用户名: 密码: 验证码:
表面活性剂在固液界面及限制空间中的吸附和聚集行为的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂是一类具有表面活性的化合物,溶于液体(特别是水)后,能显著降低溶液的表面张力或界面张力,并能改进溶液的增溶、乳化、分散、渗透、润湿、发泡和洗净等能力,因而广泛应用于纺织、食品、医药、农药、化妆品、建筑、采矿等工业领域。表面活性剂的独特性能与它的特殊结构是分不开的。一个表面活性剂分子通常包含性质不同的两部分,一部分亲水一部分亲油。因此在溶液中或界面上容易自组装成介观尺度下的有序结构(如层状、膜和液晶态等),从而体现出相应的独特宏观行为。正是这种介观尺度下的聚集态直接影响了表面活性剂的性能。表面活性剂的性质和功能都取决于自组装过程。目前,表面活性剂自组装是生物制品和各种功能材料制备的重要手段。因此,表面活性剂自组装特性和聚集体结构的研究已成为当前的研究热点。
     本论文采用晶格蒙特卡罗(Lattice Monte Carlo,LMC)模拟方法研究了表面活性剂在固液界面上及限制空间中的聚集性质,并对其聚集过程进行了探讨。从介观尺度上揭示表面活性剂在界面上及限制空间中的聚集行为,为理论研究和实际应用提供重要依据。论文的主要工作如下:
     1.采用LMC方法模拟研究了表面活性剂在固液界面(疏水表面)上的吸附形貌及形貌转变,重点考察吸附作用能、表面活性剂头基与水之间的相互作用(表面活性剂头的溶解度)、表面活性剂尾基与水及表面活性剂结构的影响,并给出了不同表面活性剂随吸附作用能和表面活性剂头基的溶解度变化的相图。模拟结果除了发现实验报道的半球状胶束和单层这两种聚集形貌外,还发现了另外四种聚集形貌,分别为非稳定胶束,半球一半柱形混合胶束,蠕虫状半柱形胶束和带孔单层。表面吸附作用能和表面活性剂头基与水之间的相互作用不仅影响表面活性剂在表面上的聚集形貌还影响表面吸附量的大小。表面吸附作用能越大,表面活性剂越倾向于形成曲率较低的表面聚集形貌,并且表面吸附量越大。与此相反,表面活性剂头基与水之间的吸引作用越强,表面活性剂越倾向于形成曲率较高的表面聚集形貌,并且表面吸附量越小。
     2.采用LMC方法研究表面活性剂溶液在限制空间内的吸附和聚集行为,包括由两个相同的平行疏水固体表面组成的狭缝孔和由固体粒子组成随机孔。
     首先考察了孔宽和表面活性剂浓度对狭缝孔中表面活性剂溶液的聚集形貌的影响,并给出不同表面活性剂聚集形貌随孔宽和浓度变化的相图。模拟结果表明,从表面单层结构到双层结构的转变过程中存在一中间态——桥形结构,并且它的存在依赖于转变路径及表面活性剂分子结构。该结构的存在可能是相距较远的两个表面间长程疏水吸引作用的一种来源。
     然后研究了随机孔中表面活性剂溶液的聚集性质,尤其是固体粒子(拥挤分子)对表面活性剂溶液的临界胶束浓度(CMC)的影响。主要考察固体粒子的排列方式,包括规则排列和随机排列两种方式以及固体粒子的体积分数对受限表面活性剂CMC的影响。模拟结果表明,固体粒子的存在使受限表面活性剂的CMC偏离其体相值。总体而言,因拥挤而产生的两种因素决定其偏离程度的大小,一种是由表面活性剂与固体粒子间的体积排斥效应引起的排空效应(depletion effect),另一种是胶束形成的旌可达体积(the available volume for micelle formation)。排空效应不可避免地导致表面活性剂在远离固体粒子的区域富集,从而导致CMC的减小。另一方面,固体粒子的存在会减小胶束形成的可达体积,这将减小体系的构象熵,阻止胶束的形成,从而导致CMC升高。正是这两种因素的竞争决定着受限表面活性剂的CMC的偏离程度。
     3.结合LMC和标准盒子(Gauge Cell)方法研究表面活性剂溶液在亲水表面上的吸附和相行为,考察了温度、吸附作用能以及表面活性剂分子结构的影响。模拟结果表明,不同体系存在两种不同的相分离方式,即宏观相分离和微观相分离。对于发生宏观相分离的体系,有两种不同的动力学机制,在相分离区域遵从成核生长机理。该体系存在临界温度和临界吸附作用能。在临界温度以下或临界吸附作用能以上,体系发生宏观相分离,微量吸附相和双层相两相共存,吸附等温线明显有一回滞环,这是一级相变的特征表现。对于发生微观相分离的体系,在对数坐标系里的吸附等温线分为四个区,分别为微量吸附区,半胶束区,结构转变区和平台区,这与实验结果一致。
Surfactants are a class of surface active compounds. Surfactants can substantially lower the surface tension of the liquid or interfacial tension when they are solved in liquids (especially water). As a result, they can improve the properties of solution, such as solubilization, emulsification, dispersion, penetration, wetting, foaming, cleaning, etc. Therefore, they are widely used in many industrial fields, such as textile, food, medicine, pesticides, cosmetics, building, mining, and so on. A surfactant contains both hydrophobic (the "tails") and hydrophilic groups (the "heads"). Due to their unique architetures, surfactants can easily self-assemble into the ordered structures at mesoscopic scale (such as layer, membrane, and liquid crystal state, etc.). It is the aggregates at mesoscopic scale that directly affect the properties of surfactants. Therefore, the properties and functions of surfactants depend on the self-assembly process. At present, the self-assembly of surfactants is important means to prepare the biological and functional materials. Therefore, the properties of self-assembly of surfactant and aggregate morphology have become a current research focus.
     In this thesis, Lattice Monte Carlo (LMC) simulation method was used to study the aggregation behaviors of surfactants on solid surfaces and in confined space, and to explore their aggregation process. We would like to reveal the mechanism of self-assembly of surfactants at mesoscopic scale, to offer useful information for theoretical research and practical applications. The main contents and findings are summarized as follows.
     1. The LMC method was used to study the adsorption morphologies and morphology transition of surfactants in a solid-liquid interface (hydrophobic surface). Several impact factors are considered, i. e. the adsorption energy, the interaction between head groups of surfactants and water (the solubility of head groups), the interaction between tail groups of surfactants and water, and the surfactant structure. The phase diagrams in adsorption energy-the solubility of head groups panel for the different surfactants are given. The simulation results show that there exist six adsorbed morphologies: (1) premature admicelle, (2) hemisphere, (3) hemisphere-hemicylinder mixture, (4) worm-like hemicylinder, (5) perforated monolayer, (6) monolayer, among which hemisphere and monolayer are observed by experimental works. The surface morphologies and the amount of adsorption on hydrophobic surfaces are found to be affected obviously by two interchange parameters. One is the attractive interaction between tail groups and surface (the adsorption energy), and the other is the solubility of head groups in bulk. When the adsorption energy of surface is stronger, the surfactants are inclined to form the surface aggregation morphology with smaller curvature, and the amount of surface adsorption is greater. On the contrary, when the attractive interaction between the head groups and water is stronger, the adsorbed surfactants are inclined to form the surface aggregation morphology with larger curvature, and the amount of surface adsorption is smaller.
     2. The LMC method was used to study the behaviors of adsorption and aggregation of surfactants in confined space, including narrow pores composed of two parallel hydrophobic surfaces and random pores composed of randomly arranged solid particles.
     Firstly, the effects of the size of narrow pores and surfactant concentration on the aggregation morphologies of surfactants are studied. The phase diagrams in the pore size-surfactant concentration panel for different surfactants are given. The simulation results show that an intermediate state, which is called the bridge structure, may exist during the phase transition from the monolayers on each solid surface to bilayer structures between the adsorbed monolayers. Moreover, the occurrence of the bridge phase during the monolayer-bilayer transition is found to be dependent on the transition path and the surfactant architecture. In addition, it is suggested that the bridge structure may be one of possible origin for the long-range hydrophobic force between two solid surfaces.
     Then, the self-assembly of surfactants confined in random pores which are composed of different arrangement of solid particles is studied. The effects of solid particles (crowding agents) on the critical micelle concentration (CMC) of surfactants are particularly investigated. Three different factors are considered, i. e., the size, arrangement, and volume fraction of solid particles. The simulation results show that the existence of solid particles strongly shifts the critical micelle concentration (CMC) of surfactants from the bulk value. Two effects originated from crowding are found to govern the CMC shift: one is the depletion effects by crowding agents and the other is the available volume for micelle formation. The depletion effects inevitably result in the enrichment of surfactants in crowding-free regions, and cause the decrease of CMC. On the other hand, the appearance of solid particles decreases the available volume for micelle formation, which reduces the conformational entropy, impedes the micelle formation, and causes the increase of CMC. The trends of CMC shifts are interpreted from the competition between the depletion effects and the available volume for micelle formation.
     3. The LMC combined with the gauge cell method was used to study the adsorption and phase behaviors of surfactants on a hydrophilic surface. The effects of temperature, adsorption energy, and surfactant structure are considered. The simulation results show that there exist two different phase separations for different systems, i. e., macrophase separation and microphase separation. For the case of macrophase separation, there exist two different physical mechanisms of phase separation. In the phase transition region, the layer growth proceeds through the nucleation mechanism, whereas above the limits this mechanism is not available. There exist a critical temperature and critical adsorption energy, below which macrophase separation occurs; the low-affinity adsorption and the bilayer phase coexist. Such a surface phase transition in adsorption isotherm is featured by a hysteresis loop, which is the characteristic of a typical first order phase transition. For the case of microphase separation, the adsorption isotherm in adsorption processes is divided into four regions in a log-log plot, being in agreement with experimental observations. They are the low-affinity adsorption region, the hemimicelle region, the morphological transition region, and a plateau region, respectively.
引文
[1]Chemical Market Reporter[J].2002,262(11):16
    [2]曹同玉.聚合物乳液合成原理、性能及应用[M].北京:化学工业出版社,1997.
