用户名: 密码: 验证码:
大跨度桥梁断面非线性自激气动力与非线性气动稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文回顾了大跨度桥梁抗风研究的发展,总结了线性与非线性自激气动力的研究现状。基于平衡位置的Taylor展开,建立了简谐运动下非线性自激力气动力的数学模型。采用特殊风洞试验技术,获得了大振幅条件下薄翼和流线型箱梁断面的非线性自激气动力。探讨了典型状态下自激气动力的非线性特性和气动迟滞效应,提出了非线性气动参数的识别方法。利用非线性自激气动力开展了桥梁断面在特定条件下的非线性颤振分析。本文的主要研究内容有:
     1.回顾了大跨度桥梁抗风研究的发展,总结了线性与非线性气动力的研究现状。
     2.基于平衡位置的Taylor展开,推导了单自由度运动和弯扭耦合运动条件下非线性自激气动力的复数和实数表达式,建立了由多个谐波分量所组成的非线性自激气动力模型。
     3.采用特殊风洞试验技术,开展了大振幅条件下薄翼和流线型箱梁断面的自激力测试,发现了自激力频谱中存在显著的高次谐波分量,验证了非线性自激力是由多个谐波分量所组成的理论结果。发现了自激气动力中非线性分量的幅值随断面运动振幅的增大而增大,随折算风速的增大而减小的一般性规律。
     4.研究了流线型箱梁断面非线性自激气动力的迟滞效应。发现箱梁的气动力矩迟滞曲线在一定条件下也能转变为面积相当的“8字环”,该现象表明气动力矩在一个周期内既做了正功,也做了负功。探讨了大跨度桥梁在大振幅条件下可能出现的运行形式。
     5.提出了非线性气动参数的识别方法。该方法采用直接提取的谐波参数为初始值,结合非线性最小二乘迭代算法实现。研究了不同形式的噪声对参数识别精度的影响,并指出致使信号发生偏移的噪声对识别结果有较大影响,将直接导致结果失真或不可用。
     6.利用非线性自激气动力和四阶龙格-库塔算法,进行了特定条件下箱梁断面的非线性气动稳定分析,发现大跨度桥梁在“颤振后”状态,可能存在收敛、发散和等幅振动三种运动形式。探讨了非线性气动微分方程中参数的变化对运动形式以及气动稳定性的可能影响;简要探讨了紊流风对气动稳定性的影响;结合气动力的非线性特性,解释了大跨度桥梁的“硬颤振”和“软颤振”现象。
     7.展望了非线性气动力今后的研究内容和方向。
This thesis reviewed the research of wind effects on the long span bridge, and summarized the current research on the linear and nonlinear Motion-Induced Aerodynamic Force (MIAF). Firstly, based on Taylor expansion of the equilibrium position, the mathematical model of nonlinear MIAF was developed under harmonic motions. Then, through the special wind tunnel tests, the nonlinear MIAF of thin airfoil and streamline box girder were obtained under the large amplitude oscillation, and the characteristics of nonlinear MIAF and aerodynamic hysteresis of the thin airfoil and streamline box girder were also discussed. In addition, the identification method of nonlinear aerodynamic parameters in the expression was proposed. Finally, the nonlinear aerodynamic analysis has been conducted using the nonlinear MIAF.
     The thesis research contains following contents:
     1. Reviewed the researches of wind effects on long span bridges, and summarized the current researches on the linear and nonlinear MIAF.
     2. Based on Taylor expansion of the equilibrium position, deduced the plural and real expression of nonlinear MIAF under1DOF and2DOF harmonic motions, and established the nonlinear MIAF mathematical model composed of multiple harmonic components.
     3. Through the special wind tunnel technology, conducted the tests of nonlinear MIAF of the thin airfoil and streamline box girder under the large amplitude oscillation, and found the remarkable higher harmonic components in the spectrum, which validated the theory that the nonlinear MIAF composed of multiple harmonic components. Discovered that the amplitude of nonlinear components in the MIAF increased with the increase of oscillation amplitude, and decreased with the increase of reduced velocity.
     4. Studied the characteristics of nonlinear MIAF and aerodynamic hysteresis, and found the exist of "figure8" loop in the aerodynamic moment hysteresis curve of the streamline box girder, that is, the aerodynamic moment has done not only positive work but also negative work in one period. Then discussed the possible vibration status of long span bridges under the large amplitude oscillation.
