in stomatal closure. Plant J,2012,69:679-688
    144.Peterhansel C. Best practice procedures for the establishment of a C4 cycle in transgenic C3 plants. J Exp Bot,2011, Online
    145.Pighin J A, Zheng H, Balakshin L J, Goodman I P, Western T L, Jetter R, Kunst L, Samuels A L. Plant cuticular lipid export requires an ABC transporter. Science,2004, 306:702-704
    146.Raghavendra A S, Gonugunta V K, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci,2010,15:395-401
    147.Raines C A, Paul M J. Products of leaf primary carbon metabolism modulate the developmental programme determining plant morphology. JExp Bot,2006,57: 1857-1862
    148.Raines C A. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell Environ,2006,29:331-339
    149.Rao S K, Magnin N C, Reiskind J B, Bowes G. Photosynthetic and other phosphoenolpyruvate carboxylase isoforms in the single-cell, facultative C4 system of Hydrilla verticillata.Plant Physiol,2002,130:876-886
    150.Rea P A. Plant ATP-binding cassette transporters. Annu Rev Plant Biol,2007,58: 347-375
    151.Reinfelder J R, Kraepiel A M, Morel F M. Unicellular C4 photosynthesis in a marine diatom. Nature,2000,407:996-999
    152.Roth R, Hall L N, Brutnell T P, Langdale J A. Bundle sheath defective2, a mutation that disrupts the coordinated development of bundle sheath and mesophyll cells in the Maize leaf. Plant Cell,1996,8:915-927
    153.Rothermel B A, Nelson T. Primary structure of the maize NADP-dependent malic enzyme. JBio Chem,1989,264:19587-19592
    154.Sage R F, Christin P A, Edwards E J. The C4 plant lineages of planet Earth. J Exp Bot, 2011, Online
    155.Sage R F, Pearcy R W, Seemann J R. The nitrogen use efficiency of C3 and C4 plants:Ⅲ. leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol,1987,85: 355-359
    156.Sage R F. The evolution of C4 photosynthesis. New Phytol,2004,161:341-370
    157.Salvucci M E, Bowes G. Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes. Plant Physiol,1981,67:335-340
    158.Sanger F, Air G M, Barrell B G, Brown N L, Coulson A R, Fiddes C A, Hutchison C A, Slocombe P M, Smith M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature,1977b,265:687-695
    159.Sanger F, Coulson A R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. JMol Biol,1975,94:441-448
    160.Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A,1977a,74:5463-5467
    161.Savir Y, Noor E, Milo R, Tlusty T. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc Natl Acad Sci U S A, 2010,107:3475-3480
    162.Schmitt M R, Edwards G E. Photosynthetic capacity and nitrogen use efficiency of maize, wheat, and rice:a comparison between C3 and C4 photosynthesis. J Exp Bot, 1981,32:459-466
    163.Seemann J R, Badger M R, Berry J A. Variations in the specific activity of ribulose-1,5-bisphosphate carboxylase between species utilizing differing photosynthetic pathways. Plant Physiol,1984,74:791-794
    164.Sharwood R E, von Caemmerer S, Maliga P, Whitney S M. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol, 2008,146:83-96
    165.Sheard L B, Zheng N. Plant biology:Signal advance for abscisic acid. Nature,2009, 462:575-576
    166.Sheen J. C4 gene expression. Annu Rev Plant Physiol Plant Mol Biol,1999,50: 187-217
    167. Sheen J. Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell,1991,3:225-245
    168. Sheriff A, Meyer H, Riedel E, Schmitt J, Lapke C. The influence of plant pyruvate, orthophosphate dikinase on a C3 plant with respect to the intracellular location of the enzyme. Plant Sci,1998,136:43-57
    169.Shiu S H, Bleecker A B. Plant receptor-like kinase gene family:diversity, function, and signaling. Sci STKE,2001,113:re22
    170.Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot,2009,60:1439-1463
    171. Slack C R, Hatch M D. Comparative studies on the activity of carboxylases and other enzymes in relation to the new pathway of photosynthetic carbon dioxide fixation in tropical grasses. Biochem J,1967,103:660-665
    172.Smith L M, Sanders J Z, Kaiser R J, Hughes P, Dodd C, Connell C R, Heiner C, Kent S B, Hood L E. Fluorescence detection in automated DNA sequence analysis. Nature, 1986,321:674-679
    173.Spreitzer R J, Salvucci M E. Rubisco:structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol,2002,53:449-475
    174.Sugiyama T, Mizuno M, Hayashi M. Partitioning of nitrogen among ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, and pyruvate orthophosphate dikinase as related to biomass productivity in maize seedlings. Plant Physiol,1984,75:665-669
    175.Sultan M, Schulz M H, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt, D, O'Keeffe, S, Haas, S, Vingron, M, Lehrach, H and Yaspo, M L. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science,2008,321: 956-960
    176.Surridge C. Agricultural biotech:the rice squad. Nature,2002,416:576-578
    177.Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Hayakawa T, Yamaya T, Mae T, Makino A. Increased rubisco content in transgenic rice transformed with the'sense' rbcS gene. Plant Cell Physiol,2007,48:626-637
    178.Svensson P, Blasing O E, Westhoff P. Evolution of C4 phosphoenolpyruvate carboxylase. Arch Biochem Biophys,2003,414:180-188