    [3]任天斌,张洪涛.日用化学工业[J].2000,3(6):25-28
    [4]化学化工百科全书编辑委员会.化学化工百科全书[M].第一卷,688
    [5]张卫丽,李淑英.表面活性剂的应用和发展[J].全面腐蚀控制,2005,19(6):42-44
    [6]霍姆博格等著,韩丙勇,张学军译.水溶液中的表面活性剂和聚合物(原著第二版)[M].北京:化学工业出版社,2005.3
    [7]冯胜.精细化工手册(下)[M].广州:广州广东科技出版社,1995.468-470
    [8]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003.199
    [9]O'Lenick A J.Surfactants:Chemistry and Properties[J].Sofw Journal,1999,125:54
    [10]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社1991.35
    [11]刘程.表面活性剂应用手大全(修订版)[M].北京:化学工业出版社,1997.24-103
    [12]夏纪鼎,倪永全.表面活性剂和洗涤剂化学与工艺学[M].北京:中国轻工业出版社,1997.1-366
    [13]梁梦兰.表面活性剂和洗涤剂--制备、性质、应用[M].北京:科技文献大学出版社,1990.5-219
    [14]刘薇绎.表面活性剂全球展望[J].精细石油化工进展,1997,1(1):48-52,26
    [15]北原文雄.表面活性剂:物性、应用、化学生物学[M].北京:化学工业出版社,1984.23-34
    [16]陶玉钢,毛培坤,崔正刚.阳离子表面活性剂在高新技术领域中的应用[J].日用化学工业,2001,6(12):23-25
    [17]Vievsky A.Cationic Surfactants:new perspectives in medicine and biology[J].Tenside,Surfactants,Detergents,1997,34(1):18-21
    [18]史振民等.离子表面活性剂胶束对阿司西林的碱术解反应的抑制作用[J].应用化学,1997,14(1):110-112
    [19]Bigorra,Joaguin,et.al.Preparation of quaternized fatty acid amidoamineethoxylate cationic surfactants[P].Patent,EP:87500,1998-11-04
    [20]Getal M A,et.al.Antiseptic agent for prophylaxis of AIDS virus[P].Patent,RU:200115,1994-02-15
    [21]Akio N.Sheets for pretection of silicon wafer surfaces and their uses[P],JP:07-20178:1995-08-04
    [22]Monel G.Purification of water containing nitrate or sulfate ions by surfactant-modified ultrafitration memabrane[J].Recents Prog.Genie Procedes,1993,(7):291-295
    [23]孙闻东等.双烃型表面活性剂的乳状液膜提取铬离子的研究[J].膜科学与技术,1997,(3):30-35
    [24]Tanford C.The Hydrophobic Effect:Formation of Micelles and Biological Membranes[M].New York:John Wiley & Sons Inc,1980.
    [25]Schick M J.Nonionic Surfactants - Physical Chemistry(Surfactant Science Series Vol 23)[M].New York:CRC,1987.
    [26]Rosen M J.Surfactants and Interfacial Phenomena[M].2nd Ed,New York:Wiley,1989.
    [27]Israelachvili J.Intermolecular and Surface Forces[M].2nd ed,London:Academic Press,1992.
    [28]Mackie A D,Panagiotopoulos A Z,Szleifer I.Aggregation behavior of a lattice model for amphiphiles[J].Langmuir,1997,13(19):5022-5031
    [29]Xing L,Mattice W L.Strong solubilization of small molecules by triblock-copolymer micelles in selective solvents[J].Macromolecules,1997,30(6):1711-1717
    [30]Viduna D,Milchev A,Binder K.Monte Carlo simulation of micelle formation in block copolymer solutions[J].Macromolecular Theory and Simulations,1998,7(6):649-658
    [31]Floriano M A,Caponetti E,Panagiotopoulos A Z.Micellization in model surfactant systems[J].Langmuir,1999,15(9):3143-3151
    [32]Von Gottberg K,Smith K A,Hatton T A.Stochastic dynamics simulation of surfactant self-assembly[J].Journal of Chemical Physics,1997,106(23):9850-9857
    [33]Missel P J,Mazer N A,Benedek G B,et al.Thermodynamic Analysis of the Growth of Sodium Dodecyl-Sulfate Micelles[J].Journal of Physical Chemistry,1980,84(9):1044-1057
    [34]王湘英.阳离子表面活性剂N,N-二甲基-N-丙烯基十二烷基溴化按(ADDB)分子在水溶液中囊泡向胶束的转变[J].株洲师范高等专科学校学报,2007,12(2):5-8
    [35]Chen H,Ye Z B,Han L J,et al.Temperature-induced micelle transition of gemini surfactant in aqueous solution[J].Surface Science,2007,601(10):2147-2151
    [36]Bulut S,Hamit J,Olsson U,et al.On the concentration-induced growth of nonionic wormlike micelles[J].European Physical Journal E,2008,27(3):261-273
    [37]Haldar J,Aswal V K,Goyal P S,et al.Role of incorporation of multiple headgroups in cationic surfactants in determining micellar properties.Small-angle-neutron-scattering and fluorescence studies[J].Journal of Physical Chemistry B,2001,105(51):12803-12808
    [38]Wang W,Lu W,Jiang L.Influence of pH on the aggregation morphology of a novel surfactant with single hydrocarbon chain and multi-amine headgroups[J].Journal of Physical Chemistry B,2008,112(5):1409-1413
    [39]Bergsma M,Fielden M L,Engberts J.pH-dependent aggregation behavior of a sugar-amine gemini surfactant in water:Vesicles,micelles,and monolayers of hexane-1,6-bis(hexadecyl-1'-deoxyglucitylamine)[J].Journal of Colloid and Interface Science,2001,243(2):491-495
    [40]Nusselder J J H,Engberts J.Relation between Surfactant Structure and Properties of Spherical Micelles - 1-Alkyl-4-Alkylpyridinium Halide Surfactants[J].Langmuir,1991,7(10):2089-2096
    [41]苑世领,蔡政亭,徐桂英.表面活性剂在溶液中聚集形态的动力学模拟[J].化学学报,2002,60(2):241-245
    [42]高健,葛蔚,李静海.浓度对表面活性剂胶团形状影响的分子动力学模拟[J].中国科学B 辑化学,2005,35(3):252-257
    [43]何雪莲,史济斌,彭昌军,et al.非离子表面活性剂溶液自聚集行为的Monte Carlo模拟[J].华东理工大学学报(自然科学版)2005,31(2):173-176
    [44]Arai N,Yasuoka K,Masubuchi Y.Spontaneous self-assembly process for threadlike micelles[J].J Chem Phys,2007,126(24):244905
    [45]Zehl T,Wahab M,Mogel H J,et al.Monte Carlo simulations of self-assembled surfactant aggregates[J].Langmuir,2006,22(6):2523-2527
    [46]Palmer B J,Liu J.Simulations of micelle self-assembly in surfactant solutions[J].Langmuir,1996,12(3):746-753
    [47]Karaborni S,O'Connel J P.Molecular-Dynamics Simulations of Model Micelles.4.Effects of Chain-Length and Head Group Characteristics[J].Journal of Physical Chemistry,1990,94(6):2624-2631
    [48]Shelley J,Watanabe K,Klein M L.Simulation of a Sodium Dodecyl-Sulfate Micelle in Aqueous-Solution[J].International Journal of Quantum Chemistry,1990:103-117
    [49]Mackerell A D.Molecular-Dynamics Simulation Analysis of a Sodium Dodecyl-Sulfate Micelle in Aqueous-Solution - Decreased Fluidity of the Micelle Hydrocarbon Interior[J].Journal of Physical Chemistry,1995,99(7):1846-1855
    [50]Bruce C D,Berkowitz M L,Perera L,et al.Molecular dynamics simulation of sodium dodecyl sulfate micelle in water:Micellar structural characteristics and counterion distribution[J].Journal of Physical Chemistry B,2002,106(15):3788-3793
    [51]Maillet J B,Lachet V,Coveney P V.Large scale molecular dynamics simulation of self-assembly processes in short and long chain cationic surfactants[J].Physical Chemistry Chemical Physics,1999,1(23):5277-5290
    [52]Bocker J,Brickmann J,Bopp P.Molecular-Dynamics Simulation Study of an N-Decyltrimethylammonium Chloride Micelle in Water[J].Journal of Physical Chemistry,1994,98(2):712-717
    [53]Grant L M,Tiberg F,Ducker W A.Nanometer-scale organization of ethylene oxide surfactants on graphite,hydrophilic silica,and hydrophobic silica[J].Journal of Physical Chemistry B,1998,102(22):4288-4294
    [54]Patrick H N,Warr G G,Manne S,et al.Self-assembly structures of nonionic surfactants at graphite/solution interfaces[J].Langmuir,1997,13(16):4349-4356
    [55]Holland N B,Ruegsegger M,Marchant R E.Alkyl group dependence of the surface-induced assembly of nonionic disaccharide surfactants[J].Langmuir,1998,14(10):2790-2795
    [56]Grant L M,Ducker W A.Effect of substrate hydrophobicity on surface-aggregate geometry:Zwitterionic and nonionic surfactants[J].Journal of Physical Chemistry B,1997,101(27):5337-5345
    [57]Tiberg F.Physical characterization of non-ionic surfactant layers adsorbed at hydrophilic and hydrophobic solid surfaces by time-resolved ellipsometry[J].Journal of the Chemical Society,Faraday Transactions,1996,92(4):531-538
    [58]Grant L M,Ederth T,Tiberg F.Influence of surface hydrophobicity on the layer properties of adsorbed nonionic surfactants[J].Langmuir,2000,16(5):2285-2291
    [59]Fragneto G,Lu J R,McDermott D C,et al.Structure of monolayers of tetraethylene glycol monododecyl ether adsorbed on self-assembled monolayers on silicon:A neutron reflectivity study[J].Langmuir,1996,12(2):477-486
    [60]毛逢银,黄小兵,曹理兵等.表面活性剂及复配在云母片上吸附的AFM研究[J].润滑与密封,2006,8:115-117
    [61]赵丰,杜玉扣,扬平等.CTAB在云母表面吸附的AFM研究[J].中国科学B辑化学,2004,34(5):369-374
    [62]卫一龙,戎宗明,刘洪来等.直链型非离子表面活性剂在油水界面吸附的动态Monte Carlo 模拟[J].化工学报,2005,56(5):894-899
    [63]刘俊吉,王创业,徐凌.表面活性剂在气/液界面上的吸附动力学[J].化学工业与工程,2005,22(1):4-7
    [64]王月星,韩冬,王红庄等.Gemini表面活性剂的吸附、自聚和性质[J].化学世界,2003,(4):216-219
    [65]王月星,鲁毅强,韩冬等.Gemini表面活性剂在固液界面的吸附[J].聊城大学学报(自然科学版),2003,16(3):39-41
    [66]王月星,韩冬,鲁毅强等.Gemini表面活性剂在固液界面的吸附及增溶作用[J].化学世界, 2006,(1):57-59
    [67]唐世华,黄建滨,李子臣等.Gemini(孪联)表面活性剂的界面性质与应用[J].日用化学工业,2001,(6):26-29
    [68]Srinivas G,Nielsen S O,Moore P B,et al.Molecular dynamics simulations of surfactant self-organization at a solid-liquid interface[J].Journal of the American Chemical Society,2006,128(3):848-853
    [69]Lamont R E,Ducker W A.Surface-Induced Transformations for Surfactant Aggregates[J].Journal of the American Chemical Society,1998,120:7602-7607
    [70]Wanless E J,Ducker W A.Organization of sodium dodecyl sulfate at the graphite-solution interface[J].Journal of Physical Chemistry,1996,100(8):3207-3214
    [71]Ducker W A,Grant L M.Effect of substrate hydrophobicity on surfactant surface-aggregate geometry[J].Journal of Physical Chemistry,1996,100(28):11507-11511
    [72]Schweighofer K J,Essmann U,Berkowitz M.Simulation of Sodium Dodecyl Sulfate at the Water-Vapor and Water-Carbon Tetrachloride Interfaces at Low Surface Coverage[J].The Journal of Physical Chemistry B,1997,101(19):3793-3799
    [73]Liu J F,Ducker W A.Surface-induced phase behavior of alkyltrimethylammonium bromide surfactants adsorbed to mica,silica,and graphite[J].Journal of Physical Chemistry B,1999,103(40):8558-8567
    [74]Wolgemuth J L,Workman R K,Manne S.Surfactant aggregates at a flat,isotropic hydrophobic surface[J].Langmuir,2000,16(7):3077-3081
    [75]Manne S,Cleveland J P,Gaub H E,et al.Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double-Layer[J].Langmuir,1994,10(12):4409-4413
    [76]Velegol S B,Fleming B D,Biggs S,et al.Counterion effects on hexadecyltrimethylammonium surfactant adsorption and self-assembly on silica[J].Langmuir,2000,16(6):2548-2556
    [77]Kiraly Z,Findenegg G H.Calorimetric evidence of the formation of half-cylindrical aggregates of a cationic surfactant at the graphite/water interface[J].Journal of Physical Chemistry B,1998,102(7):1203-1211
    [78]Wijmans C M,Linse P.Surfactant self-assembly at a hydrophilic surface.A monte carlo simulation study[J].Journal of Physical Chemistry,1996,100(30):12583-12591