     5. Proposed the identification method of nonlinear aerodynamic parameters. This method could realized by nonlinear least-square iteration with the directly identified harmonic parameters as initial values. Studied the effect of different types of noise on the accuracy of identified parameters, and pointed out the serious effect of the noise which make signal offset on the identification accuracy of nonlinear harmonic components, and this type of noise could lead to the invalid results.
     6. Using the nonlinear MIAF and the4th order Runge-Kutta algorithm, performed the nonlinear aerodynamic stability analysis under special conditions, and found that the three types of motion mode including the convergence, the divergence and the large identical-amplitude oscillation could occur at the post-flutter status of long span bridges. Discussed the influence of different parameters in the nonlinear aerodynamic differential equation on motion type and the nonlinear aerodynamic stability, and also discussed the influence of turbulent flow on the nonlinear aerodynamic stability in brief. In addition, based on the features of nonlinear MIAF, interpreted the "hard flutter" and "soft flutter" phenomena in long span bridges.
     7. Discussed the outlook of research direction of nonlinear aerodynamics.
引文
[1]Battista R C et al.1993. Global analysis of the structural behaviour of the central spans of Rio-Niterói bridge[A]. PONTE SA Contract Report, 1993,3
    [2]Battista R C, Pfeil M S.1995. Passive damping of vortex-induced oscillations of Rio-Niterói bridge[A]. Passive Damping Vol. of Proc. of SPIE's Smart Structures & Materials Conference.
    [3]Billah K Y, Scanlan R. H..1991. Tacoma Narrows bridge failure and undergraduate physics textbook[J], Am. J. Phys.59(2):118-124.
    [4]Bleich F M.1949. Dynamic instability of truss-stiffened suspension bridges under wind action, Transactions of ASCE,114,1177-1222.
    [5]Bleich F M, et al.1950. The Mathematical Theory of Vibration in Suspension Bridges. Government Printing Office, Bureau of Public Roads. U.S. Department of Commerce. Washington D.C..:52-54
    [6]Board of Engineers 1941.1944. The faile of the Tacoma Narrow Bridge, A reprint of the original report, Bull of the Agricultural and Mechanical College of Texas, Fourth Series,15(1), Bull. No.78.
    [7]B?hm V. F.,1967. Berechnugn nichtlinearer aerodynamisch erregter schwingungen von Hangebriicken[J]. Der Stahlbau, 7:207-215.
    [8]Bryan G H.1911.Stability in aviation. London:Macmillan and Co. [9] Cebeci T, et al.2005. Analysis of Low Speed Unsteady Airfoil Flows. Horizons Publishing, Long Beach, California. Springer, Heidelberg, Germany.
    [10]Chen X. 2000. Matsumoto M. Time domain flutter and buffeting response analysis of bridges. J. Engrg. Mech., ASCE.126(1):7-16
    [11]Chen, X, Kareem, A.2001. Nonlinear response analysis of long-span bridges under turbulent winds. J. Wind Eng. Ind. Aerodyn.89 (14-15),1335-1350.
    [12]Chen, X, Kareem, A. 2003. Aeroelastic analysis of bridges:Effects of turbulence and aerodynamic nonlinearities. J. Eng. Mech. 129 (8), 885-895.
    [13]Chen X. 2007. Improved Understanding of Bimodal Coupled Bridge Flutter Based on Closed Form Solutions [J]. Journal of Structural Engineering, ASCE,133(1):22~31
    [14]Chin S, Lan C E.1992. Fourier functional analysis for unsteady aero dynamics modeling. AIAA Journal,30:2259~2266
    [15]Crafton S B, Libbey C E.1971.Dynamic stability derivatives of a twin-jet fighter model for angles of attack from-10ot o 110o.NASA TN D-6091,1~36
    [16]Davenport A.G.1961. The application of statistical concepts to the wind loading of structures. Proc. ICE,19(2):449-472
    [17]Davenport A.G. 1962a.The response of slender line-like structures to a gusty wind. Proc. ICE, 23(6): 389-408
    [18]Davenport A.G. 1962b. Buffeting of suspension bridge by storm winds. Journal of Structure. Div., ASCE.,88(6):233-264
    [19]Davenport A.G. 1968. The dependence of wind load upon meteorological parameters. Proc. Int. Res. Seminar on Wind Effects on Building and Structure. University of Toronto Press, Toronto:19-82
    [20]Den Hartog, J P.1932. Transmission line vibration due to sleet. Transaction of AIEE, 51, Part 4: 1074-1086
    [21]Den Hartog, J P. 1956. Mechanical Vibrations. New York, McGraw Hill.
