用户名: 密码: 验证码:
基于功能树状高分子修饰电极快速检测禽流感病毒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA电化学生物传感器是用电化学手段进行DNA结构分析和检测的生物传感器,具有高度的分子识别功能、准确性好、灵敏度高、易于集成化和自动化等优点,特别适用于表面过程、修饰电极、电子转移过程等的研究,已经广泛应用在基因诊断、传染病检测、基因表达检测、法医学和环境监控等领域中。在传感器的构建过程中,如何有效利用生物分子的固定技术及选择合适的固定材料决定着DNA电化学生物传感器的稳定性、选择性和灵敏性等主要性能。本论文探讨设计了三种新型的电化学生物传感器,根据鸟嘌呤G氧化信号的变化来初步检测禽流感病毒DNA的固定与杂交的方法,使用循环伏安法、示差脉冲伏安法和电化学阻抗谱对其进行表征,并对DNA电化学生物传感器在禽流感病毒检测中的应用进行了研究。研究内容主要分为以下三部分:
     (1)利用铁氰化钴-树状高分子(CoHCF-PAMAM)复合材料修饰玻碳电极(GCE),制备了免标记检测基因突变的新型DNA电化学传感器。传感器中树状高分子层明显增加了单链DNA探针的固定量,铁氰化钴层增大了鸟嘌呤的氧化信号,该传感器可以灵敏识别单碱基错配的基因序列,具有良好的选择性和灵敏度。在7.6×10~(-11)~3.05×10~(-8) mol/L浓度范围内,鸟嘌呤(G)的氧化峰电流差值与突变基因浓度呈良好的线性关系,检出限为1.0×10~(-11 )mol/L (66 pg/mL) (S/N=3)。
     (2)利用二氧化铅(PbO_2)、多壁碳纳米管(MWNTs)与疏水性室温离子液体(RTIL)1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)复合材料修饰玻碳电极(PbO_2-MWNT-RTIL/GCE),制备了一种新型电化学传感器,用于同时或分别检测鸟嘌呤(G)和腺嘌呤(A)。当修饰电极在外加电压+0.30 V下于pH 7.0的磷酸盐缓冲溶液中富集120 s后,进行微分脉冲伏安法(DPV)检测,鸟嘌呤和腺嘌呤分别在+0.60 V和+0.89 V处得到良好的氧化峰。与裸电极相比,PbO_2-MWNT-RTIL/GCE不仅明显地提高了鸟嘌呤和腺嘌呤的电化学氧化峰电流,而且降低了它们的氧化峰电位,这表明PbO_2, MWNT和RTIL的协同效应可以很好的提高检测鸟嘌呤和腺嘌呤的灵敏度。实验结果表明PbO_2-MWNT-RTIL/GCE具有良好的稳定性,优异的电催化性能和富集效应,并能同时检测鸟嘌呤和腺嘌呤(氧化峰电位差为0.29 V)。该修饰电极在最佳条件下,鸟嘌呤和腺嘌呤的检测限分别为1.0 ng/mL和4.0 ng/mL (S/N=3,信噪比)。用这种方法检测鲱鱼精DNA中的鸟嘌呤和腺嘌呤也取得了令人满意的结果。
     (3)制备了一种利用免标记法检测禽流感病毒DNA序列的新型DNA电化学生物传感器。首先,将多壁碳纳米管和酞菁钴纳米复合材料(MWNTs-CoPc)以及4.0G树状高分子(PAMAM G4.0)修饰到玻碳电极上,然后以G4 PAMAM为桥梁将DNA探针固定到修饰电极。通过示差脉冲伏安法观察鸟嘌呤氧化信号的变化,来检测杂交反应的进行,避免了外加指示剂的使用。在最佳条件下,互补靶基因浓度在0.01到500 ng/mL范围内,修饰电极上获得的鸟嘌呤氧化信号差值(ΔI_p)与互补靶基因浓度的对数成线性关系,相关系数为0.998,检测限为1.0 pg/mL。
DNA electrochemical biosensor is noted widely in recent years for rapid development. It has been used in many fields such as food industry, disease diagnosis, pharmaceutical analysis and environmental monitoring due to the high sensitivity, better specificity, rapid response, easy handling, no pollution and low cost. However, the method and material used to immobilize biomolecules is one of the crucial factors for improving the stability, selectivity and sensitivity of biosensor in the preparation. Three New-typed DNA electrochemical biosensors were prepared, and the detection of Avian Influenza Virus genotype based on the guanine oxidation signal was studied in this paper. The dissertation is divided into three main parts:
     (1) A novel electrochemical hybridization biosensor for label-free determination of sequence-specific DNA was described in this paper. First, cobalt hexacyanoferrate films and poly (amidoamine) (PAMAM) dendrimer (generation 4.0) were modified on the glassy carbon electrode (GCE) sequentially. Then, DNA probes were successfully immobilized on the modified electrode with G4 PAMAM dendrimer acting as the coupling agent. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement based on the oxidation signals of guanine without any external labels. This biosensor exhibited a superior electrochemical stability, selectivity and sensitivity in detection of the oligonucleotide sequence. Under the optimal conditions, the guanine oxidation signal was directly proportional to the mutant gene sequence concentration from 7.6×10~(-11) to 3.05×10~(-8) mol/L with a correlation coefficient of 0.9975 and a detection limit of 1.0×10~(-11)mol/L (6.6×10~(-2) ng/mL)(S/N=3).
