用户名: 密码: 验证码:
Raf-1、MEK-1、ERK-1及CyclinD1在肝细胞肝癌组织的表达及临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:Raf/MEK/ERK通路在周期调控、细胞增殖、细胞凋亡、细胞的生长抑制及分化中起着重要的调控作用,是一种重要的肿瘤生物学进程。Cyclin D1是一种作用于G1期的细胞周期相关蛋白,与多种蛋白或癌基因协同作用而发生过表达。Raf/MEK/ERK通路激活后,促进Cyclin D1与CDK4/6结合形成复合体而磷酸化并激活CDK,加速细胞G1/S期的转化而促进细胞增殖,进而促进肿瘤发生。有研究提示Raf/MEK/ERK通路的激活及Cyclin D1的过表达与肝细胞肝癌的发生密切相关。本实验用免疫组织化学技术比较Raf-1、MEK-1、ERK-1及Cyclin D1在肝细胞癌、癌旁硬化肝组织及正常肝组织中的表达情况,探讨各蛋白间相关性、临床意义及对预后的影响。
     方法:1研究对象:50例肝细胞癌癌组织、17例癌旁硬化肝组织及14例肝血管瘤周边正常肝组织(作为对照)均来自河北医科大学第四医院肝胆外科2001年11月~2006年5月手术切除标本。所有组织类型均经河北医科大学第四医院病理科确诊。所有患者术前均未进行任何形式的治疗。
     2研究方法:组织切除后经10%中性甲醛固定后石蜡包埋备用。应用免疫组织化学法检测Raf-1、MEK-1、ERK-1及Cyclin D1在不同肝组织中的表达情况。对肝癌患者的临床资料进行汇总,探讨各蛋白间的相互关系及其与肝细胞癌患者临床表现间的关系。随访患者生存情况,比较各蛋白表达对不同临床分期肝癌患者预后的影响。
     结果:1临床病理资料对肝癌患者术后生存的影响:年龄、癌栓、病灶大小、HBsAg、HBeAb、癌灶数目及包膜完整性等对肝细胞癌患者的预后的影响无显著性差异,而临床分期(χ~2=7.636,P=0.006)、病理分级(χ~2=6.296,P=0.043)及AFP(χ~2=4.07,P=0.044)对肝细胞癌患者的预后的影响有显著性差异。临床分期较早、病理分化较好、AFP较低者,生存率较高,平均生存时间较长,预后较好。
     2 Raf-1在各组肝组织均有表达,表现为细胞浆及细胞膜黄染。Raf-1在癌组织的表达(弱17例、中20例、强9例/50例)显著高于癌旁硬化肝组织(弱5例/17例)和正常肝组织(弱2例/14例)(Z=-5.079和Z=-5.082,P=0.000),癌旁硬化肝组织表达和正常组织表达统计学差异无显著性。Raf-1在肝癌组织的表达与性别、癌灶数目、AFP、HBeAb阴阳性、乙肝有无及包膜是否完整均无关;在肝癌临床分期较早的癌组织Raf-1的表达强于分期较晚者(χ~2=13.496,P=0.009;r=-0.452,P=0.001);在肝癌病理分级高分化的癌组织Raf-1的表达强于低分化者(χ~2=14.904,P=0.001;r=-0.547,P=0.000);在年龄大于或等于50岁者癌组织Raf-1的表达强于小于50岁者(Z=-2.109,P=0.035;r=0.301,P=0.034);在肿瘤小于5cm者癌组织Raf-1的表达强于大于或等于5cm者(Z=-2.502,P=0.012;r=-0.357,P=0.011);在不伴癌栓者癌组织Raf-1的表达强于伴癌栓者(Z=-3.246,P=0.001;r=-0.464,P=0.001)。Raf-1表达(-~+)及(++~+++)者累积生存率分别为14.3%和54.3%,平均生存时间分别为12.93月和28.23月。Raf-1表达越强,生存率越高,平均生存时间越长,预后越好(χ~2=6.793,P=0.009)。
     3 MEK-1在各组肝组织均有表达,表现为细胞浆及细胞膜黄染。MEK-1在肝癌组织的表达(弱14例、中24例、强7例/50例)显著高于癌旁硬化肝组织(弱6例/17例)和正常肝组织(弱3例/14例)(Z=-4.909和Z=-4.873,P=0.000),癌旁硬化肝组织表达和正常组织表达统计学差异无显著性。MEK-1在肝癌组织的表达与性别、癌灶数目、AFP、HBeAb阴阳性、乙肝有无及包膜是否完整均无关;在肝癌临床分期较早的癌组织MEK-1的表达强于分期较晚者(χ~2=9.869,P=0.043;r=-0.433,P=0.002);在肝癌病理分级高分化的癌组织MEK-1的表达强于低分化者(χ~2=17.569,P=0.000;r=-0.599,P=0.000);在年龄大于或等于50岁者癌组织MEK-1的表达强于小于50岁者(Z=-2.375,P=0.018;r=0.339,P=0.016);在肿瘤小于5cm者癌组织MEK-1的表达强于大于或等于5cm者(Z=-2.635,P=0.008;r=-0.376,P=0.007);在不伴癌栓者癌组织MEK-1的表达强于伴癌栓者(Z=-2.891,P=0.004;r=-0.413,P=0.003)。MEK-1表达(-~+)及(++~+++)者累积生存率分别为15.4%和51.5%,平均生存时间分别为13.77月和27.64月。MEK-1表达越强,生存率越高,平均生存时间越长,预后越好(χ~2=6.581,P=0.01)。
