用户名: 密码: 验证码:
海中有色可溶有机物荧光光谱现场探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水中有色可溶有机物(Chromophoric Dissolved Organic Matter:CDOM,国内通常称之为黄色物质)的研究在全球碳循环、海洋水色、海洋生态、海洋动力环境和海洋污染评价等研究领域具有重要的意义。荧光光谱具有灵敏度高、选择性好等优点,且不需要对目标物进行分离与处理,近年来已被广泛应用于水体中CDOM的检测和分析,但仍以采集水样的实验室分析方法为主。本论文针对CDOM现场探测技术展开研究,具体工作如下:
     1、研制了一套小型化的、基于ROV的CDOM水下原位荧光光谱探测系统。该系统采用355nn紫外波长激光激发,微型光纤光谱仪分光探测,可在水下原位实时获得黄色物质的整条光谱曲线。系统采用ROV平台和荧光光谱探测装置一体化设计,先后进行了实验室密封实验、水池实验、海上实验,工作稳定,与紫外-可见分光光度计对比试验,也具有较好相关性(R=0.67)
     2、提出了一种实用的激光/LED混合三波长同时激发荧光的测量方法,并成功进行了实验室原理验证。采用266nm/532nm双波长激光器和375nmLED作为激发光源,可获得较为全面的水下荧光信号,包括类蛋白CDOM、类腐殖质CDOM、叶绿素等。
     3、本文利用ICCD开展了CDOM时间分辨荧光光谱技术研究。分别利用355nm和266nm激光器对CDOM进行激发,类色氨酸和两种类腐殖质的荧光寿命均小于10ns,但有所差别,利用荧光寿命不同可对成分进行区分。另外,完成了一套基于ICCD的微脉冲海洋荧光激光雷达系统原理验证,并以此为基础计算了机载海洋荧光激光雷达采用ICCD作为探测器的可行性。
     4、开展了荧光-吸收光谱联合探测技术研究,利用液芯光纤作为样品池对吸收进行高灵敏度测量,同时对CDOM荧光光谱进行现场定标,经过实验室对比实验,荧光强度和吸收系数具有较好的相关性(R=0.98)
     5、针对CDOM物质成分分析,从三方面开展了荧光光谱-拉曼光谱联合探测技术研究:深紫外荧光光谱与常规可见光激发拉曼光谱的联合、深紫外荧光光谱与紫外共振拉曼光谱的联合,深紫外荧光光谱与表面增强拉曼光谱的联合,其中第三种联合最为理想。成功地利用一套装置同时获得了CDOM的荧光光谱和表面增强拉曼光谱。
The research on chromophoric dissolved organic matter (CDOM) is very important for ocean color, global carbon cycle, oceanic ecology, oceanic dynamical environments, and pollution monitoring in ocean. CDOM measurements with fluorescence techniques have high sensitivity and selectivity, and can operate simply without water sample filter and pretreatment. Fluorescence spectroscopy has been used in CDOM research and measurements widely in recent years. While most fluorescence research at the present time needs to collect water sample and measure spectra with fluorospectrophotometer in lab. So the development of in-situ fluorescence devices and techniques has great utility value and necessity. This thesis focuses on the CDOM in-situ fluorescence techniques and devices. The main contents are as follows:
     1. A compact underwater CDOM in-situ fluorescence prototype has been successfully developed based on ROV platform. This prototype can get CDOM spectra curves in real time with a355nm UV laser and a small optical fiber spectrometer. The main feature of this prototype is the integration configuration design between ROV platform and in-situ fluorescence device chamber. Series performance tests such as laboratory waterproof tests, swimming pool tests, and oceanic field deployments have demonstrated the utility of the prototype as an integrated tool for research and observations. The fluorescence intensity ratio has good correlation with absorption coefficient measured with UV-VIS spectrophotometry.
     2. A novel multi-wavelength fluorescence measurement method was proposed and verification experiment proved its fesibility. This method provides fluorescence spectra for assessment of CDOM, chlorophyll a, and pigments with combined dual-wavelength (266nm and532nm) laser and375nm LED as excitation source.