     (2) In this paper, a novel and reliable electrochemical sensor based on PbO_2-carbon nanotubes-room temperature ionic liquid (i.e., 1-butyl-3-methylimidazolium hexafluorophosphate, BMIMPF6) composites film modified glassy carbon electrode (GCE) (PbO_2-MWNT-RTIL/GCE) was proposed for simultaneous and individual determination of guanine and adenine. The guanine and adenine oxidation responses were monitored by differential pulse voltammetry (DPV) measurement. Compared with the bare electrode, the PbO_2-MWNT-RTIL/GCE not only significantly enhanced the oxidation peak currents of guanine and adenine, but also lowered their oxidation over potentials, suggesting that the synergistic effect of PbO_2, MWNT and RTIL could dramatically improve the determining sensitivity of guanine and adenine. The results demonstrated that the PbO_2-MWNT- RTIL/GCE showed good stability, high accumulation efficiency and enhanced electrocatalytic ability for the detection of guanine and adenine. Besides, the modified electrode also exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.29 V in 0.1 M pH 7.0 phos/phate buffer solutions (PBS). Under the optimal conditions, the detection limit for individual determination of guanine and adenine was 1.0 ng/mL and 4.0 ng/mL (S/N=3), respectively. The proposed method for the measurements of guanine and adenine in herring sperm DNA were successfully applied with satisfactory results.
     (3) A novel DNA electrochemical biosensor for label-free determination of DNA sequence related to the Avian Influenza Virus (AIV) genotype was demonstrated in this paper. First, the multi-walled carbon nanotubes-cobalt phthalocyanine (MWNTs-CoPc) nanocomposite and poly (amidoamine) (PAMAM) dendrimer (generation 4.0) were modified on the glassy carbon electrode (GCE) sequentially. Then, DNA probes were successfully immobilized on the modified electrode with G4 PAMAM dendrimer acting as the coupling agent. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement based on the oxidation signals of guanine without any external labels. Under the optimal conditions, the difference of guanine oxidation signal of the probe modified GCE in the absence and presence of complementary target (ΔI_p) was linear with the logarithmic value of the complementary target concentration from 0.01 to 500 ng/mL with a correlation coefficient of 0.998 and a detection limit of 1.0 pg/mL.
引文
蔡宏,王延琴,何品刚,方禹之.基于纳米金胶标记DNA探针的电化学DNA传感器研究高等学校化学学报.2003,24(8):1390-1394.
    程力惠,李毅群,刘仲明,刘芳.人类免疫缺陷病毒基因的碳糊电极快速检测.分析测试学报.2003,22(02):75-77.
    范万红,张彩虹.禽流感检测方法研究进展.动物医学进展.2007,28(增):84-87.
    方禹之,刘盛辉,何品刚.用盐酸阿霉素作为嵌入剂石墨电极伏安法识别测定DNA片段的研究.高等学校化学学报.1996,17(8):1222-1224.