     4 ERK-1在各组肝组织均有表达,表现为细胞浆和(或)细胞核黄染,以细胞浆为主。ERK-1在肝癌组织的表达(弱13例、中22例、强7例/50例)显著高于癌旁硬化肝组织(弱7例/17例)和正常肝组织(弱2例/14例)(Z=-4.264和Z=-4.635,P=0.000),癌旁硬化肝组织表达和正常组织表达统计学差异无显著性。ERK-1在肝癌组织的表达与性别、癌灶数目、AFP、HBeAb阴阳性、乙肝有无及包膜是否完整均无关;在肝癌临床分期较早的癌组织ERK-1的表达强于分期较晚者(χ~2=10.227,P=0.037;r=-0.422,P=0.002);在肝癌病理分级高分化的癌组织ERK-1的表达强于低分化者(χ~2=18.946,P=0.000;r=-0.615,P=0.000);在年龄大于或等于50岁者癌组织ERK-1的表达强于小于50岁者(Z=-2.266,P=0.023;r=0.324,P=0.022);在肿瘤小于5cm者癌组织ERK-1的表达强于大于或等于5cm者(Z=-2.769,P=0.006;r=-0.396,P=0.004);在不伴癌栓者癌组织ERK-1的表达强于伴癌栓者(Z=-2.953,P=0.003;r=-0.422,P=0.002)。ERK-1表达(-~+)及(++~+++)者累积生存率分别为9.5%和55%,平均生存时间分别为11.71月和28.92月。ERK-1表达越强,生存率越高,平均生存时间越长,预后越好(χ~2=9.869,P=0.002)。
     5 Cyclin D1在各组肝组织均有表达,表现为细胞核和(或)细胞浆黄染,以细胞核为主。Cyclin D1在肝癌组织的表达(弱14例、中17例、强8例/50例)显著高于癌旁硬化肝组织(弱6例/17例)和正常肝组织(弱3例/14例)(Z=-3.853和Z=-3.987,P=0.000),癌旁硬化肝组织表达和正常组织表达统计学差异无显著性。Cyclin D1在肝癌组织的表达与临床分期、性别、年龄、癌灶数目、肿瘤大小、AFP、HBeAb阴阳性、乙肝有无、有无癌栓及包膜是否完整均无关;在肝癌病理分级高分化的癌组织Cyclin D1的表达强于低分化者(χ~2=6.227,P=0.044;r=-0.352,P=0.012)。Cyclin D1表达(-~+)及(++~+++)者累积生存率分别为14.3%和55.6%,平均生存时间分别为15.55月和27.26月。Cyclin D1表达越强,生存率越高,平均生存时间越长,预后越好(χ~2=4.219,P=0.04)。
     6肝癌组织Raf-1、MEK-1、ERK-1与Cyclin D1表达情况的相关性:肝癌组织中Raf-1与MEK-1的表达呈正相关(r=0.747,P=0.000),与ERK-1的表达呈正相关(r=0.691,P=0.000),与Cyclin D1的表达呈正相关(r=0.341,P=0.015);MEK-1与ERK-1的表达呈正相关(r=0.858,P=0.000),与Cyclin D1的表达呈正相关(r=0.429,P=0.002);ERK-1与Cyclin D1的表达呈正相关(r=0.378,P=0.007)。
     结论:1临床分期、病理分级及AFP对肝细胞癌患者的预后的影响有显著性差异,临床分期较早、病理分化较好、AFP较低者,生存率较高,生存期较长,预后较好。
     2 Raf-1、MEK-1、ERK-1在肝癌组织中的表达显著升高;青壮年患者、伴有癌栓、分化较差、肿瘤较大、属临床分期较晚期者,Raf-1、MEK-1、ERK-1阳性表达较弱,生存率较低,生存期较短,预后较差。
     3 Cyclin D1在肝癌组织中的表达显著升高;在肝癌病理分级为高分化的癌组织中Cyclin D1的表达较强,生存率较高,生存期较长,预后较好。
     4肝癌组织中Raf-1、MEK-1、ERK-1、Cyclin D1的表达两两之间均呈正相关。
Objective: Raf/MEK/ERK pathway played an important regulatory role in cell cycle regulation, cell proliferation, cell apoptosis, cellular growth inhibiting and differentiation. This cascade was an essential oncogenic progression. Cyclin D1 was a cell cycle associated protein that affected on the G1 phase of the cell cycle. It could be overexpressed when it played coorperation with lots of proteins or oncogenes. After the Raf/MEK/ERK pathway was actived, Cyclin D1 was promoted to form an active enzyme complex with cyclin dependent kinase 4/6 (CDK4/6) that phosphorylated and activated CDK and leaded to G1/S transition. Thus, it enhanced cell proliferation and promoted tumorigenesis. There were studies about the activation of Raf/MEK/ERK pathway and the Cyclin D1 overexpression in human hepatocellular carcinoma. To identify whether different Raf-1, MEK-1, ERK-1 and Cyclin D1 expressional levels predicts different clinical outcome of hepatocellular carcinoma (HCC), we perform immunostaining of these oncogenes in cancerous, non-cancerous and normal hepatic tissues. Our research indicates new clinical target for tumor theraphy.