    [22]Diana G, Cheli F, Rest F. 1995a. Time domain aeroelastic force identification on bridge decks[C]. Proc. ICWE-9, New Delhi, India.
    [23]Diana G, Falco, et al.,1995b. Comparisons between wind tunnel tests on a full aeroelastic model of the proposed bridge over stretto di messina and numerical results. J. Wind Eng. Ind. Aerodyn. 54-55,101-113.
    [24]Diana G, Bruni A, et al.1998. Aerodynamic challenges in super long span bridge design, Bridge Aerodynamics [M]. Larsen & Esdahl(eds.), Balkema, Rotterdam,131-143
    [25]Diana G, Bruni, S, Rocchi D, 2005. A numerical and experimental investigation on aerodynamic non linearities in bridge response to turbulent wind. In:Proceedings of the EACWE 4, Prague CR.
    [26]Diana G, et al.2007. A new approach to model the aeroelastic response of bridges in time domain by means of a rheological model, Proceedings of the 12th International Conference on Wind Engineering-07. Cairns, Australia.
    [27]Diana G, et al.2008a. Aerodynamic hysteresis:wind tunnel tests and numerical implementation of a fully nonlinear model for the bridge aeroelastic forces. Proceedings of the 4th International Conference on Advance in Wind and Structural-08,944-960. Jeju, Korea.
    [28]Diana G, et al. 2008b. A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain. Journal of Wind Engineering and Industrial Aerodynamics 96,1871-1884.
    [29]Diana G, et al.2010. Aerodynamic instability of a bridge deck section model Linear and nonlinear approach to force modeling. Journal of Wind Engineering and Industrial Aerodynamics 98, 363-374.
    [30]Ding Q, Lee P K K.2000. Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computer and Structures.76(6):787-797
    [31]Ehsan F, Scanlan R H.1990. Vortex-Induced Vibrations of Flexible Bridges[J]. Journal of Engineering Mechanics, 116:1392-1410
    [32]Falco M; Curami A; Zasso A. 1992. Nonlinear effects in sectional model aeroelastic parameter identification[J]. J. Wind Eng. & Ind. Aerodynamics, 41-44:1321 -1332.
    [33]Fujino Y. 2002. Wind-induced vibration and control of Tran-Tokyo Bay Crossing Bridge[J]. J.Stru.Eng, 8:1012-1025.
    [34]Garrick I E. 1939. On some Fourier transforms in the theory of non-stationary flows [C]. Proc.,5th Int. Congress for Applied Mechanics, Wiley, New York
    [35]Hu C C, La n C E.1993. Unsteady aerodynamic models for maneuvering aircraft. AIAA-93-3626-CP, 97~ 112
    [36]Irvine, H. M.,1981. Cable structures, The MIT press.
    [37]Ito M.1995. Suppression of wind-induced vibrations of structures, State of the art volume, Proc. of the 9th International Conf. on Wind Engineering, New Delhi, India.
    [38]Iwamoto M. and Fujino Y.1993. Identification of Flutter Derivatives For Brideg Deck From Free Vibration Data[C]. Proc. APSOWE-3,1:125-130.
    [39]Jain A, Jones N P, Scanlan R H.1996. Coupled flutter and buffering analysis of long-span bridges. Journal of Structural Engineering. ASCE, 122(7):716-725
    [40]Jones, K F.1992. Coupled Vertical and Horizontal Galloping. Journal of Engineering Mechanics 118(1):92-107.
    [41]Jones N P, Shi T H, Ellis J H, Scanlan R H.1995. System-identification procedure for system and input parameters in ambient vibration surveys [J]. J. Wind Eng. & Ind. Aerodynamics, 54-55:91-99.
    [42]Katsuchi H, Jones N P, Scanlan R H.1999. Multi-mode flutter and buffeting analysis of the Akashi-Kaikyo bridge. Journal of Wind Engineering ASCE 125(1):60-70.
    [43]Kl?ppel K., Thiele F.. 1967. Modellversuch in Windkananl Zur Bemessung Von Brucken Gegen die Gefahr Winderregter Schwingungen.Der Stahlbau, 12:68-70
    [44]Kovacs I, Svensson H S, Jordet E.1992. Analytical aerodynamic investigation of cable-stayed Helgeland bridge. Journal of the Structural Division ASCE.118 (1):147-168
    [45]Küssner H G. 1936a. Zusammenfassender Bericht über den instationaren Auftrieb von Flügeln. Luftfahrt-Forschung,13:410-424.