     3. Time resolved fluorescence spectroscopy has been used for CDOM research with ICCD and pulsed laser excited at355nm or266nm. When excited at266nm, three main components with different fluorescence lifetime have been differentiated successfully. Furthermore, a compact ocean lidar verification device was performed with ICCD and a micro-pulsed laser.
     4. Fluorescence and absorption spectroscopy joint analysis has been performed with a liquid core optical fiber used as absorption sample cell. The absorption measurement with a liquid core optical fiber can improve sensitivity by increasing optical path, and can also calibrate fluorescence data in field deployments. The results show good correlation(R=0.98)between fluorescence intensity ratio and absorption in laboratory experiments.
     5、Fluorescence and Raman spectroscopy joint research has been performed for CDOM composition analysis. Three combination modes has been studied including deep UV fluorescence and VIS Raman joint, deep UV fluorescence and UV resonance Raman joint, deep UV fluorescence and surface enhanced resonance Raman joint. Between the three combination modes, deep UV fluorescence and surface enhanced resonance Raman joint analysis is the most satisfactory. Fluorescence and surface enhanced resonance Raman spectra were obtained simultaneously with the same device.
引文
[1]张绪琴,吴永森,张士魁,吴隆业,胶州湾海水黄色物质荧光分布初步研究,遥感学报,Vol.6,No.3,229-232,2002。
    [2]Richard L. Miller, Mathias Belz, Carlos Del Castillo, Rick Trzaska, et al., Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system,2002, Continental Shelf Research, 22:1301-1310.
    [3]Hiroaki Sasaki, Tsuyoshi Miyamura, Sei-ichi Saitoh, et al., Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan, Estuarine, Coastal and Shelf Science,2005,64: 447-458.
    [4]G. M. Ferrari, M. D. Dowell, CDOM Absorption Characteristics with Relation to Fluorescence and Salinity in Coastal Areas of the Southern Baltic Sea, Estuarine, Coastal and Shelf Science,1998,47,91-105.
    [5]张运林,张恩楼,刘明亮,云南高原湖泊有色可溶性有机物和颗粒物光谱吸收特性,湖泊科学,2009,21(2):255-263。
    [6]Coble P G, Green S A,Blough N V,et al., Charaterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy, Nature,1990,348(29): 432-435.
    [7]Nieke B, Reuter R, Heuermann R, et al, Therriault JC. Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence estuary (Case 2 waters), Continental Shelf Research,1997,17:235-52.
    [8]McKnight DM, Boyer EW, Westerhoff PK, et al., Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnology and Oceanography,2001,46(1):38-48.
    [9]Xin Yao, Yunlin Zhang, Guangwei Zhu, Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries, Chemosphere,2011,82:145-155.
    [10]Yunlin Zhang, Mark A. van Dijk, Mingliang Liu, et al., The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes:Field and experimental evidence, water research,2009,43: 4685-4697.
    [11]Morris DP, Hargreaves BP, The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau, Limnol Oceanogr,1997,42:239-249.
    [12]Thomas J. Boyd, Christopher L. Osburn, Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries, Marine Chemistry,2004,89:189-210.
    [13]Tiit Kutser, Donald C. Pierson, Kari Y. Kallio, Mapping lake CDOM by satellite remote sensing, Remote Sensing of Environment,2005,94:535-540.
    [14]Palanisamy Shanmugam, New models for retrieving and partitioning the colored dissolved organic matter inthe global ocean:Implications for remote sensing, Remote Sensing of Environment,2011,115:1501-1521.
    [15]Harilal B. Menon, Nutan P. Sangekar, Aneesh A. Lotliker, Dynamics of chromophorie dissolved organic matter in Mandovi and Zuari estuaries—A study through in situ and satellite data, ISPRS Journal of Photogrammetry and Remote Sensing,2011,66:545-552.
    [16]Cuifen Du, ShaolingShang, QiangDong, ChuanminHu, Characteristics of chromophoric dissolved organic matter in the nearshore waters of the western Taiwan Strait, Estuarine, Coastal and Shelf Science,2010,88:350-356.