     Methods: 1 Samples collection and patients follow up: 50 specimens of HCC, 17 specimens of adjacent non-cancerous cirrhosis hepatic tissue and 14 specimens of normal hepatic tissue obtained from the fourth hospital of Hebei Medical University without clinical treatment before operation. All patients were followed up for 2 years.
     2 Imunostaining: The samples were fixed by 10% formaldehyde, embeded in paraffin after excision. Raf-1, MEK-1, ERK-1 and Cyclin D1 were stained, and two pathologist without backgroud on these samples graded these oncogenes expression and proliferation on each tissue.
     Resluts: 1 Survival analysis of the clinical and pathological data in postoperative HCC patients: Age, the portal vein tumor thrombosis, the size of tumor, HBsAg, HBeAb, the number of tumor foci and the integrity of the tumor’s envelope were no statistical difference in postoperative HCC patients. The clinical stage (χ~2=7.636, P=0.006), the pathological classification (χ~2=6.296, P=0.043) and AFP (χ~2=4.07, P=0.044) were the significant prognostic factors in postoperative HCC patients.
     2 Raf-1 mostly expressed in cytoplasm and cellular membrane. The Raf-1 expressed not differently refered to sex, the number of tumor foci, AFP, HBeAb, HBsAg and the integrity of the tumor’s envelope based on our statistical analysis. In the 50 HCC samples, Raf-1 weakly expressed in 17 samples, moderately expressed in 20 samples and strongly expressed 9 samples, repectively. Whereas it weakly expressed in 5/17 of adjacent non-cancerous cirrhosis hepatic tissues and 2/14 of normal hepatic tissues. Raf-1 expression frequency in HCC was significantly higher than that in adjacent non-cancerous hepatic tissue and in normal hepatic tissue (Z=-5.079 and Z=-5.082, P=0.000), and no statistical difference existed bwteen in adjacent non-cancerous hepatic tissue and in normal hepatic tissue. Our data demonstrated that Raf-1 expression was positively correlated with hepatic carcinogenesis. Raf-1 expression in early clinical stage in HCC was stronger than that in late clinical stage (χ~2=13.496, P=0.009. r=-0.452, P=0.001). Raf-1 expression in the well-differentiated HCC about the pathological classification was stronger than that in poorly differentiated tissue (χ~2=14.904, P=0.001. r=-0.547, P=0.000). Raf-1 expression in older than or equal to 50 years old of HCC patients was stronger than that in younger than 50 years old (Z=-2.109, P=0.035. r=0.301, P=0.034). Raf-1 expression in less than 5cm about the size of tumor was stronger than that in larger than or equal to 5cm (Z=-2.502, P=0.012. r=-0.357, P=0.011). Raf-1 expression in the tissue without the portal vein tumor thrombosis was stronger than that with the portal vein tumor thrombosis (Z=-3.246, P=0.001. r=-0.464, P=0.001). The patients in whom Raf-1 negatively and weakly expressed had 12.93 months’mean survival time, and the cumulative survival rate was 14.3%. The patients in whom Raf-1 moderately and strongly expressed had 28.23 months’ mean survival time, and the cumulative survival rate was 54.3%. Raf-1 expression was stronger, the survival rate was higher, and the prognosis was better (By single variable Log rank test,χ~2=6.793, P=0.009).
     3 MEK-1 mostly expressed in cytoplasm and cellular membrane. The MEK-1 expressed not differently refered to sex, the number of tumor foci, AFP, HBeAb, HBsAg and the integrity of the tumor’s envelope based on our statistical analysis. In the 50 HCC samples, MEK-1 weakly expressed in 14 samples, moderately expressed in 24 samples and strongly expressed 7 samples, repectively. Whereas it weakly expressed in 6/17 of adjacent non-cancerous cirrhosis hepatic tissues and 3/14 normal hepatic tissues. MEK-1 expression frequency in HCC was significantly higher than that in adjacent non-cancerous hepatic tissue and in normal hepatic tissue (Z=-4.909 and Z=-4.873, P=0.000), and no statistical difference existed bwteen in adjacent non-cancerous hepatic tissue and in normal hepatic tissue. Our data demonstrated that MEK-1 expression was positively correlated with hepatic carcinogenesis. MEK-1 expression in early clinical stage in HCC was stronger than that in late clinical stage (χ~2=9.869, P=0.043. r=-0.433, P=0.002). MEK-1 expression in the well-differentiated HCC about the pathological classification was stronger than that in poorly differentiated tissue (χ~2=17.569, P=0.000. r=-0.599, P=0.000). MEK-1 expression in older than or equal to 50 years old of HCC patients was stronger than that in younger than 50 years old (Z=-2.375, P=0.018. r=0.339, P=0.016). MEK-1 expression in less than 5cm about the size of tumor was stronger than that in larger than or equal to 5cm (Z=-2.635, P=0.008. r=-0.376, P=0.007). MEK-1 expression in the tissue without the portal vein tumor thrombosis was stronger than that with the portal vein tumor thrombosis (Z=-2.891, P=0.004. r=-0.413, P=0.003). The patients in whom MEK-1 negatively and weakly expressed had 13.77 months’mean survival time, and the cumulative survival rate was 15.4%. The patients in whom MEK-1 moderately and strongly expressed had 27.64 months’mean survival time, and the cumulative survival rate was 51.5%. MEK-1 expression was stronger, the survival rate was higher, and the prognosis was better (By single variable Log rank test,χ~2=6.581, P=0.01).