    [46]Küssner H G. 1936b. Untersuchung der Bewegung einer Platte beim Eintritt in eine Strahlgrenze.. Luftfahrt-Forschung,13:435.
    [47]Lan C E, Hu C C.1992. Identification o f aerodynamic models for maneuvering air craft. NASA Grant NAG 1 - 1087,1 ~42
    [48]Larsen A.1995. A generalized model for assessment of vortex-induced vibrations of flexible structures [J]. Journal of Wind Engineering and Industrial Aerodynamics,57:281-294.
    [49]Larsen A, Walther J H.1997.Aeroelastica analysis of bridge girder sections based on discrete vortex simulations[J]. J. of Wind Engineering and Industrial Aerodynamics, 67(2):253-265
    [50]Larsen A, Astiz M. A. 1998a. Aeroelastic considerations for the Gibraltar Bridge feasibility study, Bridge Aerodynamics[M].Larsen & Esdahal(eds.), Balkema, Rotterdam,165-173
    [51]Larsen A, Vejrum T. et al.1998b.,Vortex models for aeroelastic assessment of multi element bridge decks, Bridge Aerodynamics[M]. Larsen & Esdahl(eds.), Balkema, Rotterdam, 313-325
    [52]Larsen A, Esdahl S, Andresen J E et al.2002. Storebaelt suspension bridge -vortex shedding excitation and mitigation by guide vanes[J]. J. Wind Eng. Ind. Aerodyn, 88:283-96
    [53]Li Q C.1995. Measuring flutter derivatives for bridge sectional models in water channel[J]. Journal of Engineering Mechanics, 121(1):90-102.
    [54]Lin G F, Songster T.,Lan C E.1995. Effect of high-alpha unsteady aerodynamics on longitudinal dynamics of an F-18 configuration. AIAA-95-3488-CP, 523-535
    [55]Lin Y K. 1979. Motion of suspension bridges in turbulent wind. Journal of Engineering. Mech. Div., ASCE,100(4):778-796
    [56]Lin Y K. 1980. Ariaratnam S.T. Stability of bridge motion in turbulent winds. Journal of Structural Mechanism. 8(1):1-15
    [57]Lin Y K.1983. Yang J.N. Multimode bridge response to wind excitations. J. Engrg. Mech., ASCE., 109(2):586-603
    [58]Lin Y K, Bucher C G. 1990. Effects of wind turbulence on motion stability of long span bridges. J. Wind Engrg. Indust. Aerodyn. 36(2):366-382
    [59]Lin Y K, Li Q.C.1995. Stochastic stability of wind excited structures J. Wind Engrg. Indust. Aerodyn. 54-55:75-82
    [60]Luat T N, Long P Y, Joseph R. 1981. Self-induced wing rock of slender delta wings. AIAA-81-1883. 1-15
    [61]Luongo A and Piccardo G.1998. Non-linear galloping of sagged cables in 1:2 internal resonance. Journal of Sound and Vibration 214(5):915-940.
    [62]Luongo A and Piccardo G.2005. Linear instability mechanisms for coupled translational galloping. Journal of Sound and Vibration 288(4-5):1027-1047.
    [63]Luongo A, Zulli D, et al.2008. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. Journal of Sound and vibration 315(3):375-393.
    [64]Luongo A, Zulli D, et al.2009. On the effect of twist angle on nonlinear galloping of suspended cables. Computers & Structures 87(15):1003-1014.
    [65]MAW, GU M, et al.2010. Analysis Method of Galloping in arbitrary directions of Iced Conductors.Journal of Tongji University 38(1):130-134.
    [66]Matsumoto M, Shiraishi N, et al.1993.Aerodynamic derivatives of coupled/hybrid flutter of fundamental structural sections [J]. J. Wind Engrg. Indust. Aerodyn, 51:575-584.
    [67]McCroskey W J. 1982. Unsteady Airfoils. Annual Review of Fluid Mechanics. Vol.14:285-311.
