用户名: 密码: 验证码:
SHIV感染中国恒河猴外周血Th17细胞变化趋势的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,艾滋病已成为影响人类健康的最严重的传染性疾病之一,CD4+T细胞大量损耗是HIV病毒感染的主要特征之一。传统的CD4+T细胞分为以分泌IFNγ为主的Th1细胞及以分泌IL-4为主的Th2细胞两个亚群。Th17细胞是新近发现与Th1和Th2平行的一类CD4+辅助性T细胞,主要分泌IL-17和IL-22,是粘膜屏障的重要组成部分,在自身免疫病、炎症和感染免疫中发挥重要作用。
     本文利用CCR5嗜性的人猴嵌合病毒SHIV-SF162P4,通过静脉注射和多次低剂量粘膜接种两种方式,分别在8只和4只中国恒河猴中建立稳定感染。运用胞内细胞因子染色和流式细胞分析技术,研究感染后外周血淋巴细胞中CD4+T细胞各个亚群:Th1、Th2、Th17及调节性T细胞所占比例的变化趋势及各群间相对大小的动态变化,分析这些变化与病毒载量、CD4+T细胞计数和CD4+记忆T细胞水平等疾病进程重要指标之间的相关性。同时,根据各个细胞亚群分化相关核转录调控分子和细胞因子的核苷酸序列设计Taqman探针,建立了Real-time RT-PCR定量分析技术,检测了IL-17、RORγt、GATA-3、T-bet、TGFβ及Foxp3等基因mRNA表达水平在SHIV感染后的变化趋势。
     研究发现,在急性感染期,随着疾病进程,静脉注射病毒组Th17细胞检出频率变化与血浆病毒载量变化呈负相关;静脉注射病毒组和粘膜接种病毒组IL-17+细胞与Foxp3+细胞在CD4+T细胞中的比例呈现先升后降的趋势,并与病毒载量变化成正相关;静脉注射病毒组IL-17+细胞与Foxp3+细胞在CD4+T细胞中的比例变化与CD4+记忆细胞在淋巴细胞中的比例变化趋势呈正相关;与Th17和Treg细胞分化相关的核转录调控因子RORγt、Foxp3在mRNA水平的比值,也与病毒载量变化趋势成正相关。通过以上分析,证明Th17细胞在CD4+T细胞中的检出频率、Th17与Treg之间的动态平衡与AIDS疾病进程有关。
     CCR5嗜性SHIV在AIDS病理、免疫和疫苗研究中得已广泛应用,在粘膜感染,免疫保护机制等方面可能更贴近HIV感染。本文首次利用CCR5嗜性SHIV感染中国恒河猴为动物模型,研究了急性感染期Th17等CD4+辅助性T细胞各亚群及Treg亚群的频率以及各个亚群相对平衡的动态变化趋势,阐述了它们各自变化趋势与疾病进程的关系,为揭示Th17和Treg等辅助性T细胞亚群在HIV感染和AIDS病理过程中的作用和机制提供了重要的第一手资料
AIDS(Acquired Immunodeficiency Syndrome), caused by Human Immunodeficiency Virus (HIV) infection, has become the leading fatal infectious disease threatening human health. One of the most significant symptoms in HIV infection is the great loss of CD4+ T lymphocytes. Classically, CD4+ T helper cell is divided into two subtypes: IFNy secreting T helper 1 cells and IL-4 secreting T helper 2 cells. As a newly demonstrated subpopulation of T helper cell, IL-17 and IL-22 secreting Th17 cells play a critical role in autoimmune disease, inflammation and infectious immunology. In this research, eight Chinese-origin rhesus macaques were inoculated intravenously with SHIV-sfl62p4 while the other four were exposed to 10 low-dose SHIV-sfl62p4 to construct stable SHIV infection. Intracellular cytokines staining and Flow Cytometry were used to evaluate the levels of different CD4+ T helper subpopulations and their balance pre-and-post infection. Besides, the correlation between these levels and viral load or the frequency of CD4+ T memory cells respectively, which have been associated with AIDS progression, were also analysed. Referring to sequences of nuclear transcriptional regulatory factors and cytokines which regulated the differentiation of these different CD4+ T cell subpopulations, primers and Taqman probes for real time RT-PCR assay were designed, the level and tendency of mRNA level of these factors pre and post infection were examined.