     4 ERK-1 mostly expressed in cytoplasm and cellular nucleus. The ERK-1 expressed not differently refered to sex, the number of tumor foci, AFP, HBeAb, HBsAg and the integrity of the tumor’s envelope based on our statistical analysis. In the 50 HCC samples, ERK-1 weakly expressed in 13 samples, moderately expressed in 22 samples and strongly expressed 7 samples, repectively. Whereas it weakly expressed in 7/17 of adjacent non-cancerous cirrhosis hepatic tissues and 2/14 normal hepatic tissues. ERK-1 expression frequency in HCC was significantly higher than that in adjacent non-cancerous hepatic tissue and in normal hepatic tissue (Z=-4.264 and Z=-4.635, P=0.000), and no statistical difference existed bwteen in adjacent non-cancerous hepatic tissue and in normal hepatic tissue. Our data demonstrated that ERK-1 expression was positively correlated with hepatic carcinogenesis. ERK-1 expression in early clinical stage in HCC was stronger than that in late clinical stage (χ~2=10.227, P=0.03. r=-0.422, P=0.002). ERK-1 expression in the well-differentiated HCC about the pathological classification was stronger than that in poorly differentiated tissue (χ~2=18.946, P=0.000. r=-0.615, P=0.000). ERK-1 expression in older than or equal to 50 years old of HCC patients was stronger than that in younger than 50 years old (Z=-2.266, P=0.023. r=0.324, P=0.022). ERK-1 expression in less than 5cm about the size of tumor was stronger than that in larger than or equal to 5cm (Z=-2.769, P=0.006. r=-0.396, P=0.004). MEK-1 expression in the tissue without the portal vein tumor thrombosis was stronger than that with the portal vein tumor thrombosis (Z=-2.953, P=0.003. r=-0.422, P=0.002). The patients in whom ERK-1 negatively and weakly expressed had 11.71 months’mean survival time, and the cumulative survival rate was 9.5%. The patients in whom ERK-1 moderately and strongly expressed had 28.92 months’mean survival time, and the cumulative survival rate was 55%. ERK-1 expression was stronger, the survival rate was higher, and the prognosis was better (By single variable Log rank test,χ~2=9.869, P=0.002).
     5 Cyclin D1 mostly expressed in cellular nucleus and cytoplasm. The Cyclin D1 expressed not differently refered to clinical stage, sex, age, the size of tumor, the number of tumor foci, AFP, HBeAb, HbsAg, the portal vein tumor thrombosis and the integrity of the tumor’s envelope based on our statistical analysis. In the 50 HCC samples, Cyclin D1 weakly expressed in 14 samples, moderately expressed in 17 samples and strongly expressed 8 samples, repectively. Whereas it weakly expressed in 6/17 of adjacent non-cancerous cirrhosis hepatic tissues and 3/14 normal hepatic tissues. Cyclin D1 expression frequency in HCC was significantly higher than that in adjacent non-cancerous hepatic tissue and in normal hepatic tissue (Z=-3.853 and Z=-3.987, P=0.000), and no statistical difference existed bwteen in adjacent non-cancerous hepatic tissue and in normal hepatic tissue. Our data demonstrated that Cyclin D1 expression was positively correlated with hepatic carcinogenesis. Cyclin D1 expression in the well-differentiated HCC about the pathological classification was stronger than that in poorly differentiated tissue (χ~2=6.227, P=0.044. r=-0.352, P=0.012). The patients in whom Cyclin D1 negatively and weakly expressed had 15.55 months’mean survival time, and the cumulative survival rate was 14.3%. The patients in whom Cyclin D1 moderately and strongly expressed had 27.26 months’mean survival time, and the cumulative survival rate was 55.6%. Cyclin D1 expression was stronger, the survival rate was higher, and the prognosis was better (By single variable Log rank test,χ~2=4.219, P=0.04).
     6 The correlation among Raf-1, MEK-1, ERK-1 and Cyclin D1 expression in HCC: Raf-1 expressional level was positively correlated to MEK-1 expressional level in HCC (r=0.747, P=0.000), and was positively correlated ERK-1 expressional level in HCC (r=0.691, P=0.000), and was positively correlated to Cyclin D1 expressional level in HCC (r=0.341, P=0.015). MEK-1 expressional level was positively correlated to ERK-1 expressional level in HCC (r=0.858, P=0.000), and was positively correlated to Cyclin D1 expressional level in HCC (r=0.429, P=0.002). ERK-1 expressional level was positively correlated to Cyclin D1 expressional level in HCC (r=0.378, P=0.007).