    [68]Minh, N N, Miyata T, et al.,1999. Numerical simulation of wind turbulence and buffeting analysis of long-span bridges. J. Wind Eng. Ind. Aerodyn. 83,301-315. Zasso, A.,1996. Flutter derivatives
    [69]Nigol, O. and P. G. Buchan,1981. Conductor Galloping Part I:Den Hartog Mechanism. Power Apparatus and Systems, IEEE Transactions on PAS-100(2):699~707.
    [70]Nigol, O. and P. G. Buchan,1981. Conductor Galloping-Part II:Torsional Mechanism. Power Apparatus and Systems, IEEE Transactions on PAS-100(2):708~720.
    [71]Noda M. et al. Effects of oscillation amplitude on aerodynamic derivatives. Journal of Wind Engineering and Industrial Aerodynamics 91,101-111.2003.
    [72]Novak M.1969. Aeroelastic galloping of prismatic bodies. ASCE J. Eng. Mech.,96:115-142
    [73]Parkinson G V, Smith J D.1964. The square prism as an aeroelastic nonlinear oscillator. Quart. J. Mech. Appl. Math.,17:225-239
    [74]Piccardo G. 1993. A methodology for the study of coupled aeroelastic phenomena[J]. J Wind Eng Indus Aerodynamic, 48:241-252
    [75]Richardson, A S.1988. Predicting Galloping Amplitudes:II. J. Engeg Mech.114(11):1945-1952.
    [76]Robert L Halfman.1952.Experimental aerodynamic derivatives of a sinusoidally oscillating airfoil in two-dimensional flow[R]. Washington, D.C.:Report of National Advisory Committee for Aeronautics of United States, NO.1108.
    [77]Sangsan Lee, Jae Seok Lee, Jong Dae Kim. 1997. Prediction of vortex-induced wind loading on long-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics,67-68:267-268
    [78]Santos J C, Miyata T, Yamada H.1993. Gust response of a long span bridge by the time domain approach. Proceedings of APSWE-3, Hong Kong.
    [79]Sato H., Toriumi R., et al.1995. Aerodynamic characteristics of slotted box girders [A]. Proc. Bridges into the 21st Century [C], Hong Kong, 721-728
    [80]Sarkar P.P..1994. Identification of Aeroelastic parameters of flexible bridge[J]. J. Eng. Mech., ASCE, 120(8):1718-1741.
    [81]Selberg A..1961. Oscillation and aerodynamic stability of suspension bridge. Acta Polytech.13:1-69
    [82]Sears W.R. 1941. Some aspects of non-stationary airfoil theory and its practical application. J. Aeronautical Science.8(3)
    [83]Scanlan R H. and Sabzevari A.1967.Suspension bridge flutter revisited, Preprint No.468. ASCE National Meeting on Structural Engineering, Seattle
    [84]Scanlan R H, Tomko J.1971. Airfoil and bridge deck flutter derivatives. J. Engrg.Mech.Div., ASCE, 97(6):1717~1737.
    [85]Scanlan R H., et al.1974. Indicial aerodynamic functions for bridges deck[J]. J. Engrg.Mech.Div, ASCE,100(4): 657~672.
    [86]Scanlan R H, Gade, R H.1977.Motion of suspended bridge spans under gusty wind. J. Struct. Div., ASCE.,103ST9:1867-1883
    [87]Scanlan R H.1978a. The action of flexible bridges under wind I:Flutter theory. J. Sound and Vibration.60(2):187-199
    [88]Scanlan R H.1978b. The action of flexible bridges under wind Ⅱ:buffeting theory. J. Sound and Vibration.,60(2):201-211
    [89]Scanlan R H.1987. Interpreting aeroelastic models of cable-stayed bridges. J. Engrg. Mech., ASCE., 113(4):555-575
    [90]Scanlan R H., Jones N.P. 1990. Aeroelastic analysis of cable-stayed bridges. J. Struct. Engrg., ASCE. 1990,116(2):279-297
    [91]Scanlan R H.1997. Amplitude and turbulence effects on bridge flutter derivatives. Journal of Structural Engineering.Vol.123 No.2,232-236.
    [92]Shinozuka M, Yun C. B., Imai H.1982. Identificaiton of linear structural dynamic system[J]. Journal of the Engineering Mechanics Division,108(EM6):1371-1390.
    [93]Steinmann D. G,1954. Hangebrücken-Das aerodynamicsche problem und seine l?sung[J]. Acier-Steel-Stahl,19(10-11):495-542
    [94]Strouhal V C.1878. On a particular way of tone generation (in German)[A]. Wiedmann's Annalen der Physik und Chemie, (new series)5:216-251
    [95]Stoker J J.1950. Nonlinear vibration in mechanical and electrical systems. Interscience Pub. Inc.