    干宁,李天华,陈妮,葛从辛,徐伟民.巯基丁二胺铜单层修饰金电极上HIV-p24抗原的电化学免疫检测.理化检验.2007,43(4):253-259.
    郭小天,许海燕.碳纳米管及其复合材料在生物医学领域的研究进展.生物医学工程杂志.2006,23(2):438-441.
    黄庚明,辛朝安.PCR制备地高辛标记的探针检测禽流感病毒核酸.中国兽医杂志.2001,37(12):3-7.
    黄京燕,周红霞,邱富娜,韩立.禽流感病毒分子生物学检测方法.动物医学进展.2006,27(11):108-111.
    贾文丽,李天华.电化学预处理玻碳电极微分计时电位溶出法测定DNA中的嘌呤碱基及DNA浓度.高等学校化学学报.2006,27:2056-2060.
    蒋芳.浅析我国禽流感疫情对家禽业的影响及建议.中国畜牧杂志.2006,42(10):25-26.
    蒋晓华,刘伟强,陈建军.DNA-过氧化聚吡咯生物复合膜传感器的分析应用.高等学校化学学报.2007,28(3):450-452.
    焦奎,任勇,徐桂云,张旭志.脱氧核糖核酸在硬脂酸铝离子膜上固定杂交及BAR基因片段检测.分析化学.2005,33(10):1381-1384.
    焦奎,杨涛,杨婕,冯媛媛.DNA在Mg/聚2,6-吡啶二甲酸膜上的固定和杂交及其PAT基因片段的电化学阻抗谱测定.中国科学B.2007,37(1):36-42.
    焦奎,张旭志,徐桂云,孙伟.ssDNA/十八酸修饰碳糊电极的制备及伏安法表征.化学学报.2005,63(12):1100-1104.
    李红,乐学义,吴建中,刘捷,计亮年,蒋雄,李伟善,徐政和.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA相互作用的研究.化学学报, 2003, 61(2): 245-250.
    李金花,胡劲波,丁小勤,李启隆.功能化纳米金放大的DNA电化学传感器研究.高等学校化学学报. 2005, 26(8): 1432-1436.
    李金花,胡劲波.功能化纳米金增强的DNA电化学检测和序列.分析化学学报. 2004, 62(20): 2081-2088.
    刘乐庭,刘爽,封燕芸,陈建国,于常海. NASBA-一种新型禽流感病毒检测方法.中国生物工程杂志. 2005, 25(11): 91-94.
    龙耀庭,周立启.鸟嘌呤,鸟苷及其甲基化衍生物的近红外傅立叶变换表面增强拉曼光谱.分析化学. 1996, 24(3): 258-263.
    沙爱龙,刘泽隆.禽流感及其对经济的影响.动物医学进展. 2007, 28(6): 99-102.
    时伟杰,艾仕云,张玉玮,朱鲁生.基于聚苯胺掺杂乙醇胺固定DNA电化学传感器的研究.分析科学学报. 2007, 23(5): 507-510.
    时伟杰,艾仕云,李金焕,朱鲁生.基于树状高分子固定DNA的电化学生物传感器的研究.分析化学. 2008, 6(3): 335-338.
    时伟杰. DNA电化学生物传感器的制备及对莠去津检测的研究: [硕士学位论文].山东农业大学,资源与环境学院,2008.
    唐婷,彭图治,时巧翠.碳纳米管修饰金电极检测特定序列DNA.化学学报. 2005, 63(22): 2042-2046.
    魏泉德,谭爱军.禽流感病毒实验检测研究进展.微生物学通报, 2007, 34(5): 986-990.
    徐春,何品刚,方禹之.溴化乙锭标记DNA电化学探针的研究.高等学校化学学报. 2000, 21(8): 1187-1190.
    杨冰仪,莫金垣,赖瑢.聚乙烯吡烙烷酮修饰碳糊电极-双通道毛细管电泳安培法测定环境中的硝基酚.高等学校化学学报, 2005(2): 227-230.