    [17]张运林,水体中有色可溶性有机物的研究进展,海洋湖沼通报,No.3,119-127.2006。
    [18]郭卫东,程远月,吴芳,海洋荧光溶解有机物研究进展,海洋通报,Vo1.26,No.1,98-106,2007.
    [19]Kalle K., Fluoreszenz und Gelbstoff im Bottnischen und Finnischen Meerbusen, Dtsch Hydrogr Z,2:117-124,1949.
    [20]季乃云,赵卫红,海洋溶解有机物荧光特征研究进展,海洋环境科学,2007,26(1):95-100.
    [21]Traganza E D., Fluorescence excitation and emission spectra of dissolved organic matter in sea water, Bull Mar Sci,19:897-904,1969.
    [22]Coble P G, Schultz C A, Mopper K, Fluorescence contouring analysis of DOC Intercalibration Experiment samples:a comparison of techniques, Mar Chem, 1993,41:173-178.
    [23]Coble P G, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Mar Chem,1996,51:325-346.
    [24]Coble P G, Del Castillo C E, and Avril B, Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon, Deep-Sea Res Ⅱ,1998,45:2195-2223.
    [25]季乃云,胶州湾荧光溶解有机物及其与环境因子关系的研究,硕士学位论文,中国科学院研究生院(海洋研究所),2005。
    [26]Lawrence M. Mayer, Linda L. Schick, Theodore C. Loder Ⅲ, Dissolved protein fluorescence in two Maine estuaries, Marine Chemistry,1999,64:171-179
    [27]B. NIEKE, R. REUTER, R. HEUERMANN, Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (Case 2 waters), Continental Shelf Research,1997,17(3):235-252.
    [28]Shatrughan Singh, Eurico D'Sa, Erick Swenson, Seasonal variability in CDOM absorption and fluorescence properties in the Barataria Basin, Louisiana, USA, Journal of Environmental Sciences 2010,22(10) 1481-1490.
    [29]Thomas J. Boyd, Christopher L. Osburn, Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries, Marine Chemistry,2004,89:189-210.
    [30]E. Parlanti, K. Worz, L. Geo.roy, et al., Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs, Organic Geochemistry,2000,31:1765-1781.
    [31]G. M. Ferrari, M. D. Dowell, CDOM Absorption Characteristics with Relation to Fluorescence and Salinity in Coastal Areas of the Southern Baltic Sea, Estuarine, Coastal and Shelf Science,1998,47:91-105.
    [32]S. Vignudelli, C. Santinelli, E. Murru, Distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) in coastal waters of the northern Tyrrhenian Sea (Italy), Estuarine, Coastal and Shelf Science,2004,60: 133-149.
    [33]Rosa Astoreca, Ve'ronique Rousseau, Christiane Lancelot, Coloured dissolved organic matter (CDOM) in Southern North Sea waters:Optical characterization and possible origin, Estuarine, Coastal and Shelf Science,2009,85:633-640.
    [34]Piotr Kowalczuk, Joanna Ston'-Egiert, William J. Cooper, Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy, Marine Chemistry,2005,96:273-292.
    [35]Youhei Yamashita, RoseM.Cory, JunNishioka, Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean, Deep-Sea Research Ⅱ,2010,57:1478-1485.
    [36]M.M.D. Sierra, O.F.X. Donard, H. Etcheber, et al, Fluorescence and DOC contents of pore waters from coastal and deep-sea sediments in the Gulf of Biscay, Organic Geochemistry,2001,32:1319-1328.