    179.Takeuchi Y, Akagi H, Kamasawa N, Osumi M, Honda H. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta,2000,211:265-274
    180.Taniguchi Y, Ohkawa H, Masumoto C, Fukuda T, Tamai T, Lee K, Sudoh S, Tsuchida H, Sasaki H, Fukayama H and Miyao, M. Overproduction of C4 photosynthetic enzymes in transgenic rice plants:an approach to introduce the C4-like photosynthetic pathway into rice. J Exp Bot,2008,59:1799-1809
    181.Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie A R, Hibberd J M. Cytosolic pyruvate,orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant J,2010,62:641-652
    182.Tcherkez G G, Farquhar G D, Andrews T J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci U S A,2006,103:7246-7251
    183.Terashima I, Hanba Y T, Tazoe Y, Vyas P, Yano S. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot,2006,57:343-354
    184.Tolley B J, Woodfield H, Wanchana S, Bruskiewich R, Hibberd J M. Light-regulated and cell-specific methylation of the maize PEPC promoter. JExp Bot,2011, Online
    185.Tsuchida H, Tamai T, Fukayama H, Agarie S, Nomura M, Onodera H, Ono K, Nishizawa Y, Lee B H, Hirose S Toki, S, Ku M S, Matsuoka, M and Miyao M. High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol,2001,42:138-145
    186.Uchino A, Samejima M, Ishii R, Ueno O. Photosynthetic carbon metabolism in an amphibious sedge, Eleocharis baldwinii (Torr.) Chapman:modified expression of C4 characteristics under submerged aquatic conditions. Plant Cell Physiol,1995,36: 229-238
    187.Ueno O, Samejima M, Muto S, Miyachi S. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara:Expression of C4 and C3 modes in contrasting environments. Proc Natl Acad Sci U S A,1988,85:6733-6737
    188.Ueno O. Environmental regulation of photosynthetic metabolism in the amphibious sedge Eleocharis baldwinii and comparisons with related species. Plant Cell Environ, 2004,27:627-639
    189.Ueno O. Induction of kranz anatomy and C4-like biochemical characteristics in a submerged amphibious plant by abscisic acid. Plant Cell,1998,10:571-584
    190.Vahisalu T, Kollist H, Wang Y F, Nishimura N, Chan W Y, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder J I and Kangasjarvi J I. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature,2008,452:487-491
    191.Von Bubnoff A. Next-generation sequencing:the race is on. Cell,2008,132:721-723
    192.Von Caemmerer S, Furbank R T. The C4 pathway:an efficient CO2 pump. Photosynth Res,2003,77:191-207
    193.Von Caemmerer S, Quinn V, Hancock N C, Price G D, Furbank R T, Ludwig M. Carbonic anhydrase and C4 photosynthesis:a transgenic analysis. Plant Cell Environ, 2004,27:697-703
    194.Von Caemmerer S. A model of photosynthetic CO2 assimilation and carbon-isotope discrimination in leaves of certain C3-C4 intermediates. Planta,1989,178:463-474
    195.Von Caemmerer S. C4 photosynthesis in a single C3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C3 leaves. Plant Cell Environ,2003,26:1191-1197
    196.Voznesenskaya E V, Franceschi V R, Kiirats O, Artyusheva E G, Freitag H, Edwards G E. Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J,2002,31:649-662
    197.Voznesenskaya E, Franceschi V, Kiirats O, Freitag H, Edwards G. Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature,2001,414:543-546
    198.Walker R P, Leegood R C. Phosphorylation of phosphoenolpyruvate carboxykinase in plants. Studies in plants with C4 photosynthesis and Crassulacean acid metabolism and in germinating seeds. Biochem J,1996,317:653-658
    199.Waters M T, Wang P, Korkaric M, Capper R G, Saunders N J, Langdale J A. GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell,2009,21:1109-1128
    200.Weber A P, Von Caemmerer S. Plastid transport and metabolism of C3 and C4 plants-comparative analysis and possible biotechnological exploitation. Curr Opin Plant Biol,2010,13:257-265
    201.Whitney S M, Baldet P, Hudson G S, Andrews T J. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J, 2001,26:535-547
    202.Whitney S M, Houtz R L, Alonso H. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco. Plant Physiol,2011a,155: 27-35
    203.Whitney S M, Sharwood R E, Orr D, White S J, Alonso H, Galmes J. Isoleucine309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci USA,2011b,108:14688-14693
    204.Wittenbach V A. Ribulose bisphosphate carboxylase and proteolytic activity in wheat leaves from anthesis through senescence. Plant Physiol,1979,64:884-887
    205.Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442
    206.Yamada M, Kawasaki M, Sugiyama T, Miyake H, Taniguchi M. Differential positioning of C4 mesophyll and bundle sheath chloroplasts:aggregative movement of C4 mesophyll chloroplasts in response to environmental stresses. Plant Cell Physiol,2009,50:1736-1749
    207.Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet,1993,238: 17-25
    208.Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol,2006,60:167-183
    209.Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol,2010b,61:235-261
    210.Zhu X G, Shan L, Wang Y, Quick W P. C4 rice-an ideal arena for systems biology research. J Integr Plant Biol,2010a,52:762-770

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700