用户名: 密码: 验证码:
安徽省淮北平原地下水水化学变化特征与源解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安徽省淮北平原位于安徽省北部、黄淮海平原的南端,是我国重要的商品粮食、农副产品基地。由于该地区地表水污染严重,地下水便成为该地区人们生活工作用水的重要来源,因此对于地下水的研究显得尤为重要。论文利用淮北平原已有的国家级或省级监测点(44眼)地下水水质监测资料,系统地分析了淮北平原浅层地下水主要化学特征,总结了该地区地下水水化学成分随着深度和时间以及降雨量的变化特征;查明主要污染组分,研究主要污染离子与其相关的离子之间的相关关系,揭示研究区浅层地下水污染的主要来源和影响因素,得出主要结论如下:
     1)研究区内常规水化学成分变化特征表现为,浅层地下水中的碱土金属含量大于碱金属,多数中深层和深层地下水样中则碱金属含量大于碱土金属。地下水水化学类型由浅到深从HCO_3型向HCO_3-Cl型转变。Na~+、Cl~-、HCO_3-和SO_4~(2-)随深度增加呈现递增趋势,Ca~(2+)则在浅层较高,Mg~(2+)分布均匀。随时间变化方面,pH值在雨季时候的检测值比非雨季时候更接近中性,常规离子(Na~+、Ca~(2+)、Mg~(2+)、Cl~-、SO4~(2+)、HCO_3-)含量雨季时候比非雨季时候高。
     2)通过对检测离子的分析,发现研究区内的主要污染离子为F-、NO_3—N、Fe、和Mn。主要污染离子中,除了Fe以外,在研究区北部的含量均比南部高,尤其是东北部地区的含量通常为其他部分的几倍甚至十几倍。在所有城镇中,灵璧县娄庄镇受污染最严重,除Mn外的其它三种主要污染离子最高含量均出现在该镇周边地区。另外,F-和Fe在地下水中含量分布随着深度而增加。NO_3—N含量随深度递减。Mn表现为一半地下水样随深度而增加,另一半则相反。随时间变化方面,多数离子呈现出随时间变化而上升趋势,且除Mn外,最大值均出现在2008年。对比雨季和非雨季时候检测的主要污染离子浓度也发现其浓度在雨季时候的检测值比非雨季高。
     3)通过F-与Cl~-、Ca~(2+)、(K~++Na~+)/Ca~(2+)比值和pH值之间的相互关系发现,研究区内F-主要来源于含氟矿物的溶解,且主要为萤石(CaF2),碱性的环境对于其释放F-提供了有利条件,当研究区内(K~++Na~+)/Ca~(2+)比值大于2.2137时,出现高氟水的几率较大。由于NO_3—N与Cl~-呈现一定同步增长现象,部分样品中PO_4~(3-)和NH_4~+浓度较高,因此其来源于农业氮肥和动物排泄物的量比来源于人类生活污物稍多,且受生活污水和动物排泄物的氮直接影响的水井不多,生活污水可能是通过地下水道等排水管渗入地层。
     4)通过因子分析确定研究区内浅层地下水污染主要来源于水-岩相互作用、地下水混合作用和人类活动作用三个方面,其贡献率分别为33%、32%和25%且人为因素对于来源于自然过程的离子释放也有一定的影响。
Huaibei Plain, which lies in the north of the Anhui Province and the south of the Huanghuaihai Plain, is the important foundation of food and agricultural bypriducts commodity of our country. Because of the temporal and spatial maldistrubution of precipitation and evaporation, and the serious contamination of the runoffs in this plain, groundwater has become an important source for local residents, and it’s necessary to study the condition of the groundwater. Based on the investigation of the groundwater geochemical data from the available 44 national or provincial surveillance sites, the characteristics of the shallow groundwater in Huaibei Plain was analyzesed systematically, the variation characteristics of the hydrochemical components with the depth, time and rainfall was clarified; the main pollutants were identified, then the correlation between the main pollutants and their correlative ions were studied, and the main source and influent factors of the contamination in the shallow groundwater of the study area were revealed. The main conclusions were as follows:
     1) the concentrations of alkaline earth metals were higher than that of alkaline metals in shallow groundwater, but situations in medium-deep and deep groundwater were opposite. The water type changed from HCO_3 to HCO_3-Cl as the depths increased. Na~+, Cl~-, HCO_3- and SO_4~(2-) concentrations showed the increasing trend as the depths increased, Ca~(2+) concentration was higher in shallow water, and Mg~(2+) distributed well. The pH values were more close to neutrality during the rainy season than those during dry season, the conventional ions contents were higher during the rainy seasons than those during the dry seasons.