    [79]Reimer U,Wahab M,Schiller P,et al.Monte Carlo simulation of the adsorption equilibrium of a model surfactant solution on hydrophilic solid surfaces[J].Langmuir,2001,17(26):8444-8450
    [80]Shah K,Chiu P,Sinnott S B.Comparison of morphology and mechanical properties of surfactant aggregates at water-silica and water-graphite interfaces from molecular dynamics simulations[J].Journal of Colloid and Interface Science,2006,296(1):342-349
    [81]Shah K,Chiu P,Jain M,et al.Morphology and mechanical properties of surfactant aggregates at water-silica interfaces:Molecular dynamics simulations[J].Langmuir,2005,21(12):5337-5342
    [82]Bandyopadhyay S,Shelley J C,Tarek M,et al.Surfactant aggregation at a hydrophobic surface[J].Journal of Physical Chemistry B,1998,102(33):6318-6322
    [83]Rupprecht H,Ullmann E,Thoma K.Fortschr.Kolloid Polym.,1971,55:45
    [84]Rupprecht H,Gu T.Structure of Adsorption Layers of Ionic Surfactants at the Solid Liquid Interface[J].Colloid and Polymer Science,1991,269(5):506-522
    [85]Scrimin P,Caruso S,Paggiarin N,et al.Ln(Ⅲ)-catalyzed cleavage of phosphate-functionalized synthetic lipids:Real time monitoring of vesicle decapsulation[J].Langmuir,2000,16(1):203-209
    [86] Gao Y Y, Du J H, Gu T R. Hemimicelle Formation of Cationic Surfactants at the Silica-Gel Water Interface[J]. Journal of the Chemical Society-Faraday Transactions I, 1987, 83: 2671-2679
    [87] Gu T, Zhi H. Thermodynamics of Hemimicellization of Cetyltrimethylammonium Bromide at the Silica-Gel Water Interface[J]. Colloids and Surfaces, 1989, 40(1-2): 71-76
    [88] Rupprech H H. Influence of Solvents on Adsorption of Ionic Surfactants on Highly Dispersed Silicas[J]. Journal of Pharmaceutical Sciences, 1972, 61(5): 700
    [89] Somasund P, Fuersten D W. Mechanisms of Alkyl Sulfonate Adsorption at Alumina-Water Interface[J]. Journal of Physical Chemistry, 1966, 70(1): 90
    [90] Pethica B A. Adsorption equilibria in surface force balance studies [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1995, 105(2-3): 257-264
    [91] Podgornik R, Parsegian V A. Forces between Ctab-Covered Glass Surfaces Interpreted as an Interaction-Driven Surface Instability [J]. Journal of Physical Chemistry, 1995, 99(23): 9491-9496
    [92] Christenson H K, Yaminsky V V. Is the long-range hydrophobic attraction related to the mobility of hydrophobic surface groups?[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1997, 130: 67-74
    [93] Subramanian V, Ducker W. Proximal adsorption of cationic surfactant on silica at equilibrium[J]. Journal of Physical Chemistry B, 2001,105(7): 1389-1402
    [94] Lokar W J, Ducker W A. Proximal adsorption of dodecyltrimethylammonium bromide to the silica-electrolyte solution interface[J]. Langmuir, 2002, 18(8): 3167-3175
    [95] Lokar W J, Ducker W A. Proximal adsorption at glass surfaces: Ionic strength, pH, chain length effects[J]. Langmuir, 2004, 20(2): 378-388
    [96] Lokar W J, Koopal L K, Leermakers F A M, et al. Confinement-induced phase behavior and adsorption regulation of ionic surfactants in the aqueous film between charged solids[J]. Journal of Physical Chemistry B, 2004, 108(39): 15033-15042
    [97] Kjellin U R M, Claesson P M. Surface properties of tetra(ethylene oxide) dodecyl amide compared with poly(ethylene oxide) surfactants. 2. Effect of the headgroup on surface forces[J]. Langmuir, 2002, 18(18): 6754-6763
    [98] Herder P C. Forces between Hydrophobed Mica Surfaces Immersed in Dodecylammonium Chloride Solution[J]. Journal of Colloid and Interface Science, 1990, 134(2): 336-345
    [99] Yuet P K.A simulation study of electrostatic effects on mixed ionic micelles confined between two parallel charged plates[J]. Langmuir, 2004,20(19): 7960-7971
    [100] Koopal L K, Leermakers F A M, Lokar W J, et al. Confinement-induced phase transition and hysteresis in colloidal forces for surfactant layers on hydrophobic surfaces[J]. Langmuir, 2005, 21(22): 10089-10095
    [101] Leermakers F A M, Koopal L K, Lokar W J, et al. Modeling of confinement-induced phase transitions for surfactant layers on amphiphilic surfaces[J]. Langmuir, 2005, 21(24): 11534-11545
    [102] Babin V, Ciach A. Double-diamond phase in amphiphilic systems confined between parallel walls[J]. The Journal of Chemical Physics, 2001, 115: 2786
    [103] Holyst R, Oswald P. Confinement induced topological fluctuations in a system with internal surfaces[J]. Physical Review Letters, 1997,79(8): 1499-1502
    [104] Dominguez J M, Rosas R, Aburto J, et al. Synthesis of silica spheres with neutral and ionic amphiphiles and their interaction with photosensitive spiropyrans[J]. Microporous and Mesoporous Materials, 2009, 118(1-3): 121-133
    [105] Fornasieri G, Badaire W, Backov R, et al. Mesoporous and homothetic silica capsules in reverse-emulsion microreactors[J]. Advanced Materials, 2004, 16(13): 1094-+
    [106] Gunawan P, Xu R. Synthesis of unusual coral-like layered double hydroxide microspheres in a nonaqueous polar solvent/surfactant system[J]. Journal of Materials Chemistry, 2008, 18(18): 2112-2120
    [107] Kun H, Qinghai S, Daobo N, et al. Synthesis of amphiphilic dye-self-assembled mesostructured powder silica with enhanced emission for directional random laser[J]. Chemistry of Materials, 2008:3814-3820
    [108] Li J Q, Kessler H, Soulard M, et al. Nanosized zinc sulfide obtained in the presence of cationic surfactants[J].Advanced Materials, 1998, 10(12): 946
    [109] Tan B, Vyas S M, Lehmler H J, et al. Unusual dependence of particle architecture on surfactant concentration in partially fluorinated decylpyridinium templated silica[J]. Journal of Physical Chemistry B, 2005, 109(49): 23225-23232
    [110] Bradley K F, Chen S H, Thiyagarajan P. Micellar formation and correlation in the cavity of porous silica glass[J]. Physical Review A, 1990,42(10): 6015-6023
    [111] Nibu Y, Suemori T, Inoue T. Phase behavior of binary mixture of heptaethylene glycol decyl ether and water: Formation of phase compound in solid phase[J]. Journal of Colloid and Interface Science, 1997, 191(1): 256-263
    [112] Nibu Y, Inoue T. Solid-liquid phase behavior of binary mixture of tetraethylene glycol decyl ether and water[J]. Journal of Colloid and Interface Science, 1998, 205(2): 231-240
    [113] Nibu Y, Inoue T. Phase behavior of aqueous mixtures of some polyethylene glycol decyl ethers revealed by DSC and FT-IR measurements[J]. Journal of Colloid and Interface Science, 1998, 205(2): 305-315
    [114] Funari S S, Holmes M C, Tiddy G J T. Intermediate Lyotropic Liquid-Crystal Phases in the C16eo6/Water System[J]. Journal of Physical Chemistry, 1994, 98(11): 3015-3023
    [115] Fairhurst C E, Holmes M C, Leaver M S. Structure and morphology of the intermediate phase region in the nonionic surfactant C16EO6/water system[J]. Langmuir, 1997, 13(19): 4964-4975
    [116] Qiu H, Caffrey M. Lyotropic and thermotropic phase behavior of hydrated monoacylglycerols: Structure characterization of monovaccenin[J]. Journal of Physical Chemistry B, 1998, 102(24): 4819-4829
    [117] Qiu H, Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects[J]. Biomaterials, 2000, 21 (3): 223-234
    [118] Qiu H, Caffrey M. Phase behavior of the monoerucin/water system[J]. Chemistry and.Physics of Lipids, 1999, 100(1-2): 55-79
    [119] Briggs J, Chung H, Caffrey M. The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system[J]. Journal De Physique Ii, 1996, 6(5): 723-751
    [120] Fukada K, Matsuzaka Y, Fujii M, et al. Phase behavior and lyotropic-liquid crystal structure of alkyltrimethylammonium bromide-water mixtures around freezing temperature of water[J]. Thermochimica Acta, 1998,308(1-2): 159-164
    [121] Fodi B, Hentschke R. Simulated phase behavior of model surfactant solutions[J]. Langmuir, 2000,16(4): 1626-1633
    [122] Nakamura H, Tamura Y. Phase diagram for self-assembly of amphiphilic molecule C12E6 by dissipative particle dynamics simulation[J]. Computer Physics Communications, 2005, 169(1-3): 139-143
    [123] Koch S. New aspects of shear induced phase transition in dilute cationic surfactant solutions[J]. Xiith International Congress on Rheology, Proceedings, 1996: 229-230
    [124] Imai M, Nakaya K, Kato T, et al. Shear effects on the morphology transition in a nonionic surfactant system[J]. Journal of Physics and Chemistry of Solids, 1-999, 60(8-9): 1313-1319
    [125] Wang X Y, Zhu J L, Wang J B, et al. Micelle formation and aggregate morphology transition from vesicle to rod micelle for allyl alkyldimethylammonium bromide cationic surfactant[J]. Journal of Dispersion Science and Technology, 2008, 29(1): 83-88
    [126] Egelhaaf S U, Olsson U, Schurtenberger P. Time-resolved SANS for surfactant phase transitions[J]. Physica B, 2000, 276: 326-329
    [127] Egelhaaf S U, Schurtenberger P. Micelle-to-vesicle transition: A time-resolved structural study[J]. Physical Review Letters, 1999, 82(13): 2804-2807
    [128] Silvander M, Karlsson G, Edwards K. Vesicle solubilization by alkyl sulfate surfactants: A cryo-TEM study of the vesicle to micelle transition[J]. Journal of Colloid and Interface Science, 1996, 179(1): 104-113
    [129] Edwards K, Gustafsson J, Almgren M, et al. Solubilization of Lecithin Vesicles by a Cationic Surfactant - Intermediate Structures in the Vesicle Micelle Transition Observed by Cryo-Transmission Electron-Microscopy [J]. Journal of Colloid and Interface Science, 1993, 161(2): 299-309
    [130] Leng J, Egelhaaf S U, Cates M E. Kinetic pathway of spontaneous vesicle formation[J]. Europhysics Letters, 2002, 59(2): 311-317
    [131] Motschmann H, Lunkenheimer K. Phase transition in an adsorption layer of a soluble surfactant at the air-water interface[J]. Journal of Colloid and Interface Science, 2002,248(2): 462-466
    [1]张现仁.纳米圆柱孔材料的限定空间内流体的吸附和相行为[D].北京化工大学,2001
    [2]胡英,刘国杰,徐英年等.应用统计力学[M].北京:化学工业出版社,1990.