     Conclusions: 1 The clinical stage, the pathological classification and AFP were the significant prognostic factors in postoperative HCC patients. In the patients in early clinical stage with low level of AFP whose hepatic tissue was well-differentiated, the prognosis was better.
     2 Raf-1, MEK-1, ERK-1 expression was positively correlated with hepatic carcinogenesis. Raf-1, MEK-1, ERK-1 weakly expressed in the younger patients, late clinical stage, poorly differentiated tissue, the big size of tumor and with the portal vein tumor thrombosis. While the survival rate was shorter, the prognosis was poorer.
     3 Cyclin D1 expression was positively correlated with hepatic carcinogenesis. Cyclin D1 strongly expressed in well-differentiated tissue. While the survival rate was higher, the prognosis was better.
     4 There were positively correlations among Raf-1, MEK-1, ERK-1 and Cyclin D1 expression.
引文
1 汤钊猷著. 汤钊猷临床肝癌学. 上海: 上海科技教育出版社, 2001. 24~25
    2 杨秉辉, 夏景林. 原发性肝癌的临床诊断与分期标准. 中华肝脏病杂志, 2001, 9(6): 324
    3 周建锋, 王怡兵, 刘平. Ras 蛋白与肝细胞癌变过程中的信号转导. 中西医结合肝病杂志, 2000, 10(3): 50~52
    4 Wang D, Boerner SA, Winkler JD, et al. Clinical experience of MEK inhibitors in cancer therapy. Biochimica et Biophysica Acta, 2007, 1773: 1248~1255
    5 李宗海, 陈主初. Ras/Raf/MEK/Erk 通路调控细胞功能的机制. 国外医学·生理、病理科学与临床分册, 2000, 20(1): 12~14
    6 Molina JR, Adjei AA. The Ras/Raf/MAPK pathway. Journal of Thoracic Oncology, 2006, 1: 7~9
    7 刘爱华, 姜勇. 丝裂原活化蛋白激酶与肿瘤. 中华医学杂志, 2001, 81(12): 761~763
    8 丁桂霞, 张爱华, 陈荣华. Ras/Raf/ERK 信号传导通路在肾脏疾病中作用的研究进展. 国外医学儿科学分册, 2000, 27(5): 231~235
    9 Ramnath N, Adjei A. Inhibitors of Raf kinase and MEK signaling. Update On Cancer Therapeutics, 2007, 2: 111~118
    10 马景德, 齐秀芬. MAPKs 信号通路及其与疾病关联性的研究现状. 临床军医杂志, 2004, 32(2): 95~97
    11 Cuschieri J, Maier RV. Mitogen-activated protein kinase (MAPK). Crit Care Med, 2005, 33(12) (Suppl.): 417~419
    12 Arbabi S, Maier RV. Mitogen-activated protein kinases. Crit Care Med, 2002, 30(1) (Suppl.): 74~79
    13 Leicht DT, Balan V, Kaplun A, et al. Raf kinases: function, regulation and role in human cancer. Biochimica et Biophysica Acta, 2007, 1773: 1196~1212
    14 Galmiche A, Fueller J. RAF kinases and mitochondria. Biochimica et Biophysica, 2007, 1773: 1256~1262
    15 Brummer T, Shaw PE, Reth M, et al. Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signaling. The EMBO Journal, 2002, 21(21): 5611~5622
    16 Mikula M, Schreiber M, Husak Z, et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. The EMBO Journal, 2001, 20(8): 1952~1962
    17 Raabe T, Rapp UR. Ras signaling: PP2A puts Ksr and Raf in the right place. Current Biology, 2003, 13: 635~637
    18 Klysik J, Theroux SJ, Sedivy JM, et al. Signaling crossroads: The function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cellular Signalling, 2008, 20: 1~9
    19 Kunnimalaiyaan M, Chen H. The Raf-1 pathway: a molecular target for treatment of select neuroendocrine tumors. Anti-Cancer Drugs, 2006, 17(2): 139~142
    20 Huether A, H?pfner M, Baradari V, et al. Sorafenib alone or as combination therapy for growth control of cholangiocarcinoma. Biochemical Pharmacology, 2007, 73: 1308~1317
    21 崔建国, 蔡建明. Raf-1 与辐射增敏. 生命的化学, 2005, 25(4): 318~320
    22 李娟, 何涛. 胞外信号调节激酶(ERK)信号转导途径的研究进展. 四川生理科学杂志, 2004, 26(2): 87~89
    23 Park S, Rath O, Beach S, et al. Regulation of RKIP binding to the N-region of the Raf-1 kinase. FEBS Letters, 2006, 580: 6405~6412
    24 罗威, 曹亚. 靶向 ERK 信号转导通路抗肿瘤的研究进展. 国际病理科学与临床杂志, 2006, 26(3): 200~203
    25 凌晖, 苏琦. MAPK 信号转导通路与肿瘤细胞分化. 国外医学·生理、病理科学与临床分册, 2003, 23(5): 487~489