     According to our data, in acute phase of infection, the correlation between Th17 frequency and viral load was significant in i.v. challenge group; the ratio of IL-17+ cells over Foxp3+ cells, which decreased in the first few weeks and increased later, was negatively correlated to viral load, both in intravenously inoculated group and rectum exposed group. The ratio in intravenously inoculated group also has significant positive correlation to the frequency of CD4+ T memory cell. Besides, the ratio of RORyt and Foxp3 on transcriptional level is also correlated to viral load. CCR5-tropism SHIV have been extensively used in AIDS research, we are the first to use CCR5-tropism SHIV infected Chinese rhesus macaques to investigate the dynamics of both different CD4+ T helper subpopulations and their balance after SHIV infection. Besides, the correlations between these changes and disease progression were also elucidated. It provided important data for understanding the role and mechanism of Th17 in the acute phase of HIV infection
引文
Abbas.A.K.,Murphy,K.M.&Sher,A.Functional diversity of helper Tlymphocytes. Nature. 1996,383.787-793
    Acosta-Rodriguez-E.V., Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G. Surface phenotype and antigenic specificity of human interleukinl7-producing T helper memory cells. Nat.Immunol.2007,8:639-646.
    Andrew P, Prado JG. Kang YH. Chen F, Riddell LA, Luzzi G, Goulder P, Klenerman P. HIV-1 infection is characterized by profound letion of CD161R Th17 cells and gradual decline in regulatory T cells. AIDS,2010.24:491-502
    Bauquet, A. T., Jin, H., Paterson, A. M. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and T(H)-17 cells. Nat. Immunol.,2008.10:167.
    Belkaid Y. Regulatory T cells and infection:a dangerous necessity. Nat Rev Immunol,2007,7: 875-888.
    Bettelli E. Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature,2006,441:235-238.
    Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol,2003,3: 253-257.
    Brenchley JM, Paiardini M, Knox KS, Asher Al, Cervasi B, Asher TE, Scheinberg P, Price DA, Hage CA, Kholi LM, Khoruts A, Frank I, Else J, Schacker T, Silvestri G, Douek DC. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood, 2008,112(7):2826-35.
    Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic Immune activation in chronic HIV infection. Nat. Med.,2006,12:1365-1371.
    Cecchinato V, Trindade CJ, Laurence A, Heraud JM, Brenchley JM, et al. Altered balance between Th17 and Thl cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunology,2008,1:279-288.
    Chen X. Vodanovic-Jankovic S. Johnson B. Keller M. Komorowski R. et al. Absence of regulatory T cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft versus host disease. Blood.2007,110(10):3804-13.
    Douek DC, Picker LJ, Koup RA. T cell dynamics in HIV-1 infection. Annu Rev Immunol, 2003,21:265-304.
    Duerr,R.H.et al. A genome-wide association study identifies IL23 Rasan inflammatory bowel disease gene. Science,2006,14,1461-1463.
    El Hed A, Khaitan A, Kozhaya L, Manel N, Daskalakis D. Borkowsky W, Valentine F, Littman DR. Unutmaz D. Susceptibility of Human Th17 Cells to Human Immunodeficiency Virus and Their Perturbation during Infection. J Infect Dis.,2010,201(6):843-54.
    Favre D, Lederer S, Kanwar B, Ma ZM. Proll S, Kasakow Z. Mold J. Swainson L, Barbour JD, Baskin CR, Palermo R, Pandrea I, Miller CJ, Katze MG, McCune JM. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog., 2009,5(2):
    Girtsman T, Jaffar Z, Ferrini M, Shaw P, Roberts K. Natural Foxp3+ regulatory T cells inhibit Th2 polarization but are biased toward suppression of Thl7-driven lung inflammation. J Leukoc Biol. 2010, Epub ahead of print.