    [3]Metropolis N,Ulam S.The Monte Carlo method[J].J.Am.Stat.Ass.,1949,44:335-341
    [4]Alder B J,Wainwright T E.Studies in molecular dynamics.I.General method[J].Journal of Chemical Physics,1959,31:459-466
    [5]Shneider Y A,(Ed.).Method of Statistical Testing(Monte Carlo Method)[M].Oxford:Pergamon Press,1964.
    [6]徐钟济.蒙特卡罗方法[M].上海:上海科技出版社,1985.
    [7]Binder K,Heermann D W.Monte Carlo simulation in Statistical Physics[M].Berlin:Springer-Verlag,1984.
    [8]Binder K,(Ed.).Application of the Monte Carlo Method in Statistical Physics,2nd ed,Topics in Current Physics,Vol 36[M].Berlin:Springer-Verlag,1987.
    [9]张孝泽.蒙特卡罗方法在统计物理中的应用[M].郑州:河南科学技术出版社,1991.
    [10]Metropolis N,Rosenbluth A W,Rosenbluth M N,et al.Equation of state calculations by fast computing machines[J].The journal of chemical physics,1953,21(6):1087
    [11]VonNeumann J.Various Techniques Used in Connection with Random Digits[J].Us Nat.Bur.Stand.Appl.Math.Ser.,1951,12:36-38
    [12]vonNeumann J,Ulam S M.Random Ergodic Theorem[J].Bull.Amer.Math.Soc.,1945,51:660
    [13]Mouritsen O G.Computer studies of phase transitions and critical phenomena[M].Berlin:New York:Springer-Verlag,1984.
    [14]Binder K.Monte Carlo Methods[M].Berlin:New York:Springer-Verlag 1979.
    [15]杨玉良,张红东.高分子科学中的Monte Carlo方法[M].复旦大学出版社,1993.
    [16]Frenkel,Smit著,汪文川等译.分子模拟--从算法到应用[M].北京:化学工业出版社,2002.
    [17]Wood W W.Monte Carlo calculations for hard disks in the isothermal-isobaric ensemble[J].The Journal of Chemical Physics,1968,48:415
    [18]McDonald I R.NPT-ensemble Monte Carlo calculations for binary liquid mixtures[J].Mol.Phys.,2002,100(1):95-105
    [19]Najafabadi R,Yip S.Observation of finite-temperature Bain transformation(f.c.c.(?)b.c.c.) in Monte Carlo simulation of iron[J].Scripta metallurgica,1983,17(10):1199-1204
    [20]Norman G E,Filinov V S.Investigations of phase transitions by a Monte Carlo method[J].High Temperature,1969,7:216-222
    [21]Adams D J.Chemical potential of hard-sphere fluids by Monte Carlo methods[J].Molecular Physics,1974,28(5):1241-1252
    [22]Creutz M.Microcanonical Monte Carlo simulation[J].J.Comput.Phys Phys Rev Lett,1981,50:1411
    [23]Tries V,Paul W,Baschnagel J,et al.Modeling polyethylene with the bond fluctuation model[J].The Journal of Chemical Physics,1997,106:738
    [24]Freed K F.Renormalization group theory of macromolecules[M].New York:Wiley,1987.
    [25]Larson R G,Scriven L E,Davis H T.Monte Carlo simulation of model amphiphile-oil-water systems[J]. The Journal of Chemical Physics, 1985, 83: 2411
    [26] Larson R G Monte Carlo simulation of microstructural transitions in surfactant systems[J]. The Journal of Chemical Physics, 1992, 96: 7904
    [27] Larson R G. Self-assembly of surfactant liquid crystalline phases by Monte Carlo simulation[J]. The Journal of Chemical Physics, 1989, 91: 2479
    [28] Wall F T, Chin J C, Mandel F. Configurations of macromolecular chains confined to strips or tubes[J]. The Journal of Chemical Physics, 1977, 66: 3066
    [29] De Gennes P G. Reptation of a polymer chain in the presence of fixed obstacles[J]. The Journal of Chemical Physics, 1971, 55: 572
    [30] Lal M. Monte Carlo Computer Simulation of Chain Molecules .I[J]. Molecular Physics, 1969, 17(1): 57
    [31] Siepmann J I, Frenkel D. Configurational bias Monte Carlo: a new sampling scheme for flexible chains[J]. Molecular Physics, 1992,75(1): 59-70
    [32] Panagiotopoulos A Z, Floriano M A, Kumar S K. Micellization and phase separation of diblock and triblock model surfactants[J]. Langmuir, 2002, 18(7): 2940-2948
    [33] Mackie A D, Panagiotopoulos A Z, Szleifer I. Aggregation behavior of a lattice model for amphiphiles[J]. Langmuir, 1997, 13(19): 5022-5031
    [34] Mackie A D, Onur K, Panagiotopoulos A Z. Phase equilibria of a lattice model for an oil-water-amphiphile mixture[J]. Journal of Chemical Physics, 1996, 104(10): 3718-3725
    [35] Kopelevich D I, Panagiotopoulos A Z, Kevrekidis I G Coarse-grained computations for a micellar system[J]. Journal of Chemical Physics, 2005, 122(4): 044907
    [36] Kopelevich D I, Panagiotopoulos A Z, Kevrekidis I G. Coarse-grained kinetic computations for rare events: Application to micelle formation[J]. Journal of Chemical Physics, 2005, 122(4): 044908
    [37] Arya G, Panagiotopoulos A Z. Monte Carlo study of shear-induced alignment of cylindrical micelles in thin films[J]. Physical Review E, 2004, 70(3): 031501
    [38] Arya G, Panagiotopoulos A Z. Molecular modeling of shear-induced alignment of cylindrical micelles[J]. Computer Physics Communications, 2005, 169(1-3): 262-266
    [39] Lisal M, Hall C K, Gubbins K E, et al. Self-assembly of surfactants in a supercritical solvent from lattice Monte Carlo simulations[J]. Journal of Chemical Physics, 2002, 116(3): 1171-1184
    [40] Scanu L F, Gubbins K E, Hall C K. Lattice Monte Carlo simulations of phase separation and micellization in supercritical CO2/surfactant systems: Effect of CO2 density[J]. Langmuir, 2004, 20(2): 514-523
    [41] Chennamsetty N, Bock H, Scanu L F, et al. Cosurfactant and cosolvent effects on surfactant self-assembly in supercritical carbon dioxide[J]. Journal of Chemical Physics, 2005, 122(9)
    
    [42] Siperstein F R, Gubbins K E. Phase separation and liquid crystal self-assembly in surfactant-inorganic-solvent systems[J]. Langmuir, 2003, 19(6): 2049-2057
    [43] Bhattacharya S, Gubbins K E. Modeling triblock surfactant-templated mesostructured cellular foams[J]. Journal of Chemical Physics, 2005,123(13): 134907
    [44] Talsania S K, Rodriguez-Guadarrama L A, Mohanty K K, et al. Phase Behavior and Solubilization in Surfactant-Solute-Solvent Systems by Monte Carlo Simulations[J]. Langmuir, 1998, 14(10): 2684-2692
    [45] Mackie A D, Onur K, Panagiotopoulos A Z. Phase equilibria of a lattice model for an oil-water-amphiphile mixture[J]. The Journal of Chemical Physics, 1996, 104(10): 3718-3725
    [46] Layn K M, Debenedetti P G, Prud'homme R K. A theoretical study of Gemini surfactant phase behavior[J]. The Journal of Chemical Physics, 1998, 109: 5651-5658
    [47] Neimark A V, Vishnyakov A. Gauge cell method for simulation studies of phase transitions in confined systems[J]. Phys. Rev. E, 2000,62(4): 4611-4622
    [48] Neimark A V, Ravikovitch P I, Vishnyakov A. Inside the hysteresis loop: Multiplicity of internal states in confined fluids[J]. Phys. Rev. E, 2002, 65(3): 031505
    [49] Vishnyakov A, Neimark A V. Studies of Liquid-Vapor Equilibria, Criticality, and Spinodal Transitions in Nanopores by the Gauge Cell Monte Carlo Simulation Method[J]. J. Phys. Chem. B, 2001, 105(29): 7009-7020
    
    [50] Everett D H. Colloids Surf., A 1998, 141: 297
    [51] Neimark A V, Vishnyakov A. Phase Transitions and Criticality in Small Systems: Vapor-Liquid Transition in Nanoscale Spherical Cavities[J]. The Journal of Physical Chemistry B, 2006, 110(19): 9403-9412
    [52] Vishnyakov A, Neimark A V. Nucleation of liquid bridges and bubbles in nanoscale capillaries[J]. The Journal of Chemical Physics, 2003, 119: 9755
    [53] Neimark A V, Vishnyakov A. The birth of a bubble: A molecular simulation study[J]. The Journal of Chemical Physics, 2005,122: 054707
    [54] Neimark A V, Vishnyakov A. Monte Carlo simulation study of droplet nucleation[J]. The Journal of Chemical Physics, 2005, 122: 174508
    [55] Jiang J, Sandier S I, Smit B. Capillary Phase Transitions of n-Alkanes in a Carbon Nanotube[J]. Nano Letters, 2004, 4(2): 241-244
    [56] Jiang J, Sandier S I. Capillary Phase Transitions of Linear and Branched Alkanes in Carbon Nanotubes from Molecular Simulation[J]. Langmuir, 2006, 22(17): 7391-7399
    [1]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996.