    26 Shen YH, Godlewski J, Bronisz A, et al. Significance of
    14-3-3 self-dimerization for phosphorylation-dependent target binding. Molecular Biology of the Cell November, 2003, 14: 4721~4733
    27 马洪德, 蒋明德, 曾维政. Erk 信号传导通路与细胞周期调控. 西南国防医药, 2003, 13(5): 556~558
    28 Parekh P, Rao K. Overexpression of cyclin D1 is associated with elevated levels of MAP kinases, Akt and Pak1 during diethylnitrosamine-induced progressive liver carcinogenesis. Cell Biology International, 2007, 31: 35~43
    29 夏加赠, 尹浩然. Cyclin D1 与恶性肿瘤. 肿瘤, 2000, 20(5): 388~390
    30 周洪贵, 卞度宏. Cyclin D1 与肿瘤. 浙江肿瘤, 2000, 6(1): 49~51
    31 Azechi H, Nishida N, Fukuda Y, et al. Disruption of the p16/Cyclin D1/Retinoblastoma protein pathway in the majority of human hepatocellular carcinomas. Oncology, 2001, 60: 346~354
    32 Peng ZW, Zhang YJ, Chen MS, et al. Risk factors of survival after percutaneous radiofrequency ablation of hepatocellular carcinoma. 2008, 17(1): 23~31
    33 Doffo?l M, Bonnetain F, Bouché O, et al. Multicentre randomized phase Ⅲ trial comparing Tamoxifen alone or with Transarterial Lipiodol Chemoembolisation for unresectable hepatocellular carcinoma in cirrhotic patients (Fédération Francophone de Cancérologie Digestive 9402). European Journal of Cancer, 2008, 44: 528~538
    34 胡朝理, 靳红义, 邱新光, 等. 肝细胞癌切除术后预后因素分析. 肝胆胰外科杂志, 2008, 20(1): 29~32
    35 孟志强, 刘鲁明, 马鑫, 等. 394 例原发性肝癌的预后因素与疗效分析. 中国癌症杂志, 2007, 17(8): 628~632
    36 周庆南. Ras/Raf/ERK 信号通路与肝脏疾病. 医学文选, 2004, 23(6): 798~800
    37 Zhu JY, Leng XS, Dong N, et al. Expression of mitogen-activated protein kinase and its upstream regulated signal in human hepatocellular carcinoma. Chin J Surg, 2002, 40(1): 1~4
    38 梁增文, 张国, 王天才. 肝细胞癌及癌旁肝组织中SMAD3 蛋白与细胞外信号调节激酶的表达及其相关性. 临床内科杂志, 2003, 20(7): 367~369
    39 王红阳. 原发性肝细胞性肝癌分子机理研究的几个热点问题. 中华实验外科杂志, 2001, 18(2): 105~107
    40 Chambard JC, Lefloch R, Pouysségur J, et al. ERK implication in cell cycle regulation. Biochimica et Biophysica Acta, 2007, 1773: 1299~1310
    41 杜成友, 杨祖奎, 王洪林, 等. 青年人肝癌 24 例分析. 肝胆外科杂志, 2000, 8(3): 176~177
    42 Jong HS, Lee HS, Kim TY, et al. Attenuation of transforming growth factor β-induced growth inhibition in human hepatocellular carcinoma cell lines by Cyclin D1 overexpression. Biochemical and Biophysical Research Communications. 2002, 292: 383~389
    43 朱波, 欧超, 罗元, 等. Cyclin D1 c-myc 和 p53 的表达与肝细胞癌生物学行为关系. 中国肿瘤临床, 2006, 33(2): 67~70
    44 张素青, 刘继斌, 施民新, 等. Cyclin D1 在肝细胞癌中的表达及意义. 现代肿瘤医学, 2004, 12(6): 522~523
    45 Ghaneh P, Kawesha A, Evans JD, et al. Molecular prognostic markers in pancreatic cancer. J Hepatobiliary Pancreat Surg, 2002, 9: 1~11
    46 Tang ZH, Qiu WH, Wu GS, et al. The immunotherapeutic effect of dendritic cells vaccine modified with interleukin-18 gene and tumor cell lysate on mice with pancreatic carcinoma. World J Gastroenterol, 2002, 8: 908~912
    47 张素青, 李德春. p27kipl及 Cyclin D1 在肝细胞癌中的表达及意义. 江苏医药, 2004, 30(1): 26~28
    48 李宝杰, 王新红, 曲波. 肝细胞癌变过程中 Cyclin D1 的异常表达与端粒酶活性的相关分析及意义. 世界华人消化杂志, 2003, 11(11): 1682~1685
    49 王晓玲. D 类细胞周期素在细胞周期中的作用. 国外医学分子生物学分册, 2002, 24(1): 44~46
    50 Shinji O, Masayuki K, Hisashi I, et al. Evaluation of extracellular signal regulated kinase expression and its relation to treatment of hepatocellular carcinoma. J Am Coll Surg. 2005, 201(3): 405~411
    51 郭艳红, 陈光慧, 唐朝枢. Raf 激酶及其活性抑制剂的应用. 生理科学进展, 2003, 34(3): 255~258
    52 James AM, Linda SS, William HC, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resisitance. Biochimica et Biophysica Acta, 2007, 1771: 1263~1284
    1 周建锋, 王怡兵, 刘平. Ras 蛋白与肝细胞癌变过程中的信号转导. 中西医结合肝病杂志, 2000, 10(3): 50~52