    姚军,李将渊.核酸碱基鸟嘌呤在聚甲酚绿修饰电极上的电化学行为及其动力学研究.分析化学. 2008, 36(12):1672-1676.
    张京京,王斌.碳纳米管修饰电极研究鸟嘌呤及其核行为及测定.化学传感器. 2007, 27(2): 57-63.
    张旭志,焦奎.单壁碳纳米管和室温离子液体胶修饰电极.物理化学学报. 2008, 24(8): 1439-1444.
    赵元弟,庞代文,王宗礼,程介克.电化学脱氧核糖核酸传感器.分析化学. 1996, 24(3): 264-268.
    朱双美,赵元黎,韩道丽.吸附甘氨酸对多壁碳纳米管电性能的影响.传感器与微系统. 2007, 26(4): 49-51.
    Abbaspour A., Masoud M.A. Electrocatalytic Oxidation of Guanine and DNA on a Carbon Paste Electrode Modified by Cobalt Hexacyanoferrate Films. Anal. Chem, 2004, 76(19): 5690-5696.
    Abbaspour A., Masoud M.A., Reza K. Electrocatalytic oxidation of guanine and ss-DNA at a cobalt (II) phthalocyanine modified carbon paste electrode. J. Electroanal. Chem, 2004, 568: 261-266.
    Akikazu S., Kazuyoshi I. Efficient capture of infectious H5 avian influenza virus utilizing magnetic beads coated with anionic polymer. Biochem. Bioph. Res. Co, 2008, 377(1): 85-88.
    Ariksoysal D.O., Karadeniz H., Erdem A., et al. Label-Free Electrochemical Hybridization based on dendrimer modified electrode. Biosens. Bioelectron, 2007, 22(8): 1716-1722.
    Ariksoysal D.O., Karadeniz H., Erdem A., Sengonul A., Sayiner A.A., and Ozsoz M. Label-Free Electrochemical Hybridization Genosensor for the Detection of Hepatitis B Virus Genotype on the Development of Lamivudine Resistance. Anal. Chem. 2005, 77: 4908-4917.
    Blanca L., Sanjay M.R. The history of avian influenza. Comp. Immunol. Microb, 2009, 32(4): 311-323.
    Buzzeo M.C., Evans R.G., Compton R.G.. Non-haloaluminate room-temperature ionic liquids in electrochemistry-a review. Chemphyschem, 2004, 5: 1106-1120.
    Buzzeo M.C., Hardace C., Compton R.G.. Use of room temperature ionic liquids in gas sensor design. Anal.Chem, 2004, 76: 4583-4588.
    Cai H., Wang Y.Q., He P.G., Fang Y.Z. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal. Chim. Acta, 2002, 469(2): 165-172.
    Cai H., Xu Y., Zhu N. N., He P.G.., Fang Y.Z. An electrochemical DNA hybridization assay based on a silver nanoparticle label. Analyst, 2002, 127(6): 803-808.
    Caomano M.M., Garcia L.V., Elorza B., Chantres J.R. Improved HPLC determination of acyclovir using hexylamine as silanol masking agent. J. Pharm. Biomed. Ana1, 1999, 21(3): 619-624.
    Carla S.R., Karim D., Celso V.S., Paulo I.C., Hideko Y. Immobilization of streptavidin in sol-gel films: Application on the diagnosis of hepatitis C virus. Talanta, 2006, 70(3): 637-643.
    Cauthen A.N., Swayne D.E., Schultz-Cherry S., Perdue M.L., Suarez D.L. Continued circulation in China of highly pathogenic avian influenza viruses encoding the hemagglutinin gene associated with the 1997 H5N1 outbreak in poultry and humans. J. Virol, 2000, 74: 6592-6599.
    Chen J.H., Zhang J., Wang K., Huang L.Y., Lin X.H., Chen G.N. Electrochemical biosensor based on hairpin DNA probe using 2-nitroacridone as electrochemical indicator for detection of DNA species related to Chronic Myelogenous Leukemia. Electrochem. Commun, 2008, 10: 1448-1451.
    Chen Q.P., Ai S.Y., Li S.S., Xu J., Yin H.S., Ma Q. Facile preparation of PbO_2 electrode for the electrochemical inactivation of microorganisms. Electrochem. Commun, 2009, 11(11): 2233-2236.