     2) Fluoride, nitrate nitrogen, iron, manganese were found to the main pollutants of the study area, through the analysis on the detected ions. The concentrations of all the main pollutants except Fe, were higher in the north of the study area than those in the south,especially those in the northeast, which were usually several or even multiple times as the concentrations in other districts. Of all the towns in the study area, Louzhuang Town in Lingbi County is the most seriously polluted town. Moreover, the F~- and Fe contents in groundwater increased as the depth increasing, while the NO_3—N content decreased as the depth increasing. The concentrations of Mn in half of the groundwater samples increased as the depth, but showed the opposite trend in the other half of the samples. Most of the study ions showed the increasing trend with the time. The highest concentrations of all the study ions except Mn, were found in 2008. According to the comparison of the main pollutants contents during the dry seasons and rainy seasons, the higher contents were found during the rainy season.
     3) Through the analysis on the correlations between F~- and Cl~-, Ca~(2+),( K~++Na~+)/Ca~(2+) ratio and pH value, the fluoride was found to derived from the solution of fluorine minerals, which is probably fluorite (CaF2), and the alkaline environment provided advantage to the release of fluoride. High fluoride groundwater is probably exist, when the (K~++Na~+)/Ca~(2+) ratio reaches 2.2137. NO_3—N was believed mainly derived from nitrogenous fertilizer and animal excrement rather than from human living filth, and there were not many wells that effected by the living filth and animal excrement directly, based on the some synchronized growth of NO_3—N and Cl~-, and the high concentrations of PO_4~(3-) and NH_4~+ in some wells. So the domestic sewage may penetrate into the stratum from drainpipes such as cloaceas.
     4) According to the results of the factor analysis, the pollutants in the groundwater of the study area were affected by water-rock interaction, groundwater mixture process and anthropologic activities, the contribution ratio of which were 33%, 32% and 25%, respectively, and anthropologic activities also influenced the release of the ions in nature process.
引文
[1]王大纯,张人权,史毅虹等.水文地质学基础.地质出版社,1994.
    [2]张翠云,王昭,程旭学.张掖市地下水硝酸盐污染源的氮同位素研究.干旱区资源与环境,2004,18(1):79-85.
    [3]刘心彪,张彦林,王延江等.陇东盆地地下水水化学特征分析.化工矿产地质,2007,29(4):237-241.
    [4]张许良,张子戌,彭苏萍.数量化理论在矿井突(涌)水水源判别中的应用.中国矿业大学学报,2003, 32(3) : 251~254.
    [5]夏筱红,张华,杨伟峰.用模糊综合评判方法判定曹庄煤矿突水水源.西部探矿工程,2002,27 (4) : 54~56.
    [6]魏永强,梁化强,任印国等.神经网络在判别煤矿突水水源中的应用.江苏地质,2004, 28 (1) : 36~38.
    [7]张尧庭,方开泰.多元统计分析引论.北京,科学出版社,1982.
    [8] CollinsA G.. Oilfield Brines, Development in Petroleum Science II. Amsterdam: Elsevier,1980, 23:52-86.
    [9] Sie P M J, Frape S K. Evaluation of the groundwater from the Strips mine using st able chlorine isotopes.Chemical Geology,2002 ,182(2-4): 56 5-582.
    [10] Mohsen Jalali. Geochemistry characterization of groundwater in an agricultural area of Razan, Hamadan, Iran. Environ Geol ,2009,56:1479–1488.
    [11] M.A. Halima. Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. Journal of Hazardous Materials, Sept, 2008: 238-249.