    2 Yasuo T. The 14-3-3 Proteins: Gene, Gene Expression, and Function. Neurochemical Research, 2003, 28(8): 1265~1273
    3 祖莹, 沈继龙. 信号蛋白质 14-3-3 研究进展. 国外医学分子生物学分册. 2001, 23(3): 139~142
    4 Hermeking H. The 14-3-3 cancer connection. Nature Reviews. Cancer. 2003, 3: 931~943
    5 Yasuhiro K, Ichiro A, Hidekazu T, et al. Upregulatied Expression of 14-3-3 Proteins in Astrocytes From Human Cerebrovascular Ischemic Lesions. Stroke, 2006, 37: 830~835
    6 Besser J, Bagowski CP, Salas-Vidal E, et al. Expression analysis of the family of 14-3-3 proteins in zebrafish development. Gene Expression Patterns. 2007, 7: 511~520
    7 Takahiko U, Toshiki U, Kuniaki T, et al. Intranuclear localization and isoform-dependent translocation of 14-3-3 proteins in human brain with infarction. Journal of the Neurological Sciences. 2007, 260: 159~166
    8 Fu HA, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 2000, 40: 617~647
    9 陈晓钎, 乌维宁, 于常海. 14-3-3: 保护性信号转导调节蛋白. 生理科学进展, 2004, 35(3): 247~250
    10 Zannis-Hadjopoulos M, Wafaa Y, Callejo M. 14-3-3 Cruciform-binding proteins as regulators of eukaryotic DNA replication. TRENDS in Biochemical Sciences, 2007, 33(1): 44~50
    11 廖章萍, 何明. 14-3-3 蛋白与心肌损伤. 药理学进展, 2005: 70~73
    12 彭少君, 黄柯. 14-3-3 蛋白在细胞信号传导中的作用. 宜春学院学报(自然科学), 2004, 26(6): 83~84
    13 Ying H, Godlewski J, Agnieszka Bronisz, et al. Significance of 14-3-3 Self-Dimerization for Phosphorylationg-dependent Target Binding. Molecular Biology of the Cell, 2003, 14: 4721~4733
    14 Satoh J, Yusuke N, Takashi Y. Rapid identification of
    14-3-3-binding proteins by protein microarray analysis. Journal of Neuroscience Methods, 2006, 152: 278~288
    15 Abramow-Newerly M, Hong M, P Chidiac.Modulation of subfamily B/R4 RGS protein function by 14-3-3 proteins. Cellular Signalling, 2006, 18: 2209~2222
    16 Foschi M, Franchi F, Han J, et al. Endothelin-1 Induces Serine Phosphorylation of the Adaptor Protein p66Shc and Its Association with 14-3-3 Protein in Glomerular Mesangial Cells. The Journal of Biological Chemistry, 2001, 276(28): 26640~26647
    17 孔令印, 张耀洲. 14-3-3 蛋白家族及其临床应用研究进展. 生物工程学报, 2007, 23(5): 781~788
    18 Yasuhiro K, Ichiro A, Shinichi N, et al. 14-3-3 Proteins inLewy bodies in Parkinson Disease and Diffuse Lewy body disease brains. Journal of Neuropathology and Experimental Neurology, 2002, 61(3): 245~253
    19 陈立梅. 14-3-3 蛋白在神经系统疾病中的研究进展. 深圳中西医结合杂志, 2005, 15(6): 376~379, 382
    20 Berg D, Holzmann C, Riess O. 14-3-3 Proteins in the Nervors system. Nature Reviews. Neuroscience, 200, 4: 752~762
    21 Chen HP, He M, Xu YL, et al. Anoxic preconditioning up-regulates 14-3-3 protein expression in neonatal rat cardiomyocytes through extracellular signal-regulated protein kinase 1/2. Life Sciences, 2007, 81: 372~379
    22 Monroy FP. Toxoplasma gondii: Effect of infection on expression of 14-3-3 proteins in human epithelial cells. Experimental Parasitology, 2008, 118: 134~138
    23 Tomohiko U, Tomoyuki S, Tohru T, et al. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumor growth. Nature, 2002, 417: 871~875
    24 Qi W, Liu X, Qiao D, et al. Isoform-specific expression of
    14-3-3 proteins in human lung cancer tissue. Int J Cancer, 2005, 113: 359~363
    25 Seiji K, Naoko I, Yuichi I, et al. Effect of 14-3-3 protein induction on cell proliferation of A549 human lung adenocarcinoma. Cytotechnology, 2000, 33: 253~257
    26 祖莹, 沈继龙, 汪学龙, 等. 信号蛋白质 14-3-的高效融合表达和鉴定. 中国神经免疫学和神经病学杂志, 2002,9(4): 210~213
    27 Chambard JC, Lefloch R, Pouysségur J, et al. ERK implication in cell cycle regulation. Biochimica et Biophysica Acta, 2007, 1773: 1299~1310