    [37]张运林,秦伯强,龚志军,太湖有色可溶性有机物荧光的空间分布及其与吸收的关系,农业环境科学学报2006,25(5):1337-1342。
    [38]刘明亮,张运林,秦伯强,太湖入湖河口和开敞区CDOM吸收和三维荧光特征,湖泊科学,2009,21(2):234-241。
    [39]张运林,杨龙元,秦伯强等,太湖北部湖区COD浓度空间分布及与其它要素的相关性研究,环境科学,2008,29(6),1337-1342。
    [40]杨顶田,陈伟民,吴生才,湖泊中有色可溶性物质对近紫外及蓝光衰减的影响,湖泊科学,2003,15(3):269-274。
    [41]任保卫,赵卫红,王江涛,等,胶州湾围隔实验中溶解有机物三维荧光特征,环境科学,2007,28(4):712-718。
    [42]季乃云,赵卫红,王江涛,等,大沽河—胶州湾段溶解有机物类腐殖质荧光特征变化,环境科学,2006,27(6):1073-1077。
    [43]季乃云,赵卫红,王江涛,等,胶州湾赤潮暴发水体中溶解有机物质荧光特征,环境科学,2006,27(2):257-262。
    [44]蒋凤华,渤海和胶州湾海域溶解有机物荧光及其在环境溯源中的应用,博士学位论文,中国海洋大学,2006。
    [45]Cuifen Du, ShaolingShang, QiangDong, et al., Characteristics of chromophoric dissolved organic matter in the nearshore waters of the western Taiwan Strait, Estuarine, Coastal and Shelf Science,2010,88:350-356.
    [46]Huasheng Hong, Jingyu Wu, Shaoling Shang, et al., Absorption and fluorescence of chromophoric dissolved organic matter in the Pearl River Estuary, South China, Marine Chemistry,2005,97:78-89.
    [47]Timothy J. Cowles, James N. Mourn, Russell A. Desiderio, In situ monitoring of ocean chlorophyll via laser-induced fluorescence backscattering through an optical fiber, Applied Optics,1989,28(3):595-600.
    [48]Desiderio R. A., T. J. Cowles, J. N. Mourn, et al., Microstructure profiles of laser induced chlorophyll fluorescence spectra:Evaluation of backscatter and forward scatter fiber optic sensors, J. Atmos. Oceanic Technol.,1993,10:209-224.
    [49]Steven M. Rudnick, Robert F. Chen, Laser-induced fluorescence of pyrene and other polycyclic aromatic hydrocarbons (PAH) in seawater, Talanta,1998,47: 907-919.
    [50]S. M. Inman, P. Thibado, G. A. Theriault, et al., Development of a pulsed laser fiber-optic-based fluorimeter:determination of fluorescence decay times of polycyclic aromatic hydrocarbons in sea water, Anal. Chim. Acta,1990,239,45-51.
    [51]Alexander Chekalyuk, Mark Hafez, Advanced laser fluorometry of natural aquatic environments, Limnol. Oceanogr.:Methods,2008,6:591-609.
    [52]F. E. Hoge, R.N. Swift, Airborne simultaneous spectroscopic detection of laser-induced water-Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments, Appl. Opt.,1981,20:3197-3205.
    [53]F. E. Hoge, Oil film thickness using airborne laser-induced oil fluorescence backscatter, Appl. Opt.,1983,22:3316-3318.
    [54]F. E. Hoge, R. E. Berry, R. N. Swift, Active-passive airborne ocean color measurement.1:Instrumentation, Appl. Opt.,1986,25:39-47.
    [55]F. E. Hoge, R. N. Swift, The influence of chlorophyll pigment upon upwelling spectral radiances from the North Atlantic Ocean:an active-passive correlation spectroscopy study, Deep-Sea Res.,1993,40,265-277.
    [56]F. E. Hoge, A. Vodacek, R. N. Swift, et al., Inherent optical properties of the ocean:retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements, Appl. Opt.,1995,34, 7032-7038.
    [57]F. E. Hoge, C. W. Wright, T. M. Kana, et al., Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence measurements, Appl. Opt.,1998,37:4744-4749.
    [58]F. E. Hoge, C. W. Wright, R. N. Swift, et al., Airborne laser-induced oceanic chlorophyll fluorescence:solarinduced quenching corrections by use of concurrent downwelling irradiance measurements, Appl. Opt.,1998,37:3222-3226.
    [59]C. Wayne Wright, Frank E. Hoge, et al., Next-generation NASA airborne oceanographic lidar system, Appl. Opt.2001,40(3):336-342.
    [60]James A. Yoder, James Aiken, Robert N. Swift, Spatial variability in near-surface chlorophyll a fluorescence measured by the Airborne Oceanographic Lidar (AOL), Deep Sea Research Part Ⅱ,1993,40(1-2),37-53.