    [12] M. Irfan Yesilnacar, etc. Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey. Environ Geol,2008, 54:183–196.
    [13] M. Jeevanandam, R. Kannan, S. Srinivasalui,etc. Hydrogeochemistry and Groundwater Quality Assessment of Lower Part of the Ponnaiyar River Basin, Cuddalore District, South India. Environ Monit Asses ,2007,132:263–274.
    [14]张惠潼,司希礼,孙影.灰色系统关联分析法在水化学成分特征分析中的应用.山东水利,2005(6):42-43.
    [15]姜谙男,梁冰.地下水化学特征组分识别的粒子群支持向量机方法.煤炭学报,2006 ,31(3):310-314.
    [16]宋献方,李发东,于静洁等.基于氢氧同位素与水化学的潮白河流域地下水水循环特征.地理研究,2007,26(1):11-22.
    [17]杜欣,陈植华,林荣荣等.福建马坑矿区水化学微量组分的指示作用.水文地质工程地质,2008(6):33-36.
    [18]赵枫.艾比湖湿地自然保护区阿其克苏河北岸地下水水化学特征研究.新疆师范大学学报(自然科学版),2008,27(2):100-102.
    [19]马妮娜,杨小平.巴丹吉林沙漠及其东南边缘地区水化学和环境同位素特征及其水文学意义.第四纪研究,2008,28(4):701-711.
    [20]张艳丽.和田县(市)地下水水化学基本特征.新疆地质,2008,26(2):184-189.
    [21] Kohl D H, Shearer G B, CommonerB. Fertilizer nitrogen: Contribution to nitrate in surface water in a corn belt watershed. Science, 1971, 174: 1331-1334.
    [22] Gormly J R, Spalding R F. Sources and concentrations of nitrate-nitrogen in ground water of the Central Platte Region, Nebraska. Ground Water, 1979, 17(3): 291-301.
    [23] Bryan RP,Luis QJ and Charlos DL. Evrionmental isotopes in a study of the origin of salinity of groundwater in the Mexicali Valley.Journal of Hdrology,1979,41(3):201-215.
    [24] Amberger A, et al. Naturliche Isotopengehalte von Nitatals Indikatoren fur dessen Herkunft. Geochimica et Cosmochimica Acta, 1987,51 (10) : 2699- 2705.
    [25] Wassneaar L I. Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using the isotopes of 15N and 18O in NO3- . Applied Geochemistry, 1995,10 (4): 391-405.
    [26] Revesz K, Bohlke J K, Yoshinary. Determination ofδ18O andδ15N in nitrate. Analytical Chemistry, 1997, 69 (21): 4375-4380.
    [27] Silva S R, Wilkson D H, Kendall C, etc. A new method for collection of nitrate from freshwater and the analysis of nitrogen and oxygen isotope ratios. Journal of Hydrology, 2000,228 (122): 22-36.
    [28]潘曙兰,马凤山.海水入侵的同位素研究.地球学报,1997,(18) : 310 - 312.
    [29]张翠云,张胜,李政红等.利用氮同位素技术识别石家庄市地下水硝酸盐污染源.地球科学进展, 2004,19 (2) : 183- 191.
    [30]张翠云,钟佐,沈照理.地下水硝酸盐中氧同位素研究进展.地学前缘, 2003, 10 (1) : 287-291.
    [31]张翠云,郭秀红.氮同位素技术的应用:土壤有机氮作为地下水硝酸盐污染源的条件分析.地球化学,2005, 34 (5):533- 540.
    [32] S.M arimuthu, D.A.Reynolds, C.Le Gal La Salle. A field study of hydraulic, geochemical and stable isotope relationships in a coastal wetlands system. Journal of Hydrology, 2005, 315: 93- 116.
    [33]沈玲玲,李晓,韦玉婷.四川温江金马地区地下水化学特征研究.广东微量元素科学,2006 , 13(9) :56– 60.
    [34]张虎才.元素表生地球化学特征及理论基础.兰州市:兰州大学出版社,1997 :104– 105.
    [35]宁霞,王增银,杨建成.桂林地区岩溶水中Ba元素的水文地球化学特征.中国岩溶,2004 ,23 (4) :317– 321.