    28 李宗海, 陈主初. Ras/Raf/MEK/Erk 通路调控细胞功能的机制. 国外医学·生理、病理科学与临床分册, 2000, 20(1): 12~14
    29 Molina JR, Adjei AA. The Ras/Raf/MAPK Pathway. Journal of Thoracic Oncology, 2006, 1(1): 7~9
    30 Wang D, Boerner SA, Winkler JD, et al. Clinical experience of MEK inhibitors in cancer therapy. Biochimica et Biophysica Acta, 2007, 1773: 1248~1255
    31 Mikula M, Schreiber M, Husak Z, et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. The EMBO Journal, 2001, 20(8): 1952~1962
    32 刘爱华, 姜勇. 丝裂原活化蛋白激酶与肿瘤. 中华医学杂志, 2001, 81(12): 761~763
    33 丁桂霞, 张爱华, 陈荣华. Ras/Raf/ERK 信号传导通路在肾脏疾病中作用的研究进展. 国外医学儿科学分册, 2000, 27(5): 231~235
    34 Ramnath N, Adjei A. Inhibitors of Raf kinase and MEK signaling. Update On Cancer Therapeutics, 2007, 2: 111~118
    35 王冰, 吴燕红, 杨志, 等. MAPK/ERK 信号转导通路的分子生物学特征及生物效应. 第四军医大学学报, 2005, 26: 18~21
    36 Arbabi S, Maier RV. Mitogen-activated protein kinases. Crit Care Med, 2002, 30(1) (Suppl.): 74~79
    37 马景德, 齐秀芬. MAPKs 信号通路及其与疾病关联性的研究现状. 临床军医杂志, 2004, 32(2): 95~97
    38 Cuschieri J, Maier RV. Mitogen-activated protein kinase (MAPK). Crit Care Med, 2005, 33(12) (Suppl.): 417~419
    39 Leicht DT, Balan V, Kaplun A, et al. Raf kinases: Function, regulation and role in human cancer. Biochimica et Biophysica Acta, 2007, 1773: 1196~1212
    40 Galmiche A, Fueller J. RAF kinases and mitochondria. Biochimica et Biophysica, 2007, 1773: 1256~1262
    41 Brummer T, Shaw PE, Reth M, et al. Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signaling. The EMBO Journal, 2002, 21(21): 5611~5622
    42 Raabe T, Rapp UR. Ras Signaling: PP2A Puts Ksr and Raf in the Right Place. Current Biology, 2003, 13: R635~R637
    43 Klysik J, Theroux SJ, Sedivy JM, et al. Signaling crossroads: The function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cellular Signalling, 2008, 20: 1~9
    44 Kunnimalaiyaan M, Chen H. The Raf-1 pathway: a molecular target for treatment of select neuroendocrine tumors. Anti-Cancer Drugs, 2006, 17(2): 139~142
    45 Huether A, H?pfner M, Baradari V, et al. Sorafenib alone or as combination therapy for growth control ofcholangiocarcinoma. Biochemical Pharmacology, 2007, 73: 1308~1317
    46 Lee M. Raf-1 kinase activation is uncoupled from downstream MEK/ERK pathway in cells treated with Src tyrosine kinase inhibitor PP2. Biochemical and Biophysical Research Communications, 2006, 350: 450~456
    47 赵行宇, 吕士杰, 沈楠. RAS 蛋白的信号转导途径. 吉林医药学院学报, 2005, 26(3): 169~171
    48 崔建国, 蔡建明. Raf-1 与辐射增敏. 生命的化学, 2005, 25(4): 318~320
    49 李娟, 何涛. 胞外信号调节激酶(ERK)信号转导途径的研究进展. 四川生理科学杂志, 2004, 26(2): 87~89
    50 Park S, Rath O, Beach S, et al. Regulation of RKIP binding to the N-region of the Raf-1 kinase. FEBS Letters, 2006, 580: 6405~6412
    51 凌晖, 苏琦. MAPK 信号转导通路与肿瘤细胞分化. 国外医学·生理、病理科学与临床分册, 2003, 23(5): 487~489
    52 罗威, 曹亚. 靶向 ERK 信号转导通路抗肿瘤的研究进展. 国际病理科学与临床杂志, 2006, 26(3): 200~203
    53 蔡文琴, 钱桂生. 几条重要的信号转导通道研究的概况及临床意义. 第三军医大学学报, 2003, 25(12): 91~93
    54 刘娟, 姚树坤, 殷飞. 肝癌组织中 14-3-3 基因差异表达的意义. 世界华人消化杂志, 2007, 15(31): 3299~3304
    55 Wanzel M, Kleine-Kohlbrecher D, Herold S, et al. Akt and 14-3-3eta regulate Mizl to control cell-cycle arrest after DNA damage. Nature Cell Biology, 2005, 7(1): 30~41
    56 潘伟男, 陈锋, 封芬, 等. 14-3-3 蛋白的研究进展. 国际病理科学与临床杂志. 2007, 27(3): 262~265
    57 梁增文, 张国, 王天才. 肝细胞癌及癌旁肝组织中SMAD3 蛋白与细胞外信号调节激酶的表达及其相关性. 临床内科杂志, 2003, 20(7): 367~369
    58 刘平. 肝癌发生过程中转录因子 AP-1 活化的研究. 南京医科大学学报, 2004, 24(1): 28~30
    59 周庆南. Ras/Raf/ERK 信号通路与肝脏疾病. 医学文选, 2004, 23(6): 798~800

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700