    [2]Manne S,Gaub H E.Molecular-Organization of Surfactants at Solid-Liquid Interfaces[J].Science,1995,270(5241):1480-1482
    [3]Manne S,Cleveland J P,Gaub H E,et al.Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double-Layer[J].Langmuir,1994,10(12):4409-4413
    [4]Wanless E J,Ducker W A.Organization of sodium dodecyl sulfate at the graphite-solution interface[J].Journal of Physical Chemistry,1996,100(8):3207-3214
    [5]Ducker W A,Grant L M.Effect of Substrate Hydrophobicity on Surfactant Surface-Aggregate Geometry[J].The Journal of Physical Chemistry,1996,100(28):11507-11511
    [6]Grant L M,Tiberg F,Ducker W A.Nanometer-scale organization of ethylene oxide surfactants on graphite,hydrophilic silica,and hydrophobic silica[J].Journal of Physical Chemistry B,1998,102(22):4288-4294
    [7]Kiraly Z,Findenegg G H.Calorimetric evidence of the formation of half-cylindrical aggregates of a cationic surfactant at the graphite/water interface[J].Journal of Physical Chemistry B,1998,102(7):1203-1211
    [8]Wanless E J,Ducker W A.Weak influence of divalent ions on anionic surfactant surface-aggregation[J].Langmuir,1997,13(6):1463-1474
    [9]Manne S,Schaffer T E,Huo Q,et al.Gemini surfactants at solid-liquid interfaces:Control of interfacial aggregate geometry[J].Langmuir,1997,13(24):6382-6387
    [10]Liu J F,Ducker W A.Surface-induced phase behavior of alkyltrimethylammonium bromide surfactants adsorbed to mica,silica,and graphite[J].Journal of Physical Chemistry B,1999,103(40):8558-8567
    [11]Patrick H N,Warr G G,Manne S,et al.Self-assembly structures of nonionic surfactants at graphite/solution interfaces[J].Langmuir,1997,13(16):4349-4356
    [12]Holland N B,Ruegsegger M,Marchant R E.Alkyl group dependence of the surface-induced assembly of nonionic disaccharide surfactants[J].Langmuir,1998,14(10):2790-2795
    [13]Grant L M,Ducker W A.Effect of substrate hydrophobicity on surface-aggregate geometry:Zwitterionic and nonionic surfactants[J].Journal of Physical Chemistry B,1997,101(27):5337-5345
    [14]Wanless E J,Davey T W,Ducker W A.Surface aggregate phase transition[J].Langmuir,1997,13(16):4223-4228
    [15]Tiberg F.Physical characterization of non-ionic surfactant layers adsorbed at hydrophilic and hydrophobic solid surfaces by time-resolved ellipsometry[J].Journal of the Chemical Society-Faraday Transactions,1996,92(4):531-538
    [16]Grant L M,Ederth T,Tiberg F.Influence of surface hydrophobicity on the layer properties of adsorbed nonionic surfactants[J].Langmuir,2000,16(5):2285-2291
    [17]Fragneto G,Lu J R,McDermott D C,et al.Structure of monolayers of tetraethylene glycol monododecyl ether adsorbed on self-assembled monolayers on silicon:A neutron reflectivity study[J].Langmuir,1996,12(2):477-486
    [18]Wolgemuth J L,Workman R K,Manne S.Surfactant aggregates at a flat,isotropic hydrophobic surface[J].Langmuir,2000,16(7):3077-3081
    [19]Larson R G.Simulations of self-assembly[J].Current Opinion in Colloid & Interface Science, 1997, 2(4): 361-364
    [20] Shelley J C, Shelley M Y. Computer simulation of surfactant solutions[J]. Current Opinion in Colloid & Interface Science, 2000, 5(1-2): 101-110
    [21] Rajagopalan R. Simulations of self-assembling systems[J]. Current Opinion in Colloid & Interface Science, 2001, 6(4): 357-365
    [22] Bandyopadhyay S, Shelley J C, Tarek M, et al. Surfactant aggregation at a hydrophobic surface[J]. Journal of Physical Chemistry B, 1998, 102(33): 6318-6322
    [23] Wijmans C M, Linse P. Surfactant self-assembly at a hydrophilic surface. A Monte Carlo simulation study[J]. Journal of Physical Chemistry, 1996, 100(30): 12583-12591
    [24] Reimer U, Wahab M, Schiller P, et al. Monte Carlo simulation of the adsorption equilibrium of a model surfactant solution on hydrophilic solid surfaces[J]. Langmuir, 2001, 17(26): 8444-8450
    [25] Shah K, Chiu P, Jain M, et al. Morphology and mechanical properties of surfactant aggregates at water-silica interfaces: Molecular dynamics simulations[J]. Langmuir, 2005, 21(12): 5337-5342
    [26] Shah K, Chiu P, Sinnott S B. Comparison of morphology and mechanical properties of surfactant aggregates at water-silica and water-graphite interfaces from molecular dynamics simulations[J]. Journal of Colloid and Interface Science, 2006, 296(1): 342-349
    [27] Srinivas G, Nielsen S O, Moore P B, et al. Molecular dynamics simulations of surfactant self-organization at a solid-liquid interface[J]. Journal of the American Chemical Society, 2006, 128(3): 848-853
    [28] Shinto H, Tsuji S, Miyahara M, et al. Molecular dynamics simulations of surfactant aggregation on hydrophilic walls in micellar solutions[J]. Langmuir, 1999, 15(2): 578-586
    [29] He H P, Galy J, Gerard J F. Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA(+)/montmorillonite hybrids[J]. Journal of Physical Chemistry B, 2005, 109(27): 13301-13306
    [30] Rosenbluth M N, Rosenbluth A W. Monte-Carlo Calculation of the Average Extension of Molecular Chains[J]. Journal of Chemical Physics, 1955, 23(2): 356-359
    [31 ] Mackie A D, Onur K, Panagiotopoulos A Z. Phase equilibria of a lattice model for an oil-water-amphiphile mixture[J]. Journal of Chemical Physics, 1996, 104(10): 3718-3725
    
    [32] Mackie A D, Panagiotopoulos A Z, Szleifer I. Aggregation behavior of a lattice model for amphiphiles[J]. Langmuir, 1997,13(19): 5022-5031
    [33] Siperstein F R, Gubbins K E. Phase separation and liquid crystal self-assembly in surfactant-inorganic-solvent systems[J]. Langmuir, 2003, 19(6): 2049-2057
    [34] Velegol S B, Fleming B D, Biggs S, et al. Counterion effects on hexadecyltrimethylammonium surfactant adsorption and self-assembly on silica[J]. Langmuir, 2000, 16(6): 2548-2556
    [35] Ducker W A, Wanless E J. Adsorption of hexadecyltrimethylammonium bromide to mica: Nanometer-scale study of binding-site competition effects[J]. Langmuir, 1999, 15(1): 160-168
    [36] Lamont R E, Ducker W A. Surface-induced transformations for surfactant aggregates[J]. Journal of the American Chemical Society, 1998,120(30): 7602-7607
    [37] Atkin R, Craig V S J, Wanless E J, et al. Mechanism of cationic surfactant adsorption at the solid-aqueous interface[J]. Advances in Colloid and Interface Science, 2003,103(3): 219-304
    [1] Webber G B, Wanless E J, Armes S P, et al. Adsorption of amphiphilic diblock copolymer micelles at the mica/solution interface[J]. Langmuir, 2001, 17(18): 5551-5561
    
    [2] Fujii M, Li B, Fukada K, et al. Heterogeneous Growth and Self-Repairing Processes of Two-Dimensional Molecular Aggregates of Adsorbed Octadecyltrimethylammonium Bromide at Cleaved Mica/Aqueous Solution Interface as Observed by in Situ Atomic Force Microscopy?[J]. Langmuir, 1999, 15(10): 3689-3692
    [3] Atkin R, Craig V S J, Wanless E J, et al. Adsorption of 12-S-12 gemini surfactants at the silica-aqueous solution interface[J]. Journal of Physical Chemistry B, 2003, 107(13): 2978-2985
    [4] Atkin R, Craig V S J, Wanless E J, et al. The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface[J]. Journal of Colloid and Interface Science, 2003, 266(2): 236-244
    [5] Subramanian V, Ducker W. Proximal adsorption of cationic surfactant on silica at equilibrium[J]. Journal of Physical Chemistry B, 2001, 105(7): 1389-1402
    [6] Lokar W J, Ducker W A. Proximal adsorption of dodecyltrimethylammonium bromide to the silica-electrolyte solution interface[J]. Langmuir, 2002, 18(8): 3167-3175
    [7] Muller M, Binder K, Albano E V. Phase diagram of polymer blends in confined geometry [J]. Journal of Molecular Liquids, 2001, 92(1-2): 41-52
    [8] Muller M, Albano E V, Binder K. Symmetric polymer blend confined into a film with antisymmetric surfaces: Interplay between wetting behavior and the phase diagram[J]. Physical Review E, 2000, 62(4): 5281-5295
    [9] Ciach A, Tasinkevych M. Self-assembling systems in restricted geometry[J]. Polish Journal of Chemistry, 2001, 75(1): 1-28
    [10] Babin V, Ciach A, Tasinkevych M. Capillary condensation of periodic phases in self-assembling systems[J]. Journal of Chemical Physics, 2001,114(21): 9585-9592
    
    [11] Babin V, Ciach A. Double-diamond phase in amphiphilic systems confined between parallel walls[J]. Journal of Chemical Physics, 2001, 115(6): 2786-2793
    
    [12] Mansky P, Liu Y, Huang E, et al. Controlling polymer-surface interactions with random copolymer brushes[J]. Science, 1997,275(5305): 1458-1460
    [13] Walton D G, Kellogg G J, Mayes A M, et al. A Free-Energy Model for Confined Diblock Copolymers[J]. Macromolecules, 1994, 27(21): 6225-6228
    [14] He H P, Galy J, Gerard J F. Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA(+)/montmorillonite hybrids[J]. Journal of Physical Chemistry B, 2005, 109(27): 13301-13306
    [15] Huang Y M, Liu H L, Hu Y. Morphologies of diblock copolymer/homopolymer blend films[J]. Macromolecular Theory and Simulations, 2006, 15(4): 321-330
    [16] Huang Y M, Liu H L, Hu Y. Monte Carlo simulations of the morphologies and conformations of triblock copolymer thin films[J]. Macromolecular Theory and Simulations, 2006, 15(2): 117-127
    [17] Wang Q, Nath S K, Graham M D, et al. Symmetric diblock copolymer thin films confined between homogeneous and patterned surfaces: Simulations and theory[J]. Journal of Chemical Physics, 2000,112(22): 9996-10010
    [18] Turner M S. Equilibrium Properties of a Diblock Copolymer Lamellar Phase Confined between Flat Plates[J]. Physical Review Letters, 1992, 69(12): 1788-1791