    [6]]http://oceancolor.gsfc.nasa.gov/DOCS/ScienceTeam/OCRT_Apr2004/chekalyuk_ocrt04.pdf
    [62]http://oceancolor.gsfc.nasa.gov/DOCS/ScienceTeam/OCRT_Apr2004/behrenfeld_phylm_ocrt04.pd f
    [63]Marc Lennon, Sergey Babichenko, Nicolas Thomas, et al., DETECTION AND MAPPING OF OIL SLICKS IN THE SEA BY COMBINED USE OF HYPERSPECTRAL IMAGERY AND LASER INDUCED FLUORESCENCE, EARSeL eProceedings 5, issue/2006.
    [64]Lennon M, S Babichenko, N Thomas, et al., Oil slick detection and characterization by satellite and airborne sensors:experimental results with SAR, Hyperspectral and Lidar data, In:IEEE IGARSS'2005, Seoul, Korea,25-29 July 2005.
    [65]Lennon M, N Thomas, V Mariette, et al., Operational quantitative mapping of-oil pollutions at sea by joint use of a Hyperspectral Imager and a Fluorescence Lidar System on-board a fixed-wing aircraft, In:IEEE OCEANS'2005, Brest, France, 20-23 June 2005.
    [66]http://spie.org/documents/Newsroom/Imported/003273/003273_10.pdf
    [67]Babichenko S, A Dudelzak, J Lapimaa, et al., Locating water pollution and shore discharges in coastal zone and inland waters with FLS lidar, EARSeL eProceedings, 2006,5(1):32-41.
    [68]http://www.crrc.unh.edu/workshops/modeling_summit/presentations/2_carl_bro wn_estd_overview_modelling.pdf
    [69]Brown C.E., Fruhwirth M., Fingas M.F., et al., A new sensor on the horizon:the scanning laser environmental airborne fluorosensor. In:Proceedings of the Second International Airborne Remote Sensing Conference and Exhibition, ERIM Conferences, Ann Arbor, Michigan,1996, pp.111-683-687.
    [70]Maya Nand Jha, Jason Levy, Yang Gao, Advances in Remote Sensing for Oil Spill Disaster Management:State-of-the-Art Sensors Technology for Oil Spill Surveillance, Sensors,2008,8:236-255.
    [71]Hengstermann T., Reuter R., Lidar fluorosensing of mineral oil spills on the sea surface, Appl. Opt.,1990,29:3218-3227.
    [72]Hengstermann T., Loquay K., Reuter R., et al., A laser fluorosensor for airborne measurement of maritime pollution and of hydrographic parameters,1992, EARSel Advances in Remote Sensing,1:85-98.
    [73]Carl E. Brown, Mervin F. Fingas, Review of the development of laser fluorosensors for oil spill application, Marine Pollution Bulletin,2003,47:477-484.
    [74]http://www.eproceedings.org/static/vol01_1/01_1_zielinskil.pdf
    [75]http://las.physik.uni-oldenburg.de/publications/paper/eurogoos.pdf
    [76]Kwi Joo Lee, Youngsik Park, Alexey Bunkin, et al., Helicopter-based lidar system for monitoring the upper ocean and terrain surface, Appl. Opt.,2002,41(3): 401-406.
    [77]马森,海表层叶绿素和溢油机载海洋荧光激光雷达实验与方法研究,硕士学位论文,中国海洋大学,2007。
    [78]张凯临,机载海洋激光荧光雷达软硬件设计与飞行实验,硕士学位论文,中国海洋大学,2005。
    [79]李晓龙,赵朝方,齐敏珺,等,多通道海洋激光雷达溢油监测系统高台实验分析,中国海洋大学学报,40(8):145-150。
    [80]齐敏珺,赵朝方,马佑军,等,机载激光荧光雷达油污染实时监测系统的软件开发,计算机测量与控制,2010,18(7):1676-1679。
    [81]国家863课题“航空遥感多传感器集成与应用技术系统”(2006AA06Z415)自验收报告。
    [82]LIU Jin-tao, ZHANG Kai-lin, ZHANG Qian-qian, et al., Measuring 3D fluorescence spectra of phytoplankton using an ocean lidar, OPTOELECTRONICS LETTERS,2010,6(1):0054-0056.