    [96]Studer H L.1936. Experimentelle Untersuchunger über Flügelscwingungen. Mitt. Inst.Aerodynamik, ETH Zürich, Nr.4/5.
    [97]Theodorsen T.1935. General theory of aerodynamic instability and the mechanism of flutter [R]. NACA Report No.496.
    [98]Theodorsen T. and Garrick I E.1940. Mechanism of flutter:a theoretical and expermental investigation of the flutter problem, NACATR 685
    [99]Thiele F.1976. Zugescharfte Berechnungsweise der Aerodynamischen Stabilitat Weitges pannter Brucken.Der Stahlbau,12:210-215.
    [100]Ueda T., Tanaka T. et al.1998, Aerodynamic stabilization for super long-span suspension bridges, Proc. IABSE Symposium:Long-Span and High Rise Structures [C], Kobe,Japan,721-728
    [101]Ukeguchi N, Sakata H. and Nishitani H.1966. An investigation Of aeroelastic instability of suspension bridges, Proc. Int. symp. on Suspension Bridges, Lisbon, 273 ~ 284
    [102]Van der Put. 1967. Rigidity of Structures against Aerodynamic Force. IABSE.:320-366
    [103]Wagner H.1925. über die entstehung des dynamischen auftriebes von tragflügeln [J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 5(17):17~35
    [104]Walther J H.1993.Discrete Vortex Method for Two-dimensional Flow Past Bodies of Arbitrary Shape Undergoing Prescribed Rotary and Translation Motion[A]. Department of Fluid Mechanic, Technical University of Denmark.
    [105]Walther J H, Larsen A.1997.2D Discrete vortex method for application to bluff body aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics,67-68:183-193
    [106]Wilkinson R H.1981. Fluctuating pressures on an oscillating square prism. Part Ⅱ. Spanwise correlation and loading[J]. Aero. Quarterly, 32(2):111-125
    [107]Wu T, A. Kareem. 2011. Nonlinear modeling of bridge aerodynamics. In:Proceedings of the ICWE 13, Amsterdam NL.
    [108]Xiang H F, Liu C H, Gu M.1995. Time-domain analysis for coupled buffeting response of long span bridges. Proceedings of ICWE-9, New Delhi, India
    [109]Xu Xu, Cao Zhiyuan, 1998. New expressions of nonlinear aerodynamic forces in civil engineering[A]. Proceedings of ICNM-3, Shanghai University Press:396-401
    [110]Yamada H. and Ichikawa H.1989. Estimation of Aerodynamics Parameters By Extended Kalman Filter Algorithm[J]. J. Wind Eng. & Ind. Aerodynamics, 41:133-147.
    [111]Yang W W.1996. Finite element modeling and aerodynamic responses of cable-supported bridges. Doctor of Philosophy. The Hong Kong University of Science and Technology.
    [112]Yoshimuraa T, Mizutaa Y, Yamadab F et al.2001. Prediction of vortex-induced oscillations of a bridge girder with span-wise varying geometry[J]. Journal of Wind Engineering and Industrial Aerodynamics,89:1717-1728
    [113]Yu, P, A. H. Shah, et al.,1992. Inertially Coupled Galloping of Iced Conductors journal of Applied Mechanics-Transactions of the ASME. 59(1):140~144.
    [114]Yu, P, Y. M. Desai, et al.,1993. Three-Degree-of-Freedom Model for Galloping. Part Ⅱ:Solutions. Journal of Engineering Mechanics 119(12):2426-2448.
    [115]Yu, P, Popplewell N, et al,,1995a. Instability trends of inertially coupled galloping:Part I:Initiation. Journal of Sound and vibration 183(4):663~678.
    [116]Yu, P, Popplewell N, et al.1995b. Instability trends of inertially coupled galloping:Part II:Periodic vibrations. Journal of Sound and vibration 183(4):679~691.
    [117]Zasso A., Negri C. S.1993. Flutter derivatives identification through full bridge aeroelastic model transfer function analysis[J]. J. Wind Eng. & Ind. Aerodynamics, 60:17-33.
    [118]Zasso A..1996. Flutter derivatives:Advantages of a new representation convention[J]. J. Wind Eng. & Ind. Aerodynamics, 60:35-47.