    Chen Q.P., Ai S.Y., Zhu X.B., Yin H.S., Ma Q., Qiu Y.Y. A nitrite biosensor based on the immobilization of Cytochrome c on multi-walled carbon nanotubes–PAMAM–chitosan nanocomposite modified glass carbon electrode. Biosens. Bioelectron, 2009, 24(10): 2991-2996.
    Chen W.J., He B., Li C.G., Zhang X.W., Wu W.L., Yin X.Y., Fan B.X., Fan X.L., Wang J. Real-time RT-PCR for H5N1 avian influenza A virusdetection. J. Med. Microbiol, 2007, 56: 603-607.
    Chua T.H., Ellis T.M., Wong C.W., Guan Y., Ge S.X., Peng G., Lamichhane C., Maliadis C., Tan S.W., Selleck P., Parkinson J. Performance Evaluation of Five Detection Tests for Avian Influenza Antigen with Various Avian Samples. Avian. Dis, 2007, 51: 96-105.
    Davision J.N. The biochemistry of the nucleic acids. 7 ed., Cox&Nyman, Norfolk, UK, 1972, p.129.
    Diouani M.F., Helali S., Hafaid I., Hassen W.M., Snoussi M.A., Ghram A., Jaffrezic-Renault N., Abdelghani A. Miniaturized biosensor for avian influenza virus detection. Mater. Sci. Tech-lond, 2008, 28(5-6): 580-583.
    Endres F. Ionic liquids: Solvents for the electrodeposition of metals and semiconductors. Chem. Phys. Chem, 2002, 3(2):144-154.
    Erdem A., Pividori M.I., Valle M., Alegret S.. Rigid carbon composites: a new transducing material for label-free electrochemical genosensing. J. Electroanal. Chem, 2004, 567(1): 29-37.
    Fang B., Jiao S.F., Li M.G., Qu Y., Jiang X.M. Label-free electrochemical detection of DNA using ferrocene-containing cationic polythiophene and PNA probes on nanogold modified electrodes. Biosens. Bioelectron, 2008, 23(7): 1175-1179.
    Feng K.J., Sun C.H., Kang Y., Chen J.W., Jiang J.H., Shen G.L., Yu R.Q. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochem. Commun, 2008, 10(4): 531-535.
    Furtado C.A., Kim U.J., Gutierrez H.R., Pan L., Dickey E.C., Eklund P.C. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc, 2004, 126: 6095-6105.
    Gajovic-Eichelmann N, Ehrentreich-F rster E, Bier F.F. Directed immobilization of nucleic acids at ultramicroelectrodes using a novel electro-deposited polymer. Biosens. Bioelectron, 2003, 19(5): 417-422.
    Ge C.W., Liao J.H., Yu W., Gu N. Electric potential control of DNAimmobilization on gold electrode. Biosens. Bioelectron, 2003, 18(1): 53-58.
    Geraldo D.A., Togo C.A., Limson J., Nyokong T. Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochim. Acta, 2008, 53: 8051-8057.
    Guo M.D., Li Q.Y., Guo H.X., Wu X.Q., Fan L.F. Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry, 2007, 70(2): 245-249.
    Hakan K., Arzum E., Ayfer C., Carlos M.P., Elisa M.P., JoséA.R. Electrochemical sensing of silver tags labelled DNA immobilized onto disposable graphite electrodes. Electrochem. Commun, 2007, 9(9): 2167-2173.
    Hejazi M.S., Alipour E., Pournaghi-Azar M.H. Immobilization and voltammetric detection of human interleukine-2 gene on the pencil graphite electrode. Talanta, 2007, 71(4): 1734-1740.
    Horimoto T., Kawaoka Y., Influenza: lessons from past pandemics, warnings from current incidents, Nat. Rev. Microbiol, 2005, 3: 591-600.
    Iijima S. Heticalmicrotubules of graphitic carbon. Nature, 1991 (354): 56.