    [83]国家863课题“赤潮及浮游植物优势物种监测海洋激光荧光雷达”(2006AA09Z148)技术报告。
    [84]http://www.wetlabs.com/products/eflcombo/fl.htm
    [85]http://www.wetlabs.com/products/pub/eco/flal.pdf
    [86]http://www.wetlabs.com/products/pub/specsheets/flssy.pdf
    [87]R. Heuermann, K. D. Loquay, R. Reuter, A Multi-wavelength in situ Fluorometer for Hydrographic Measurements, EaRSeL Advances in Remote Sensing, 1995,3(3):71-77.
    [88]http://www.wetlabs.com/products/pub/legacy/safire/SAFired.pdf
    [89]Robyn N. Conmy, Paula G. Coble, Carlos E. Del Castillo, Calibration and performance of a new in situ multi-channel fluorometer for measurement of colored dissolved organic matter in the ocean, Continental Shelf Research,2004,24: 431-442.
    [90]C.B.Fuller, J.S. Bonner, C.A. Page, et al., Field Instruments for Real Time In-Situ Crude Oil Concentration Measurements, Presented at Arctic and Marine Oilspill Program, June 10-12,2003, Vancouver, BC, Canada, http://repository.tamu.edu/bitstream/handle/1969.1/94988/sr2003-027.pdf?sequence=1
    [91]Hiroki Ebata, Akihiko Tanaka, Yohei Takahashi, et al., Simultaneous illumination method:application in a two-channel emission fluorometer with multi-wavelength excitation, Optics Express,2011,19(11); 10063-10072.
    [92]Stefan Harsdorf, Manfred Janssen, Rainer Reuter, et al., Submarine fluorescence lidar for environmental monitoring, http://las.physik.uni-oldenburg.de/publications/paper/submarine_lidar.pdf
    [93]Frank Gereit, Peter Hauptmann, Gerhard Matz, et al., An ROV-based sensor system for maritime pollution control, Oceanology International 98, Brighton, UK, March 1998.
    [94]D McStay, J Kerlin, R Acheson, An optical sensor for the detection of leaks from subsea ipelines and risers, Journal of Physics:Conference Series,76,2007, 012009, doi:10.1088/1742-6596/76/l/012009, http://iopscience.iop.org/1742-6596/76/l/012009/pdf/1742-6596_76_1_012009.pdf
    [95]丁志群,刘文清,张玉钧,等,激光诱导荧光探测水体中溶解有机物浓度,光子学报,2006,35(2):217-220。
    [96]赵南京,刘文清,刘建国,等,不同水体中溶解有机物的荧光光谱特性研究,光谱学与光谱分析,2005,25(7):1077-1079。
    [97]柳先平,李磊,戴金凤,等,不同水体中有色可溶性有机物质荧光光谱定量分析研究,光谱学与光谱分析,2007,27(10):2083-2087。
    [98]中华人民共和国国家标准:HY/T 133-2010海水中颗粒物和黄色物质光谱吸收系数测量分光光度法
    [99]http://jp.hamamatsu.com/resources/products/etd/pdf/R9880U_TPMH 1321E01.pdf
    [100]http://www.princetoninstruments.com/products/speccam/pixis/dsheet.aspx
    [101]http://www.sigma-koki.com/pdf/cn/B080101.pdf
    [102]http://www.oceanoptics.com/cataloa/spectrometers.pdf
    [103]Catherine D. Clark, Jennifer Jimenez-Morais, Guilford Jones Ⅱ, et al., A time-resolved fluorescence study of dissolved organic matter in a riverine to marine transition zone, Marine Chemistry,2002,78,121-135.
    [104]F rank E Hoge, Swift R N. Airborne dual laser excitation and mapping of phytop lankton photopigments in a Gulf Stream Warm Core Ring, Applied Optics,1983,22: 2272-2281.