    [119]Zhang, X, Xiang, H, Sun, B.2002. Nonlinear aerostatic and aerodynamic analysis of long-span suspension bridges considering wind-structure interactions. J. Wind Eng. Ind. Aerodyn. 90 (9), 1065-1080.
    [120]埃米尔.希缪,罗伯特.H.斯坎伦著(刘尚培,项海帆,谢霁明译).1992.风对结构的作用—风工程导论(第二版)[M].上海:同济大学出版社
    [121]陈伟.1993.大跨度桥梁抖振反应谱研究[D].上海:同济大学博士学位论文.
    [122]陈政清.桥梁风工程[M].北京:人民交通出版社.2005
    [123]陈政清,于向东等.2000.一种在风洞中识别桥梁断面颤振导数的强迫振动方法[C].第十届全国桥梁学术会议论文集,南京.
    [124]陈政清,于向东.2002.大跨度桥梁颤振自激力的强迫振动法研究[J].土木工程学报,35(5):34-41
    [125]丁泉顺.2001.大跨度桥梁耦合颤抖振响应的精细化分析[D].上海:同济大学博士学位论文.
    [126]丁文镜.2009.自激振动.北京:清华大学出版社.
    [127]郭震山.2006.桥梁断面气动导数识别的三自由度强迫振动法[D].上海:同济大学博士论文
    [128]胡晓伦,2006.大跨度斜拉桥颤抖振响应及静风稳定性分析[D],上海:同济大学博十学位论文.
    [129]李明水.1993.连续大气湍流中大跨度桥梁的抖振响应[D].成都:西南交通大学博士学位论文.
    [130]李明水.2011.涡激力偏相关对大跨度桥梁涡振振幅的影响[C].第十七届全国结构风工程会议论文集.浙江杭州.
    [131]李友祥,祝志文,陈政清.2007.识别桥梁断面颤振导数的快速相关特征系统实现算法[J].振动与冲击,27(8):117-121.
    [132]刘春华,项海帆,顾明.1996.大跨度桥梁抖振响应的空间非线性时程分析法[J].同济大学学报.24(4):380-385
    [133]罗延忠.2007.桥梁结构气动导数识别的理论和试验研究[D].长沙:湖南大学博士学位论文.
    [134]马存明.2007.流线型钢箱梁的三维气动导纳研究[D].成都:西南交通大学博士学位论文.
    [135]马存明.2010.柳州双拥大桥全桥气动弹性模型风洞试验研究[C].第八届全国风工程与工业空气动力学会议论文集.宁夏银川.
    [136]马如进.2004.基于气动弹性模型的桥梁断面颤振导数识别[D].上海:同济大学博士学位论文.
    [137]土卫华.2007.模态参数识别算法及应用研究[DJ.长沙:国防科技大学硕士学位论文.
    [138]鲜荣.2009.大跨度桥梁沿跨向主梁涡激振动研究[D]成都:西南交通大学博士研究生学位论文
    [139]项海帆,刘春华.1994.大跨度桥梁耦合抖振响应的时域分析[J].同济大学学报,22(4):451-456
    [140]项海帆.2005.现代桥梁抗风理论与实践[M].北京:人民交通出版社.
    [141]徐旭,曹志远,1999.气动耦合扭转非线性振动的稳定性分析[J],非线性动力学学报,6(3)
    [142]徐旭,曹志远,2001.柔长结构气固耦合的线性与非线性理论[J],应用数学和力学,22(12)
    [143]张朝贵.2007.桥梁主梁”软”颤振及其非线性自激气动力参数识别[D].上海:同济大学硕士论文.
    [144]张若雪.1998.桥梁结果气动参数的识别理论和试验研究[D].上海:同济大学博士学位论文.
    [145]张彦.2009.桥梁气动自激力的数值模拟研究[D]..成都:西南交通大学硕士学位论文.
    [146]张新军,项海帆,陈艾荣.2002.大跨度悬索桥三维颤振的非线性分析[J]..土木工程学报,35(5)
    [147]赵永辉.2007.气动弹性力学与控制[M].北京:科学出版社.
    [148]周述华.1993.大跨度悬索桥空间非线性抖振响应仿真分析[D]..成都:西南交通大学博士论文.
    [149]祝志文,顾明.2006.基于自由振动响应识别颤振导数的特征系统实现算法[J].振动与冲击,25(5):28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700