    Ju H.X., Ye Y.K., Zhao J.H. Hybridization biosensor using di(2,2’-bipyridine)osmium (Ⅲ) as electrochemical indicator for detection of polymerase chain reaction product of hepatitis B virus DNA. Anal.Biochem, 2003, 313: 255-261.
    Kagan K., Yasutaka M., Yuzuru T., Eiichi T. Label-free electrochemical detection of DNA hybridization on gold electrode. Electrochem. Commun, 2003, 5(10): 887-891.
    Kerman K., Ozkan D., Kara P., Ozsoz M. Label-Free Bioelectronic Detection of Point Mutation by Using Peptide Nucleic Acid Probes. Electroanal, 2003, 15: 667-670.
    Korri-Youssoufi H., Garnier F., Srivastava D., Godillot P., Yassar A. Toward bioelectronics: Specific DNA recognition based on anoligonucleotide-functionalized polypyrrole. Am. Chem. Soc, 1997, 119: 7388-7391.
    Kukol A., Li P., Estrela P., Ferrigno P.K., Migliorato P. Label-free electrical detection of DNA hybridization for the example of influenza virus gene sequences. Anal. Biochem, 2008, 374 (1): 143-153.
    Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101: 19-28.
    Laviron E. The use of linear potential sweep voltammetry and of a.c.voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem, 1979, 100: 263-270.
    Lee C.W., Yehia M.S. Avian influenza virus. Comp. Immunol. Microb, 2009, 32(4): 301-310.
    Li A. X., Yang F., Ma Y., Yang X.R. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens. Bioelectron, 2007, 22(8): 1716-1722.
    Li F., Chen W., Tang C., Zhang S. Recent development of interaction of transition metal complexes with DNA based on biosensor and its applications. Talanta, 2008, 77: 1-8.
    Li N.B., Jun H.P., Kyungsoon P., Seong J.K., Hyunkyung S., Juhyoun K. Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode. Biosens. Bioelectron, 2008, 23(10): 1519-1526.
    Lin L., Zhao H., Li J. Study on colloidal Au-enhanced DNA sensing by quartz crystal microbalance. Biochem. Biophys. Res.Commun, 2000, 274(3): 817-820.
    Magana A.A., Wrobel K., Caudillo Y.A. High-performance liquid chromatography determination of 5-methyl-2'-deoxycytidine,2'-deoxycytidine,and other deoxynucleosidesand nucleosides in DNA digests. Anal.Biochem, 2008, 374: 378-385.
    Magana A.A., Wrobel K., Caudillo Y.A. High-performance liquid chromatography determination of 5-methyl-2'-deoxycytidine,2'-deoxycytidine,and other deoxynucleosides and nucleosides in DNA digests. Anal.Biochem, 2008, 374: 378-385.
    Marmur J., Rownd R., Schildkraut C.L., Progress in nucleic acid research. Academic Press, New York, 1963, p.232.
    Na(?)ma D., Murielle R.D., Beno?t L., Michel D., Pierre B. Evaluation of the analytical performances of avidin-modified carbon sensors based on a mediated horseradish peroxidase enzyme label and their application to the amperometric detection of nucleic acids. Biosens. Bioelectron, 2007, 22(12): 2906-2913.
    Neff Y.D. Electrochemical oxidation and reduction of thin films of Prussian blue. Electrochem. Soc, 1978, 125: 886-887.
    Olga S., Jon R.K. An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochem. Commun, 2007, 9(5): 935-940.
    Ozkan D., Erdem A., Kara P. Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes. Electrochem. Commun, 2002, 4(10): 796-802.
    Palecek E., Fojta M., Willner I., Katz (Eds.) E. Electrochemical DNA sensors. Bioelectronics, Wiley/VCH, Weinheim, 2005: 399-408.
    Peng H., Soeller C., Vigar N. Label-free electrochemical DNA sensor based on functionalized conducting copolymer. Biosens. Bioelectron, 2005, 20(9): 1821-1828.
    Peter T.K. Biosensors-a perspective. Biosens. Bioelectron, 2005, 20(12): 2512-2516.
    Quiroz M.A., Reyna S., Martinez-Huitle C.A., Ferro S., Battisti A.D. Electrocatalytic oxidation of p-nitrophenol from aqueous solutions atPb/PbO_2 anodes. Appl. Catal. B: Environ. 2005, 59 (3-4) 259-266.