    [36]崔学慧,李炳华,陈鸿汉.太湖平原城近郊浅层地下水中多环芳烃污染特征及污染源分析.环境科学.2008,29(7):1806-1811.
    [37] Srinivasa Rao Yammani, T.V.K.Reddy, M.R.K.Reddy. Identification of influencing factors for groundwater quality variation using multivariate analysis. Environ Geol, 2008, 55: 9-16.
    [38]曹三忠.污染因子相关分析判定地下水污染源.中国环境检测,1999,15(3):50-51.
    [39] Bilgehan Nas, Ali Berktay. Groundwater contamination by nitrates in the city of Konya, (Turkey): A GIS perspective. Journal of Environmetal Management,2006, 79:30-37.
    [40]刘英华,张世熔,张素兰等.成都平原地下水硝酸盐含量空间变异研究.长江流域资源与环境,2005, 14(1): 114-117.
    [41]叶乃杰,黄守琳,袁先江.安徽省淮北平原分区灌排综合治理模式探讨.水利水电技术, 2001,32(10):50-51.
    [42]桂和荣,陈路望,宋晓梅.利用氚含量研究皖北矿区深层地下水循环特征.地学前缘, 2004,11(2):351-352.
    [43]汤广民,王友贞,王修贵等.淮北平原区基于大沟蓄水技术的农田水资源调控模式.灌溉排水学报, 2008,27(4):1-5.
    [44]吴泊人,夏琼,钱家忠.Fuzzy概率模型在淮北平原地下水水质评价中的应用.地下水,2007,29(5):95-99.
    [45]乔丛林,史明礼,苏娅等.淮北平原地区水温特征.水文,2000,20(3):55-59.
    [46]徐恒力等.水资源开发与保护.地质出版社,2001.8:100-112.
    [47]赵健.海(咸)水入侵与浅层地下水水化学特征及变化研究.地理科学,1999,19(6):525-531.
    [48] Meybeck, Michel. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads. American Journal of Science ,1987,287(5): 401-428.
    [49] Brenot A, Baran N, Petelet-Giraud E, et al. Interaction between different water bodies in a small catchment in the Paris basin ( Brevilles, France): Tracing of multiple Sr sources through Sr isotopes coupled with Mg/Sr and Ca/Sr ratios.Applied Geochemistry, 2008, 23(1): 58-75.
    [50] Negrel P, Petelet-Giraud E. Strontium isotopes as tracers of groundwater- induced floods: the Somme case study (France). Journal of Hydrology, 2005, 305(14): 99-119.
    [51] Aiuppa A, Bellomoa S, Bruscab L, et a1. Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna,Italy). Applied Geochemistry, 2003, 18(6): 863-882.
    [52] Negrel P, Pauwels H. Interaction between the different water bodies in catchments in Brittany (France) characterizing multiple sources in waters through isotopic tracing. Water, Air and Soil Pollution: Focus, 2003, 3(3): 261-285.
    [53]丁丹,许光泉,何晓文等.淮北平原浅层地下水氟的水化学特征及影响因素.水资源保护,2009,25(2):64-68.
    [54]张永航,周旋,王昌琴等.氟污染区土壤中水溶氟与总氟土壤性质的相关性.环境科学与技术,2006,29(5):9-10
    [55]张威,傅新锋,张甫仁.地下水中氟含量与温度、pH值、(Na++K+)/Ca2+的关系——以河南省永成矿区为例.地质与资源,2004,13(2):109-112.
    [56] Keeney, D.. Sources of nitrate to groundwater. CRC Critical Reviews in Environmental Control, 1986,16, 257–304.
    [57] Eckhardt, D. A. V., & Stackelberg, P. E.. Relation of groundwater quality to land use on Long Island, New York. Groundwater, 1995,33:1019–1033.
    [58] McLay, C. D. A., Dragten, R., Sparling, G., & Selvarajah, N.. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches. Environmental Pollution, 2001,115:191–204.
    [59]沈照理,朱宛华,钟左燊.水文地球化学基础.北京:地质出版社,1993.