    [19] Pereira G G, Williams D R M. Diblock copolymer thin films on heterogeneous striped surfaces: Commensurate, incommensurate and inverted lamellae[J]. Physical Review Letters, 1998, 80(13): 2849-2852
    [20] Pereira G G, Williams D R M. Equilibrium properties of diblock copolymer thin films on a heterogeneous, striped surface[J]. Macromolecules, 1998, 31(17): 5904-5915
    [21] Pereira G G, Williams D R M. Diblock copolymer thin film melts on striped, heterogeneous surfaces: Parallel, perpendicular and mixed lamellar morphologies[J]. Macromolecules, 1999, 32(3): 758-764
    [22] Binder K, Muller M. Monte Carlo simulation of block copolymers[J]. Current Opinion in Colloid & Interface Science, 2000, 5(5-6): 315-323
    [23] Wang Q, Nealey P F, de Pablo J J. Monte Carlo simulations of asymmetric diblock copolymer thin films confined between two homogeneous surfaces[J]. Macromolecules, 2001, 34(10): 3458-3470
    [24] Pethica B A. Adsorption equilibria in surface force balance studies[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 1995, 105(2-3): 257-264
    [25] Podgornik R, Parsegian V A. Forces between Ctab-Covered Glass Surfaces Interpreted as an Interaction-Driven Surface Instability[J], Journal of Physical Chemistry, 1995, 99(23): 9491-9496
    [26] Christenson H K, Yaminsky V V. Is the long-range hydrophobic attraction related to the mobility of hydrophobic surface groups?[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 1997, 130: 67-74
    [27] Lokar W J, Ducker W A. Proximal adsorption at glass surfaces: Ionic strength, pH, chain length effects[J]. Langmuir, 2004, 20(2): 378-388
    [28] Herder P C. Forces between Hydrophobed Mica Surfaces Immersed in Dodecylammonium Chloride Solution[J]. Journal of Colloid and Interface Science, 1990, 134(2): 336-345
    [29] Kjellin U R M, Claesson P M. Surface properties of tetra(ethylene oxide) dodecyl amide compared with poly(ethylene oxide) surfactants. 2. Effect of the headgroup on surface forces[J]. Langmuir, 2002, 18(18): 6754-6763
    [30] Yuet P K. A simulation study of electrostatic effects on mixed ionic micelles confined between two parallel charged plates[J]. Langmuir, 2004, 20(19): 7960-7971
    [31] Lokar W J, Koopal L K, Leermakers F A M, et al. Confinement-induced phase behavior and adsorption regulation of ionic surfactants in the aqueous film between charged solids[J]. Journal of Physical Chemistry B, 2004, 108(39): 15033-15042
    [32] Koopal L K, Leermakers F A M, Lokar W J, et al. Confinement-induced phase transition and hysteresis in colloidal forces for surfactant layers on hydrophobic surfaces[J]. Langmuir, 2005, 21(22): 10089-10095
    [33] Leermakers F A M, Koopal L K, Lokar W J, et al. Modeling of confinement-induced phase transitions for surfactant layers on amphiphilic surfaces[J]. Langmuir, 2005, 21(24): 11534-11545
    [34] Holyst R, Oswald P. Confinement induced topological fluctuations in a system with internal surfaces[J]. Physical Review Letters, 1997, 79(8): 1499-1502
    [35] Holyst R, Oswald P. Confined complex liquids: Passages, droplets, permanent deformations, and order-disorder transitions[J]. Journal of Chemical Physics, 1998, 109(24): 11051-11060
    [36] Floriano M A, Caponetti E, Panagiotopoulos A Z. Micellization in model surfactant systems[J]. Langmuir, 1999, 15(9): 3143-3151
    [37] Panagiotopoulos A Z, Floriano M A, Kumar S K. Micellization and phase separation of diblock and triblock model surfactants[J]. Langmuir, 2002, 18(7): 2940-2948
    [38] Rosenbluth M N, Rosenbluth A W. Monte-Carlo Calculation of the Average Extension of Molecular Chains[J]. Journal of Chemical Physics, 1955, 23(2): 356-359
    [39] Mackie A D, Onur K, Panagiotopoulos A Z. Phase equilibria of a lattice model for an oil-water-amphiphile mixture[J]. Journal of Chemical Physics, 1996, 104(10): 3718-3725
    [40] Mackie A D, Panagiotopoulos A Z, Szleifer I. Aggregation behavior of a lattice model for amphiphiles[J]. Langmuir, 1997, 13(19): 5022-5031
    [41] Holyst R, Gozdz W T. Fluctuating Euler characteristics, topological disorder line, and passages in the lamellar phase[J]. The Journal of Chemical Physics, 1997, 106(11): 4773-4780
    [42] Michielsen K, De Raedt H. Morphological image analysis[J]. Computer Physics Communications, 2000, 132(1-2): 94-103
    [43] Michielsen K, De Raedt H. Integral-geometry morphological image analysis[J]. Physics Reports, 2001, 347(6): 461-538
    [44] Rysz J. Monte Carlo simulations of phase separation in thin polymer blend films: scaling properties of morphological measures[J]. Polymer, 2005,46(3): 977-982
    [45] Harkins W D, Davies E C H, Clark G L. The orientation of molecules in the surfaces of liquids, the energy relations at surfaces, solubility, adsorption, emulsification, molecular association, and the effect of acids and bases on interfacial tension (surface energy VI)[J]. Journal of the American Chemical Society, 1917, 39: 541-596
    [46] Langmuir I. The constitution and fundamental properties of solids and liquids. II. Liquids[J]. Journal of the American Chemical Society, 1917, 39: 1848-1906
    [47] Kabalnov A, Wennerstrom H. Macroemulsion stability: The oriented wedge theory revisited[J]. Langmuir, 1996, 12(2): 276-292
    [48] Meyer E E, Rosenberg K J, Israelachvili J. Recent progress in understanding hydrophobic interactions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(43): 15739-15746
    [49] Yoon R H, Ravishankar S A. Long-range hydrophobic forces between mica surfaces in dodecylammonium chloride solutions in the presence of dodecanol[J]. Journal of Colloid and Interface Science, 1996, 179(2): 391 -402
    [50] Tsao Y H, Evans D F, Wennerstrom H. Long-Range Attractive Force between Hydrophobic Surfaces Observed by Atomic-Force Microscopy[J]. Science, 1993,262(5133): 547-550
    [51] Tsao Y H, Evans D F, Wennerstrom H. Long-Range Attraction between a Hydrophobic Surface and a Polar Surface Is Stronger Than That between 2 Hydrophobic Surfaces[J]. Langmuir, 1993, 9(3): 779-785
    [52] Tsao Y H, Yang S X, Evans D F, et al. Interactions between Hydrophobic Surfaces - Dependence on Temperature and Alkyl Chain-Length[J]. Langmuir, 1991,7(12): 3154-3159
    [53] Miklavic S J, Chan D Y C, White L R, et al. Double-Layer Forces between Heterogeneous Charged Surfaces[J]. Journal of Physical Chemistry, 1994,98(36): 9022-9032
    [54] Pazhianur R, Yoon R H. Model for the origin of hydrophobic force[J]. Minerals & Metallurgical Processing, 2003,20(4): 178-184
    [55]Israelachvili J N,Pashley R M.Measurement of the Hydrophobic Interaction between 2Hydrophobic Surfaces in Aqueous-Electrolyte Solutions[J].Journal of Colloid and Interface Science,1984,98(2):500-514
    [56]Pratt L R,Chandler D.Theory of Hydrophobic Effect[J].Journal of Chemical Physics,1977,67(8):3683-3704
    [57]Christenson H K,Claesson P M.Cavitation and the Interaction between Macroscopic Hydrophobic Surfaces[J].Science,1988,239(4838):390-392
    [58]Claesson P M,Christenson H K.Very Long-Range Attractive Forces between Uncharged Hydrocarbon and Fluorocarbon Surfaces in Water[J].Journal of Physical Chemistry,1988,92(6):1650-1655
    [59]Tyrrell J W G,Attard P.Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force-separation data[J].Langmuir,2002,18(1):160-167
    [60]Attard P,Moody M P,Tyrrell J W G.Nanobubbles:the big picture[J].Physica a-Statistical Mechanics and Its Applications,2002,314(1-4):PⅡ S0378-4371(0302)01191-01193
    [61]Parker J L,Claesson P M,Attard P.Bubbles,Cavities,and the Long-Ranged Attraction between Hydrophobic Surfaces[J].Journal of Physical Chemistry,1994,98(34):8468-8480
    [62]Meyer E E,Lin Q,Israelachvili J N.Effects of dissolved gas on the hydrophobic attraction between surfactant-coated surfaces[J].Langmuir,2005,21(1):256-259
    [63]Meyer E E,Lin Q,Hassenkam T,et al.Origin of the long-range attraction between surfactant-coated surfaces[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(19):6839-6842
    [64]Perkin S,Kampf N,Klein J.Stability of self-assembled hydrophobic surfactant layers in water[J].Journal of Physical Chemistry B,2005,109(9):3832-3837
    [65]Zheng F X,Zhang X R,Wang W C,et al.Adsorption and Morphology Transition of Surfactants on Hydrophobic Surfaces:A Lattice Monte Carlo Study[J].Langmuir,2006,22(26):11214-11223
    [1] Minton A P. Holobiochemistry: the effect of local environment upon the equilibria and rates of biochemical reactions[J]. The International journal of biochemistry, 1990, 22(10): 1063
    
    [2] Ellis R J, Minton A P. Cell biology - Join the crowd[J]. Nature, 2003,425(6953): 27-28
    
    [3] Ellis R J. Macromolecular crowding: obvious but underappreciated[J]. Trends in Biochemical Sciences, 2001,26(10): 597-604
    [4] Minton A P. Implications of macromolecular crowding for protein assembly[J]. Current Opinion in Structural Biology, 2000, 10(1): 34-39
    [5] Ellis R J. Macromolecular crowding: an important but neglected aspect of the intracellular environment[J]. Current Opinion in Structural Biology, 2001, 11(1): 114-119
    [6] Cheung M S, Klimov D, Thirumalai D. Molecular crowding enhances native state stability and refolding rates of globular proteinsfJ]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(13): 4753-4758