    Rochette J.F., Sacher E., Meunier M.A. Mediatorless biosensor for putrescine usingmultiwalled carbon nanotubs. Anal. Biochem, 2005, 336: 305-311. Sakudo A., Ikuta K. Efficient capture of infectious H5 avian influenza virus utilizing magnetic beads coated with anionic polymer. Biochem. Bioph. Res. Co, 2008, 377: 85-88.
    Shi W.J., Ai S.Y., Li J.H., Zhu L.S. Electrochemical Biosensor Based on Dendrimer Immobilized Deoxyribonucleic Acid. Chinese. J. Anal. Chem, 2008, 36(3): 335-338.
    Simon D.K., Li P., Pedro E., Piero M. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens. Bioelectron, 2008, 23(8): 1291-1297.
    Spackman E., Senne D.A., Myers T.J. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avianH5 andH7 hem agglutinin subtypes. J Clin Microbio, 2002, 40: 3256-3260.
    Steven A.S., Kathlynn B., Andrew E., Bruno F., Guillermo G.M., Vincent G., Steven I.G., Daniel F.H., Brenda K., James L.L., Dale L., Frances L., Arun M., Marco M., David N., Zeev R., Joseph W., David W.
    Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron, 2006, 21(10): 1932-1942.
    Sun W., Li Y.Z., Duan Y.Y., Jiao K. Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination. Biosens. Bioelectron, 2008, 24: 988-993.
    Swayne D.E., Halvorson D.A. Influenza. In: Saif Y.M., Barnes H.J., Glisson J.R., Fadly A.M., McDougald L.R., Swayne D.E., editors. Diseases of poultry. Ames: Iowa State University Press; 2003. p. 135-60.
    Swayne D.E., Suarez D.L. Schultz S. Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease. Rev. Sci. Tech. Off. Int. Epiz, 2000, 19: 463-482.
    Tomalia D.A, Dewald J.R. Dense star polymer and dendrimers. US Patent 4568737. 1986.
    Tomalia D.A., Baker H., Dewald J. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J, 1985, 17(1): 117-132.
    Tsukamoto K., Ashizawa H., Nakanishi K., Kai N., Suzuki K., Okamatsu M., Yamaguchi S., Mase M. Subtyping of Avian Influenza Viruses H1 to H15 on the Basis of Hemagglutinin Genes by PCR Assay and Molecular Determination of Pathogenic Potential. J. Clin. Microbiol, 2008, 46: 3048-3055.
    Velichenko A.B., Amadelli R., Zucchini G.L., Girenko D.V., Danilov F.I. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts. Electrochim. Acta, 2000, 45(25-26): 4341-4350.
    Wang F., Wang J.L., Chen H.J., Dong S.J. Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR. J. Electroanal. Chem. 2007, 2(2):265-274.
    Wang J, Liu G, Jan M. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc, 2004, 126: 3010-3011.
    Wang J. DNA biosensors based on Peptide Nucleic Acid (PNA) recognition layers. Biosens. Bioelectron, 1998, 13(7-8): 757-762.
    Wang J., Gustavo R., Concepción P., Cai X.H., Mark N.F. Electrochemical biosensor for detecting DNA sequences from the pathogenic protozoan Cryptosporidium parvum. Talanta, 1997, 44(11): 2003-2010.
    Wang J., Kawde A.N., Musameh M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst, 2003, 128: 912-916.
    Wang J., Rivas G., Fernandes J. R. Indicator-free electrochemical DNA hybridization biosensor. Anal. Chim. Acta, 1998, 375: 197-203.
    Wang S.G., Wang R., Sellin P.J. DNA biosensors based on self-assembled carbon nanotubes. Biochem. Biophys. Res. Commun, 2004, 325:1433-1437.
    Wang Z.H., Xiao S.F., Chen Y.β-cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J.Electroanal.Chem, 2006, 589: 237-242.
    Watkins.B.F., Behling.J.R, Kariv E., Miller L.L., Modified Electrodes Using Mixed Langmuir?Blodgett Films Containing a Ruthenium Complex: Features of the Monolayers at Air?Liquid Interface. J. Am. Chem. Soc, 1975, 97: 3549-3550.