    [60] Romic M.,Romic D..Heavy metals distribution in agricultural topsoils in urban area. Eviron. Geol., 2003, 43: 795-805.
    [61] Rajmohan N., Elango L.. Distibution of iron, manganese, zinc and atrazine in groundwater in parts of Palar and Cheyyar River Basins, south India. Environmetal Monitoring and Assessment, 2005, 107: 115-131.
    [62] Pawar N. J., Nikumbh J. D.. Trace element geochemistry of groundwater from Behedi Basinm, Nasik district, Maharashtra. Geol. Soc. India,1999, 54: 501-514.
    [63]朱锦旗,王彩会,陆徐荣等.苏锡常地区浅层地下水铁锰离子分布规律及成因分析.水文地质工程地质,2006,(3):30-34.
    [64]曾贤薇,李晓,龙章亮.北票渗滤取水工程区地下水铁锰离子分布规律及成因分析.地下水,2008,30(3):10-12.
    [65] Mehrotra P., Mehrotra S.. Pollution of groundwater by manganese in Hindon-Yamuna Doab (Noida area) District, Ghaziabad, in Proceedings of the International Seminar on Applied Hydrogeochemistry, Annamalai University, 2000: 106-112.
    [66]陈宇松,王玉婷.贺兰山西侧山前平原地下水系统内氟离子分布规律及成因分析.科技情报开发与经济,2009,19(3):167-170.
    [67]张威,傅新锋,张甫仁.地下水中氟含量与温度、pH值、(Na+ + K+) /Ca+的关系.水文/工程/环境地质,2004,13(2):109-113.
    [68] Handa BK. Geochemistry and genesis of fluoride containing groundwaters in India. Ground Water, 1975,13:275–81.
    [69] Pickering WF. The mobility of soluble fluoride in soils. Environ Pollution,1985,9:281–308.
    [70] WenzelWW, Blum WEH. Fluoride speciation and mobility in fluoride contaminated soil and minerals. Soil Sci,1992,153:357–64.
    [71] Bardsen A, Bgorraton K, Selving KA. Variability in fluoride content of sub-surface water reservoir. Acta Odontol Scand ,1996,54:343–7.
    [72] Subba Rao N, Devadas DJ. Fluoride incidence in groundwater in an area of Peninsula India. Environ Geol, 2003,45:243–51.
    [73] Deshmukh AN, Valadaskar PM, Malpe DB. Fluoride in environment: a review. Gondwana Geol Mag,1995,9:1–20.
    [74] Shah MT, Danishwar S. Potential fluoride contamination in the drinking water of Naranji area, northwest frontier province, Pakistan. Environ Geochem Health,2003,25:475–81.
    [75]唐受印,汪大辉.废水处理工程.北京:化学工业出版社.
    [76]曾溅辉,刘文生.浅层地下水氟的溶解/沉淀作用的定量研究.地球科学,1996,21(3) :337-340.
    [77] Koritnig S. Handbook of Geochemistry, II/1. Berlin,1992.
    [78] Chae GT, Yun ST, Kim K, Mayer B. Hydrogeochemistry of sodiumbicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water–rock interaction and hydrologic mixing. Journal of Hydrology,2006,321:326–43.
    [79] Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D. Groundwater chemistry and water–rock interactions at Stripa. Geochim Cosmochim Acta, 1989,53:1727–40.
    [80] Saxena VK, Ahmed S. Inferring the chemical parameters for the dissolution offluoride in groundwater. Environ Geol, 2003,43:731–6.
    [81]王瑞久,张作辰,李励红.河南鸭河口电厂地下水化学成分背景调查.水文地质工程地质,1999,(1):24-31.
    [82]邢光熹,曹亚澄,施书莲,等.太湖地区水体氮的污染源和反硝化.中国科学,2001,31 (2) :130 -1371.
    [83] Matalas CN, Reiher JB.Some comments on the use of factor analysis.W ater Resour Res,1967,3(1):213–223.
    [84]龚建师,叶念军,顾慰祖等.淮北平原水文地球化学简析.全国地下水资源与环境学术研讨会论文,2005:646-651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700