    [105]贺岩,吴东,机载海洋激光雷达测量叶绿素a浓度、悬移质浓度和浅海深度的性能估计,中国海洋大学学报,2004,34(4):649-654。
    [106]http://www.wetlabs.com/products/pub/acs/acsj.pdf
    [107]谷怀民,邢达,液芯波导在拉曼光谱研究中的应用及其研究进展,量子电子学报,2003,20(4):391-398。
    [108]Mikhonin AV, Asher SA, Bykov SV,Murza A:UV Raman spatially resolved melting dynamics of isotopically labeled polyalanyl peptide:slow a-helix melting follows 310-helices and p-bulges premelting. J Phys Chem B 2007,111:3280-3292.
    [109]Efremov Evtim V; Ariese Freek; Gooijer Cees, Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential, Analytica chimica acta 2008;606(2):119-34.
    [110]Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD. Femtomolar detection of prostate-specific antigen:an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 2003;75:5936-43.
    [111]J. Moger, P. Gribbon, A. Sewing, C. P. Winlove, Feasibility study using surface-enhanced Raman spectroscopy for the quantitative detection of Tyrosine and Serine Phosphorylation, Biochimica et Biophysica Acta,1770,912-918,2007.
    [112]D.L. Sparks, Chemistry of Soil Organic Matter in Environmental Soil Chemistry,2nd ed., Academic Press, Elsevier Science, London,2003, pp.75-112.
    [113]E. Vogel, R. GeBner, M. H. B. Hayes and W. Kiefer, Characterisation of humic acid by means of SERS, Journal of Molecular Structure, Volumes 482-483,25 May 1999, Pages 195-199.
    [114]O. Francioso, S. Sanchez-Cortes, C. Ciavatta, V. Tugnoli, C. Gessa, Characterization of Peat Fulvic Acid Fractions by Means of FT-IR, SERS, and 1H, 13C NMR Spectroscopy, Appl. Spectrosc.52 (1998) 270.
    [115]O. Francioso, C. Ciavatta, S. Sanchez-Cortes, et al., Spectroscopic characterization of soil organic matter in long-term amendment trials, Soil Sci., 2000,165,495-504.
    [116]O. Francioso, S. Sanchez-Cortes, D. Casarini, J.V. et al., Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration, J. Mol. Struct.,2002, 609,137-147.
    [117]G. Corrado, S. Sanchez-Cortes, O. Francioso, J.V. Garcia-Ramos, Surface-enhanced Raman and fluorescence joint analysis of soil humic acids, Analytica Chimica Acta, Volume 616, Issue 1,26 May 2008, Pages 69-77
    [118]Sanchez-Cortes S; Corrado G; Trubetskaya O E; et al., Surface-enhanced Raman spectroscopy of chernozem humic acid and their fractions obtained by coupled size exclusion chromatography-polyacrylamide gel electrophoresis (SEC-PAGE), Applied spectroscopy 2006;60(1):48-53.
    [119]P. Leyton, I. Cordova, P.A. Lizama-Vergara, et al., Humic acids as molecular assemblers in the surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons,Vibrational Spectroscopy, Volume 46, Issue 2,11 March 2008, Pages 77-81.
    [120]Kneipp K,Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, et al., Single molecule detection using surface-enhanced Raman scattering, Phys Rev Lett 1996;70:1667-70.
    [121]Leo Seballos, Nicole Richards, Daniel J. Stevens,Mira Patel, Laura Schuresko, Scott Lokey, Glenn Millhauser, and Jin Z. Zhang, Competitive Binding Effects on Surface-enhanced Raman Scattering of Peptide Molecules, Chem. Phys. Lett.,447, 335-339,2007.
    [122]Constantino, C.J.L., Lemma, T., Antunes, P.A., Aroca, R., Single molecular detection of a perylene dye dispersed in a Langmuir-Blodgett fatty acid monolayer using surface-enhanced resonance Raman scattering,2001. Anal. Chem.73 (15), 3674-3678.
    [123]Jonathan Scholl, Peter Brewer, Edward Peltzer, et al., Liquid-Core Waveguide for Enhanced Laser Raman Spectroscopy in Oceanic Applications, http://www.mbari.org/education/internship/06interns/papers/JScholl.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700