    Grossman Z, Meier-Schellersheim M, Sousa AE, Victorino RM, Paul WE. CD4+ T-cell depletion in HIV infection:are we closer to understanding the cause? Nat Med,2002,8:319-323.
    Haga T, Kuwata T, M. Ui, et al. A new approach to AIDS research and prevention:the use of gene-mutated HIV-1/SIV chimeric viruses for anti-HIV-1 live-attenuated vaccines. Microbiol Immunol,1998,42(4):245-251.
    Happel,K.I. et al. Divergentroles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J.Exp.Med,2005,202:761-769.
    Hazenberg MD, Hamann D, Schuitemaker H, Miedema F T cell depletion in HIV-1 infection:how CD4+ T cells go out of stock. Nat Immunol,2000,1:285-289.
    Kai Y,Chenli Q,Guibo Y,Chunmiao Z,et al. Alteration of serotonin transporter messenger RNA level in the peripheral blood mononuclear cells from simian/human immunodeficiency virus infected Chinese rhesus macaques (Macaca mulatta).Brain Behavior and Immunity,2010,24:298-305
    Kinter AL, Hennessey M, Bell A, Kern S, Lin Y,et al. CD25(+)CD4(+) regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med,2004,200:331-343.
    Kolls.J.K.&Linden,A. Interleukin-17 family member sand in flammation. Immunity., 2004.21.:467-476
    Laure Campillo-Gimenez, et al. AIDS progression is associated with the emergence of IL-17producing cells early afer simian immunodefieciency virus infection. J Immunol., 2010.184(2):984-992.
    Liang.S.C.et al.Interleukin(IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J.Exp.Med.,2006,203:2271-2279.
    Lockhart E. Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol,2006,177:4662-4669.
    Macal M. Sankaran S, Chun TW, Reay E. Flamm J, Prindiville TJ, Dandekar S. Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses. Mucosal Immunol., 2008,1(6):475-88.
    Maek-A-Nantawat,W..S.Buranapraditkun,J.Klaewsongkram.K.Ruxrungthum.Increased interleukin-17 production both in helper T cell subset Th17 and CD4-negative T cells in human immunodeficiency virus infection. Viral Immunol.,2007,20:66-75.
    McCune JM. The dynamics of CD4+T-cell depletion in HIV disease. Nature,2001,410:974-979.
    Misse D, Yssel H, Trabattoni D, Oblet C, Lo Caputo S, Mazzotta F, Pene J, Gonzalez JP, Clerici
    M and Veas F. IL-22 participates in an innate anti-HIV-1 host-resistance network through acute-phase protein induction. J. Immunol.,2007,178,:407-415.
    Ndhlovu LC, Chapman JM, Jha AR. Snyder-Cappione JE, Pagan M, Leal FE, Boland BS, Norris PJ. Rosenberg MG, Nixon DF. Suppression of HIV-1 plasma viral load below detection preserves IL-17 producing T cells in HIV-1 infection. AIDS.2008;22(8):990-2.
    Nurieva, R. I., Chung, Y., Hwang, D. et al. Generation of T follicular helper cells is mediated by interleukin-21 but in-dependent of T helper 1,2, or 17 cell lineages. Immunity,2008,29:138.
    Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med,2008,14:421-428.
    Sakaguchi S, Powrie F. Emerging challenges in regulatory T cell function and biology. Science, 2007,317:627-629.
    Sanjay V.Joag. Primate model of AIDS.Microbes and infection,2000,2:223-229
    Sher,A.&Coffman,R.L. Regulation of immunity to parasitesby T cells and Tcell-derived cytokines. Annu.Rev.Immunol,1992,10:385-409.
    Shibata K,Yamada H, Hara H, Kishihara K. Yoshikai Y:Resident V{delta}1+{gamma}{delta} T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol,2007,178:4466-4472.