    [7] Szymanski J, Patkowski A, Gapinski J, et al. Movement of proteins in an environment crowded by surfactant micelles: Anomalous versus normal diffusion[J]. Journal of Physical Chemistry B, 2006, 110(14): 7367-7373
    [8] Harrison B, Zimmerman S B. Stabilization of T4 Polynucleotide Kinase by Macromolecular Crowding[J]. Nucleic Acids Research, 1986, 14(4): 1863-1870
    [9] Lindner R A, Ralston G B. Macromolecular crowding: Effects on actin polymerisation[J]. Biophysical Chemistry, 1997, 66(1): 57-66
    [10] Rivas G, Fernandez J A, Minton A P. Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: Theory, experiment, and biological significance[J]. Biochemistry, 1999, 38(29): 9379-9388
    
    [11] Snoussi K, Halle B. Protein self-association induced by macromolecular crowding: A quantitative analysis by magnetic relaxation dispersion[J]. Biophysical Journal, 2005, 88(4): 2855-2866
    
    [12] Schnell S, Turner T E. Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws[J]. Progress in Biophysics & Molecular Biology, 2004, 85(2-3): 235-260
    [13] Kinjo A R, Takada S. Effects of macromolecular crowding on protein folding and aggregation studied by density functional theory: Statics[J]. Physical Review E, 2002, 66(3): 031911
    [14] Berry H. Monte Carlo simulations of enzyme reactions in two dimensions: Fractal kinetics and spatial segregation[J]. Biophysical Journal, 2002, 83(4): 1891-1901
    [15] Minton A P. Confinement as a Determinant of Macromolecular Structure and Reactivity[J]. Biophysical Journal, 1992, 63(4): 1090-1100
    [16] Minton A P. Lateral Diffusion of Membrane-Proteins in Protein-Rich Membranes - a Simple Hard Particle Model for Concentration-Dependence of the Two-Dimensional Diffusion-Coefficient[J]. Biophysical Journal, 1989,55(4): 805-808
    [17] Puskar K M, Parisi-Amon A, Ta'asan S, et al. Modeling molecular interactions to understand spatial crowding effects on heterodimer formations[J]. Physical Review E, 2007,76(4): 041904
    [18] Zhao X S, Su F B, Yan Q F, et al. Templating methods for preparation of porous structures[J]. Journal of Materials Chemistry, 2006, 16(7): 637-648
    [19] Yuan Z Y, Su B L. Insights into hierarchically meso-macroporous structured materials[J]. Journal of Materials Chemistry, 2006, 16(7): 663-677
    [20] Holmberg K. Surfactant-templated nanomaterials synthesis[J]. Journal of Colloid and Interface Science, 2004, 274(2): 355-364
    [21] Schuth F. Endo- and exotemplating to create high-surface-area inorganic materials[J]. Angewandte Chemie-International Edition, 2003,42(31): 3604-3622
    [22] van Bommel K J C, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials[J]. Angewandte Chemie-International Edition, 2003, 42(9): 980-999
    [23] Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821
    [24] Soler-illia G J D, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chemical Reviews, 2002,102(11): 4093-4138
    [25] Polarz S, Antonietti M. Porous materials via nanocasting procedures: innovative materials and learning about soft-matter organization[J]. Chemical Communications, 2002, (22): 2593-2604
    [26] Raman N K, Anderson M T, Blinker C J. Template-based approaches to the preparation of amorphous, nanoporous silicas[J]. Chemistry of Materials, 1996, 8(8): 1682-1701
    [27] Madden W G, Glandt E D. Distribution-Functions for Fluids in Random-Media[J]. Journal of Statistical Physics, 1988, 51(3-4): 537-558
    [28] Fanti L A, Glandt E D, Madden W G Fluids in Equilibrium with Disordered Porous Materials - Integral-Equation Theory[J]. Journal of Chemical Physics, 1990, 93(8): 5945-5953
    [29] Madden W G. Fluid Distributions in Random-Media - Arbitrary Matrices[J]. Journal of Chemical Physics, 1992, 96(7): 5422-5432
    [30] Given J A, Stell G. Fluid Distributions in 2-Phase Random-Media - Arbitrary Matrices[J]. Journal of Chemical Physics, 1992, 97(6): 4573-4574
    [31] Ford D M, Glandt E D. Vapor-Liquid Phase-Equilibrium in Random Microporous Matrices[J]. Physical Review E, 1994, 50(2): 1280-1286
    [32] Rosinberg M L, Tarjus G, Stell G. Thermodynamics of Fluids in Quenched Disordered Matrices[J]. Journal of Chemical Physics, 1994, 100(7): 5172-5177
    [33] Madden W G. Thermodynamics of Fluids in Quenched Disordered Matrices - Comment[J]. Journal of Chemical Physics, 1995, 102(13): 5572-5573
    [34] Kierlik E, Rosinberg M L, Tarjus G. et al. The Pressure of a Fluid Confined in a Disordered Porous Material[J]. Journal of Chemical Physics, 1995, 103(10): 4256-4260
    [35] Kierlik E, Rosinberg M L, Tarjus G, et al. Phase diagrams of single-component fluids in disordered porous materials: Predictions from integral-equation theory[J]. Journal of Chemical Physics, 1997, 106(1): 264-279
    [36] Kierlik E, Rosinberg M L, Tarjus G, et al. Mean-spherical approximation for a lattice model of a fluid in a disordered matrix[J]. Molecular Physics, 1998, 95(2): 341-351
    [37] Dong W, Kierlik E, Rosinberg M L. Integral-Equations for a Fluid near a Random Substrate[J]. Physical Review E, 1994, 50(6): 4750-4753
    [38] Dong W. Mechanical Route to the Pressure of a Fluid Adsorbed in a Random Porous-Medium[J]. Journal of Chemical Physics, 1995,102(16): 6570-6573
    [39] Van Tassel P R, Talbot J, Viot P, et al. Distribution function analysis of the structure of depleted particle configurations[J].Physics Review E,1997,56:R1299-R1301
    [40]van Tassel P R.Theoretical model of adsorption in a templated porous material[J].Physical Review E,1999,60(1):R25-R28
    [41]Zhang L H,Van Tassel P R.Theory and simulation of adsorption in a templated porous material:Hard sphere systems[J].Journal of Chemical Physics,2000,112(6):3006-3013
    [42]Zhang L H,Cheng S Y,Van Tassel P R.Effect of templated quenched disorder on fluid phase equilibrium[J].Physical review.E,2001,64(4):042101-042104
    [43]Zhao S L,Dong W,Liu Q H.Fluids in porous media.I.A hard sponge model[J].Journal of Chemical Physics,2006,125(24):244703
    [44]Dong W,Krakoviack V,Zhao S L.Fluids confined in porous media:A soft-sponge model[J].Journal of Physical Chemistry C,2007,111(43):15910-15923
    [45]Alvarez M,Levesque D,Weis J J.Monte Carlo approach to the gas-liquid transition in porous materials[J].Physical Review E,1999,60(5):5495-5504
    [46]Brennan J K,Dong W.Phase transitions of one-component fluids adsorbed in random porous media:Monte Carlo simulations[J].Journal of Chemical Physics,2002,116(20):8948-8958
    [47]Gelb L D,Gubbins K E,Radhakrishnan R,et al.Phase separation in confined systems[J].Reports on Progress in Physics,1999,62(12):1573-1659
    [48]Zhang X R,Wang W C.Square-well fluids in confined space with discretely attractive wall-fluid potentials:Critical point shift[J].Physical Review E,2006,74(6):062601
    [49]Larson R G,Scriven L E,Davis H T.Monte-Carlo Simulation of Model Amphiphilic Oil-Water Systems[J].Journal of Chemical Physics,1985,83(5):2411-2420
    [50]Larson R G.Self-Assembly of Surfactant Liquid-Crystalline Phases by Monte-Carlo Simulation[J].Journal of Chemical Physics,1989,91(4):2479-2488
    [51]Larson R G.Monte-Carlo Simulation of Microstructural Transitions in Surfactant Systems[J].Journal of Chemical Physics,1992,96(11):7904-7918
    [52]Floriano M A,Caponetti E,Panagiotopoulos A Z.Micellization in model surfactant systems[J].Langmuir,1999,15(9):3143-3151
    [53]Panagiotopoulos A Z,Floriano M A,Kumar S K.Micellization and phase separation of diblock and triblock model surfactants[J].Langmuir,2002,18(7):2940-2948
    [54]Rosenbluth M N,Rosenbluth A W.Monte-Carlo Calculation of the Average Extension of Molecular Chains[J].Journal of Chemical Physics,1955,23(2):356-359
    [55]Mackie A D,Onur K,Panagiotopoulos A Z.Phase equilibria of a lattice model for an oil-water-amphiphile mixture[J].Journal of Chemical Physics,1996,104(10):3718-3725
    [56]Mackie A D,Panagiotopoulos A Z,Szleifer I.Aggregation behavior of a lattice model for amphiphiles[J].Langmuir,1997,13(19):5022-5031
    [57]Brindle D,Care C M.Phase-Diagram for the Lattice Model of Amphiphile and Solvent Mixtures by Monte-Carlo-Simulation[J].Journal of the Chemical Society-Faraday Transactions,1992,88(15):2163-2166
    [58]Israelachvili J N,Mitchell D J,Ninham B W.Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers[J].Journal of the Chemical Society-Faraday Transactions Ⅱ,1976,72:1525-1568
    [59]Ruckenstein E,Nagarajan R.Critical Micelle Concentration - Transition Point for Micellar Size Distribution[J].Journal of Physical Chemistry,1975,79(24):2622-2626
    [60]Nagarajan R,Ruckenstein E.Relation between the Transition Point in Micellar Size Distribution, the Cmc, and the Cooperativity of Micellization[J]. Journal of Colloid and Interface Science, 1983, 91(2): 500-506
    [61] Zhang X R, Chen G J, Wang W C. Confinement induced critical micelle concentration shift[J]. Journal of Chemical Physics, 2007, 127(3): 034506
    [62] Brindle D, Care C M. Phase diagram for the lattice model of amphiphile and solvent mixtures by Monte Carlo simulation[J]. Journal of the Chemical Society. Faraday transactions, 1992, 88(15): 2163-2166
    [63] Stauffer D, Jan N, He Y, et al. Micelle formation, relaxation time, and three-phase coexistence in a microemulsion model[J]. The Journal of Chemical Physics, 1994, 100(9): 6934-6943
    [64] Desplat J C, Care C M. A Monte Carlo simulation of the micellar phase of an amphiphile and soivent mixture[J]. Molecular Physics, 1996, 87(2): 441 - 454