    Watson J.D., Crick F.H.C. Genetical implication of the structure of deoxyribonucleic acid. Nature, 1954, 171: 964-967.
    Wu Y.H., Zhang G.Z., Li Y., Jin Y., Dale R., Sun L.Q., Wang M. Inhibition of highly pathogenic avian H5N1 influenza virus replication by RNA oligonucleotides targeting NS1 gene. Biochem. Bioph. Res. Co, 2008, 365: 369-374.
    Xi G., Peng Y., Xu L., Zhang M., Yu W., Qian Y. Selected-control synthesis of PbO_2 submicrometer-sized hollow spheres and Pb_3O_4 microtubes. J. Inorg. Chem. Commun, 2004, 7: 607-610.
    Xu C., Cai H., Xu Q., He P. G., Fang Y. Z. Characterization of single-stranded DNA on chitosan-modified electrode and its application to the sequence-specific DNA detection. J. Anal. Chem, 2001, 369: 428-432.
    Xu Y., Jiang Y., Cai H., He P.G., Fang Y.Z. Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Analytica. Chimica. Acta, 2004, 516(1-2): 19-27.
    Xu Y., Ye X.Y., Yang L. Impedance DNA Biosensor Using Electropolymerized Polypyrrole/Multiwalled Carbon Nanotubes Modified Electrode. Electroanalysis, 2006, 15: 1471-1478.
    Yang F.Q., Guan J., Li S.P. Fast simultaneous determination of 14 nucleosides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography. Talanta, 2007, 73: 269-273.
    Yang J., Yang T., Feng Y.Y., and Jiao K. A DNA electrochemical sensor based on nanogold-modiWed poly-2,6-pyridinedicarboxylic acid Wlm and detection of PAT gene fragment. Anal. Biochem, 2007, 365: 24-30.
    Yuen K.Y., Chan P.K.S., Peiris M., Tsang D.N.C., and members of the H5N1 study group. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet, 1998, 351: 467-471.
    Zeng Y.L., Hang Y.F., Jiang J.H., Zhang X.B., Tang C.R., Shen G.L., Yu R.Q. Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor . Electrochem. Commun, 2007, 9: 185-190.
    Zeng Y.L., Hang Y.F., Jiang J.H., Zhang X.B., Tang C.R., Shen G.L., Yu R.Q. Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor. Electrochem. Commun, 2007, 9(1): 185-190.
    Zhao Y.F., Gao Y.Q., Zhan D.P., Liu H., Zhao Q., Kou Y., Shao Y.H., Li M.X., Zhuang Q.K., Zhu Z.W. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005, 66(1): 51-57.
    Zhao, XC; Leng, YS; Cummings, P.T. Self-assembly of 1,4-benzenedithiolate/tetrahydrofuranon a gold surface: A Monte Carlo simulation study. Langmuir, 2006, 22: 4116-4124.
    Zheng F., Wu Z. S., Zhang S. B. Aptamer-based Electrochemical Biosensors for Highly Selective and Quantitative Detection of Adenosine. Chem. Res. Chinese U, 2008, 24(2): 138-142.
    Zheng Y., Lin X.Q. Modified Electrode Based on Immobilizing Horseradish Peroxidase on nano-Gold with Choline Covalently Modified Glassy Carbon Electrode as a Base. Chinese. J. Anal. Chem, 2008, 36(5): 604-608.
    Zhou L.P., Yang J., Estavillo C., Stuart J.D., Schenkman J.B., Rusling J.F.Toxicity Screening by Electrochemical Detection of DNA Damage by Metabolites Generated In Situ in Ultrathin DNA?Enzyme Films. J. Am. Chem. Soc, 2003, 125: 1431-1436.
    Zhu L.D., Zhai J.L., Yang R.L., Tian C.Y., Guo L.P. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes. Biosens. Bioelectron, 2007, 22(11): 2768-2773.
    Zhu N.N., Chang Z., He P.G., Fang Y.Z. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochim. Acta, 2006, 51(18): 3758-3762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700