    Shibata R., Kawamura M., Sakai H., Hayami M., Ishimoto A., Adachi A. Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells, J. Virol.,1991,65:3514-3520.
    Toy,D.et al. Cutting edge:interleukin17 signals through aheteromeric receptor complex. J.Immunol.,2006,177:36-39
    Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis Bacille Cahnette-Guerin infection. J Immunol, 2007,178:3786-3796.
    Von Boehmer H., Mechanisms of suppression by suppressor T cells. Nat Immunol,2005,6: 338-344.
    Wilson,N.J.et al.. Development,cytokine profile and function of human interleukin 17-producing helper Tcells. Nat.Immunol.,2007,8:950-957
    Ye P, Rodriguez FH, Kanaly S,et al. Requirement of interleukin17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J.Exp.Med.,2001,194:519-527
    Zhou L,Jared E L, Mark M.W. Chong,et al. TGF-b-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORct function. Nature,2008,8:236-240
    Zheng Y, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induce dermal in flammation and a canthosis. Nature,2007,445:648-651.
    1 Reiner, S. L.2007. Development in motion:helper T cells at work.Cell 129:33.
    2 Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L.1986. Two types of murine helper T cell clone. I.Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136:2348.
    3 Mosmann, T. R. and Coffman, R. L.1989. TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol.7:145.
    4 Kaplan, M. H., Sun, Y. L., Hoey, T. and Grusby, M. J.1996. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382:174.
    5 Meraz, M. A., White, J. M., Sheehan, K. C. et al.1996. Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84:431.
    6 Kaplan, M. H., Schindler, U., Smiley, S. T. and Grusby, M. J.1996.Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4:313.
    7 Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G. and Glimcher, L. H.2000. A novel transcription factor, T-bet, directs Thl lineage commitment. Cell 100:655.
    8 Zheng, W. and Flavell, R. A.1997. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587.
    9 Oppmann, B., Lesley, R., Blom, B. et al.2000. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715. 10 Ferber, I. A., Brocke, S.. Taylor-Edwards, C. et al.1996.
    10.Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol.156:5.
    11 Bettelli, E., Korn, T., Oukka, M. and Kuchroo, V. K.2008. Induction and effector functions of T(H)17 cells. Nature 453:1051.
    12. Amit Awasthi et at.2009. Th17 cells:from precursors to players in inflammation and infection. International Immunology, Vol.21, No.5, pp.489-498
    13 Das, M. P., Nicholson, L. B., Greer, J. M. and Kuchroo, V. K.1997. Autopathogenic T helper cell type 1 (Th1) and protective Th2 clones differ in their recognition of the autoantigenic peptide of myelin proteolipid protein. J. Exp. Med.186:867.
    14. Parham, C., Chirica, M., Timans, J. et al.2002. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbetal and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168:5699.
    15. Cua, D. J., Sherlock, J, Chen, Y. et al.2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744.
    16.Gran, B., Zhang, G. X., Yu, S. et al.2002. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis:evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J. Immunol.169:7104.
    17. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. and Gurney, A. L.2003. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem.278:1910.
    18 Murphy, C. A., Langrish, C. L., Chen, Y. et al.2003. Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med.198:1951.
    19 Langrish, C. L., Chen, Y., Blumenschein, W. M. et al.2005. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201:233.
    20. Kotake. S., Udagawa, N.. Takahashi, N. et al.1999. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest.103:1345.
    21.Lock, C., Hermans. G., Pedotti, R. et al.2002. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med.8:500.
    22. Park, I. K., Shultz, L. D., Letterio, J. J. and Gorham, J. D.2005. TGF-βtal inhibits T-bet induction by IFN-gamma in murine CD4+ T cells through the protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1. J. Immunol.175:5666.
    23. Gorelik, L., Fields, P. E. and Flavell. R. A.2000. Cutting edge:TGF-βta inhibits Th type 2 development through inhibition of GATA-3 expression. J. Immunol.165:4773.