    [65] Wang Y, Mattice W L, Napper D H. Simulation of the formation of micelles by diblock copolymers under weak segregation[J]. Langmuir, 1993, 9(1): 66-70
    [66] Lisal M, Hall C K, Gubbins K E, et al. Micellar behavior in supercritical solvent-surfactant systems from lattice Monte Carlo simulations[J]. Fluid phase equilibria, 2002, 194-197: 233-247
    [1] Somasund P, Fuersten D W. Mechanisms of Alkyl Sulfonate Adsorption at Alumina-Water Interface[J]. Journal of Physical Chemistry, 1966,70(1): 90-96
    
    [2] Koopal L K, Lee E M, Bohmer M R. Adsorption of Cationic and Anionic Surfactants on Charged Metal-Oxide Surfaces[J]. Journal of Colloid and Interface Science, 1995, 170(1): 85-97
    [3] Scamehorn J F, Schechter R S, Wade W H. Adsorption of Surfactants on Mineral Oxide Surfaces from Aqueous-Solutions .1. Isomerically Pure Anionic Surfactants[J]. Journal of Colloid and Interface Science, 1982, 85(2): 463-478
    [4] Fuerstenau D W. Equilibrium and nonequilibrium phenomena associated with the adsorption of ionic surfactants at solid-water interfaces[J]. Journal of Colloid and Interface Science, 2002, 256(1): 79-90
    [5] Fan A X, Somasundaran P, Turro N J. Adsorption of alkyltrimethylammonium bromides on negatively charged alumina[J]. Langmuir, 1997, 13(3): 506-510
    [6] Goloub T P, Koopal L K. Adsorption of cationic surfactants on silica. Comparison of experiment and theory[J]. Langmuir, 1997, 13(4): 673-681
    [7] Harwell J H, Roberts B L, Scamehorn J F. Thermodynamics of Adsorption of Surfactant Mixtures on Minerals[J]. Colloids and Surfaces, 1988, 32(1-2): 1-17
    [8] Chandar P, Somasundaran P, Turro N J. Fluorescence Probe Studies on the Structure of the Adsorbed Layer of Dodecyl-Sulfate at the Alumina-Water Interface[J]. Journal of Colloid and Interface Science, 1987, 117(1): 31-46
    [9] Chandar P, Somasundaran P, Waterman K C, et al. Variation in Nitroxide Probe Chain Flexibility within Sodium Dodecyl-Sulfate Hemimicelles[J]. Journal of Physical Chemistry, 1987,91(1): 148-150
    [10] Atkin R, Craig V S J, Wanless E J, et al. Mechanism of cationic surfactant adsorption at the solid-aqueous interface[J]. Advances in Colloid and Interface Science, 2003, 103(3): 219-304
    
    [11] Paria S, Khilar K C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface[J]. Advances in Colloid and Interface Science, 2004, 110(3): 75-95
    
    [12] Tiberg.F, Jonsson B, Tang J, et al. Ellipsometry Studies of the Self-Assembly of Nonionic Surfactants at the Silica Water Interface - Equilibrium Aspects[J]. Langmuir, 1994, 10(7): 2294-2300
    [13] Tiberg F, Jonsson B, Lindman B. Ellipsometry Studies of the Self-Assembly of Nonionic Surfactants at the Silica-Water Interface - Kinetic Aspects[J]. Langmuir, 1994, 10(10): 3714-3722
    [14] Brinck J, Tiberg F. Adsorption behavior of two binary nonionic surfactant systems at the silica-water interface[J]. Langmuir, 1996, 12(21): 5042-5047
    [15] Kiraly Z, Borner R H K, Findenegg G H. Adsorption and aggregation of C8E4 and C(8)G(1) nonionic surfactants on hydrophilic silica studied by calorimetry[J]. Langmuir, 1997, 13(13): 3308-3315
    [16] Kiraly Z, Findenegg G H. Calorimetric study of the adsorption of short-chain nonionic surfactants on silica glass and graphite: Dimethyldecylamine oxide and octyl monoglucoside[J]. Langmuir, 2000, 16(23): 8842-8849
    [17] Atkin R, Craig V S J, Biggs S. Adsorption kinetics and structural arrangements of cationic surfactants on silica surfaces[J]. Langmuir, 2000, 16(24): 9374-9380
    [18] Atkin R, Craig V S J, Biggs S. Adsorption kinetics and structural arrangements of cetylpyridinium bromide at the silica-aqueous interface[J]. Langmuir, 2001, 17(20): 6155-6163
    [19] Fleming B D, Biggs S, Wanless E J. Slow organization of cationic surfactant adsorbed to silica from solutions far below the CMC[J]. Journal of Physical Chemistry B, 2001, 105(39): 9537-9540
    [20] Brinck J, Jonsson B, Tiberg F. Kinetics of nonionic surfactant adsorption and desorption at the silica-water interface: One component[J]. Langmuir, 1998, 14(5): 1058-1071
    [21] Wijmans C M, Linse P. Surfactant self-assembly at a hydrophilic surface. A monte carlo simulation study[J]. Journal of Physical Chemistry, 1996, 100(30): 12583-12591
    [22] Zheng F X, Zhang X R, Wang W C, et al. Adsorption and morphology transition of surfactants on hydrophobic surfaces: A lattice Monte Carlo study[J]. Langmuir, 2006, 22(26): 11214-11223
    [23] Zheng F X, Zhang X R, Wang W C. Bridge structure: An intermediate state for a morphological transition in confined amphiphile/water systems[J]. Journal of Physical Chemistry C, 2007, 111(19): 7144-7151
    [24] Zhang X R, Chen G J, Wang W C. Confinement induced critical micelle concentration shift[J]. Journal of Chemical Physics, 2007, 127(3): 034506
    [25] Vollhardt D, Melzer V. Phase transition in adsorption layers at the air-water interface: Bridging to Langmuir monolayersfJ]. Journal of Physical Chemistry B, 1997, 101(17): 3370-3375
    [26] Melzer V, Vollhardt D, Weidemann G, et al. Structure formation and phase transitions in Gibbs and Langmuir monolayers of amphiphilic acid amides[J]. Physical Review E, 1998, 57(1): 901-907
    [27] Vollhardt D, Fainerman V B, Emrich G. Dynamic and equilibrium surface pressure of adsorbed dodecanol monolayers at the air/water interface[J]. Journal of Physical Chemistry B, 2000, 104(35): 8536-8543
    [28] Melzer V, Vollhardt D. Formation of condensed phase patterns in adsorption layers[J]. Physical Review Letters, 1996, 76(20): 3770-3773
    [29] Melzer V, Vollhardt D, Brezesinski G, et al. Similarities in the phase properties of Gibbs and Langmuir monolayers[J]. Journal of Physical Chemistry B, 1998,102(3): 591-597
    [30] Hossain M M, Yoshida M, Iimura K, et al. Phase transition in adsorbed monolayers of 2-hydroxyethyl laurate at the air-water interface[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2000, 171(1-3): 105-113
    [31] Hossain M M, Suzuki T, Kato T. Unusual transition in a two-dimensional condensed phase to a mosaic texture[J]. Langmuir, 2000, 16(24): 9109-9112
    [32] Hossain M M, Yoshida M, Kato T. Higher-order structure formation in adsorbed monolayers at aqueous solution surfaces studied by Brewster angle microscopy[J]. Langmuir, 2000, 16(7): 3345-3348
    [33] Hossain M M, Kato T. Line tension induced instability of condensed domains formed in adsorbed monolayers at the air-water interface[J]. Langmuir, 2000,16(26): 10175-10183
    [34] Islam M N, Kato T. Dependence of phase behavior of some non-ionic surfactants at the air-water interface on micellization in the bulk[J]. Journal of Colloid and Interface Science, 2002,252(2): 365-372
    [35] Larson R G, Scriven L E, Davis H T. Monte-Carlo Simulation of Model Amphiphilic Oil-Water Systems[J]. Journal of Chemical Physics, 1985, 83(5): 2411-2420
    [36] Larson R G. Self-Assembly of Surfactant Liquid-Crystalline Phases by Monte-Carlo Simulation[J]. Journal of Chemical Physics, 1989, 91(4): 2479-2488
    [37] Larson R G. Monte-Carlo Simulation of Microstructural Transitions in Surfactant Systems[J]. Journal of Chemical Physics, 1992, 96(11): 7904-7918
    [38] Neimark A V, Vishnyakov A. Gauge cell method for simulation studies of phase transitions in confined systems[J]. Physical Review E, 2000, 62(4): 4611-4622
    [39] Neimark A V, Ravikovitch P I, Vishnyakov A. Inside the hysteresis loop: Multiplicity of internal states in confined fluids[J]. Physical Review E, 2002, 65(3)
    [40] Vishnyakov A, Neimark A V. Studies of Liquid-Vapor Equilibria, Criticality, and Spinodal Transitions in Nanopores by the Gauge Cell Monte Carlo Simulation Method[J]. J. Phys. Chem. B,2001, 105(29): 7009-7020
    [41] Reimer U, Wahab M, Schiller P, et al. Monte Carlo simulation of the adsorption equilibrium of a model surfactant solution on hydrophilic solid surfaces[J]. Langmuir, 2001, 17(26): 8444-8450
    [42] Floriano M A, Caponetti E, Panagiotopoulos A Z. Micellization in model surfactant systems [J]. Langmuir, 1999, 15(9): 3143-3151
    [43] Panagiotopoulos A Z, Floriano M A, Kumar S K. Micellization and phase separation of diblock and triblock model surfactants [J]. Langmuir, 2002, 18(7): 2940-2948
    [44] Rosenbluth M N, Rosenbluth A W. Monte-Carlo Calculation of the Average Extension of Molecular Chains[J]. Journal of Chemical Physics, 1955, 23(2): 356-359
    [45] Mackie A D, Onur K, Panagiotopoulos A Z. Phase equilibria of a lattice model for an oil-water-amphiphile mixture[J]. Journal of Chemical Physics, 1996, 104(10): 3718-3725
    [46] Mackie A D, Panagiotopoulos A Z, Szleifer I. Aggregation behavior of a lattice model for amphiphiles[J]. Langmuir, 1997, 13(19): 5022-5031
    [47] Neimark A V, Vishnyakov A. Phase transitions and criticality in small systems: Vapor-liquid transition in nanoscale spherical cavities[J]. Journal of Physical Chemistry B, 2006, 110(19): 9403-9412
    [48] Neimark A V, Vishnyakov A. Monte Carlo simulation study of droplet nucleation[J]. Journal of Chemical Physics, 2005, 122(17): 174508
    [49] Manne S, Cleveland J P, Gaub H E, et al. Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double-Layer[J]. Langmuir, 1994,10(12): 4409-4413
    [50] Zhang X R, Chen B H, Wang Z H. Computer simulation of adsorption kinetics of surfactants on solid surfaces[J]. Journal of Colloid and Interface Science, 2007, 313(2): 414-422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700