    24 Harris, T. J., Grosso, J. F., Yen, H. R. et al.2007. Cutting edge:an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179:4313.
    25. Liu, X., Lee, Y. S., Yu, C. R. and Egwuagu, C. E.2008. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J. Immunol.180:6070.
    26.Chen, Z., Laurence, A., Kanno, Y. et al.2006. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl Acad. Sci. USA 103:8137.
    27.Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E. et al.2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells.Cell 126:1121.
    28. Kebir,H. et al.,2007.Increased expression of IL-17 in inflammatory bowel disease. Gut 52:65
    29. Zhou, L., Lopes, J. E., Chong, M. M. et al.2008. TGF-Peta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236.
    30.Zhang, F., Meng, G. and Strober, W.2008. Interactions among the transcription factors Runxl, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol.9:1297.
    31 Yang, X. O., Pappu, B. P., Nurieva, R. et al.2008. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29.
    32.Nurieva, R. I., Chung, Y., Hwang, D. et al.2008. Generation of T follicular helper cells is mediated by interleukin-21 but in-dependent of T helper 1,2, or 17 cell lineages. Immunity 29:138.
    33. Bauquet, A. T., Jin, H., Paterson, A. M. et al.2008. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and T(H)-17 cells. Nat. Immunol.10:167.
    34. Bettelli E, Carrier Y, Gao W, et al.2006Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature; 441:235-238.
    35. Misse, D., Yssel, H., Trabattoni, D., Oblet, C., Lo Caputo, S., Mazzotta, F., Pene, J., Gonzalez, J. P., Clerici, M. and Veas, F. (2007) IL-22 participates in an innate anti-HIV-1 host-resistance network through acute-phase protein induction. J. Immunol.178,407-415.
    36. Maek-A-Nantawat, W., S.Buranapraditkun, J.Klaewsongkram, K.Ruxrungthum (2007). Increased interleukin-17 production both in helper T cell subset Th17 and CD4-negative T cells in human immunodeficiency virus infection. Viral Immunol.20:66-75.
    37. Ndhlovu LC. Chapman JM, Jha AR. Snyder-Cappione JE, Pagan M,Leal FE. Boland BS. Norris PJ, Rosenberg MG. Nixon DF.2008. Suppression of HIV-1 plasma viral load below detection preserves IL-17 producing T cells in HIV-1 infection. AIDS. May 11;22(8):990-2.
    38. El Hed A, Khaitan A, Kozhaya L, Manel N, Daskalakis D, Borkowsky W, Valentine F, Littman DR, Unutmaz D.2010. Susceptibility of Human Th17 Cells to Human Immunodeficiency Virus and Their Perturbation during Infection. J Infect Dis. Mar 15;201(6):843-54.
    39.Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, Scheinberg P, Price DA, Hage CA, Khoh LM, Khoruts A, Frank I, Else J, Schacker T, Silvestri G, Douek DC.2008. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood. Oct 1;112(7):2826-35.
    40. Macal M, Sankaran S, Chun TW, Reay E, Flamm J,Prindiville TJ, Dandekar S.2008. Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Thl7 cells and polyfunctional HIV-specific T-cell responses. Mucosal Immunol. Nov;1(6):475-88.
    41. Cecchinato V, Trindade CJ, Laurence A, Heraud JM, Brenchley JM, et al. (2008) Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunology 1:279-288.
    42. Laure Campillo-Gimenez, et al(2010). AIDS progression is associated with the emergence of IL-17producing cells early afer simian immunodefieciency virus infection.J Immunol. Jan 15;184(2):984-92.
    43. Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, et al. (2008) Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med 14:421-428.
    44. Favre D, Lederer S, Kanwar B, Ma ZM, Proll S, Kasakow Z, Mold J, Swainson L, Barbour JD, Baskin CR, Palermo R, Pandrea I, Miller CJ, Katze MG, McCune JM.(2009) Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog.2009 Feb;5(2):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700