用户名: 密码: 验证码:
水稻钾素营养的积累特征及生理效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钾是水稻植株含量最丰富的主要营养元素之一,对水稻的生长和发育有着明显地促进作用,参与了水稻体内多种酶的活化、物质合成、同化物运输、水分代谢、光合作用及离子平衡等植株生理生化过程,对提高水稻养分吸收利用效率、增加水稻产量、改善稻米品质具有十分重要的作用。本试验在大田和盆栽条件下,通过基肥、穗肥和前后运筹的钾素管理方式,研究了施钾量对不同类型水稻植株养分吸收、转运和利用的影响,分析了钾素水平对不同类型水稻光合生理及防御系统的影响,探讨了钾素用量对不同类型水稻茎秆生物力学和机械强度的影响,揭示了钾肥运筹对不同类型水稻产量及品质的影响,明确了分蘖期和孕穗期植株不同器官钾素分布特征及与分蘖发生率、产量构成的关系。主要研究结果如下:
     (1)在大田缺钾土壤上,适量施钾增加了水稻产量和经济系数,增产幅度为4.56-14.77%,提高了不同类型水稻糙米率、整精米率等加工品质以及稻米蛋白质含量,降低了垩白度等外观品质和稻米直链淀粉含量,改善了稻米淀粉粘滞性谱特征值,过低或过高施钾则降低了水稻产量、影响了稻米品质。另外,钾素基肥和促花肥的分次施用,能够进一步降低稻米垩白度和直链淀粉含量,提高胶稠度,从而改善稻米品质。
     (2)施钾提高了水稻不同生育时期植株含钾率和群体吸钾量;水稻不同生育阶段以拔节期到抽穗期吸钾数量和比例最大,施钾提高了这一阶段的吸钾数量和比例;不施钾肥和施钾过多,造成拔节前吸钾比例较大,从而抑制分蘖发生;施钾使植株钾素快速累积的平均速率和最大速率增大,但快速积累的起止时间和持续时间缩短;施钾提高了水稻抽穗期和成熟期叶片、茎鞘和穗的钾素分配量及茎鞘分配比例,但降低了叶片分配比例,并且不同器官组织中茎鞘分配量差异最大;随施钾量增加,水稻钾素回收效率、利用指数和植株钾生产效率降低,钾素农学效率、生理效率和生理指数则先升后降,以钾素生理指数、生理效率与产量的相关性较高;适量施钾能够显著提高水稻钾素利用效率。另外,钾素基肥和促花肥的分次施用,能够明显增加拔节至抽穗的吸钾数量和比例,提高实粒数、结实率和稻谷产量。
     (3)施钾提高了水稻不同生育阶段植株吸氮量,其中以拔节期到抽穗期氮素积累增量最大,但吸氮比例下降;施钾增加了水稻抽穗到成熟期的植株吸氮量和吸收比例,促进了抽穗后氮素转运量和转运率,提高了氮素在不同器官分配量及叶片、穗分配比例,但降低了茎鞘分配比例;施钾提高了植株对肥料氮吸收,基肥氮素利用率、全生育期氮素利用率和氮素收获指数显著增长,但降低了植株氮生产效率;在大田缺钾土壤上以12kg/667m2K2O处理氮素积累量、转运量和转运率以及不同器官氮素分配量最大,基肥氮素利用效率、植株对肥料氮吸收量和全生育期氮素利用率最大,但拔节期到抽穗期氮素吸收比例、茎鞘氮素分配比例和植株氮生产效率最低。
     (4)施钾提高了水稻齐穗后20天植株高效叶的SPAD、净光合速率和气孔导度,增强了叶片的Fv/Fm、Fo及OPS Ⅱ、qP等叶绿素荧光参数,增大了光合关键酶RuBPCase活性和抗氧化系统的SOD和POD活性,降低了叶片MDA含量,在大田缺钾土壤上以12kg/667m2K2O处理叶片光合特性最强。
     (5)施钾提高了水稻株高和茎秆长度,增大了水稻单茎重和茎秆强度;施钾缩短了基部节间的长度,增加了基部节间的粗度、干物质重和节间充实度;施钾增加了基部节间的断面模数、横切面积、茎壁厚度、茎壁面积和大、小维管束数量及面积;施钾增加了茎秆的弯曲力矩、弯曲应力、机械强度和秆型指数,降低了茎秆系数和倒伏指数;施钾提高了基部节间的可溶性糖、淀粉、纤维素、木质素含量及植株C/N;相同类型水稻品种茎秆抗折力与茎秆长度、粗度、单茎重、茎秆充实度和节间物理性状、生物力学、碳水化合物含量正相关,与基部节间长度、茎秆系数和倒伏指数呈负相关;在大田缺钾土壤上以12kg/667m2K2O处理茎秆强度最大、倒伏指数最小
     (6)在缺钾土壤上,基肥施钾提高水稻植株不同器官含钾率和K/N,以叶鞘含钾率和K/N变化量最大;增大了植株不同叶片和叶鞘含钾率及K/N,以顶3鞘变化数量最高;随着水稻叶龄的增长,分蘖发生所需的植株K/N增大,基肥适当施钾有利于提高植株K/N,但过低或过高的K/N降低了分蘖发生率。穗肥施钾提高了植株不同器官含钾率和K/N,以叶鞘含钾率及K/N变化最大;增大了不同部位叶片和叶鞘含钾率及K/N,以顶3鞘变化最大;水稻颖花量、实粒数和产量随叶片、叶鞘和植株K/N增加而先增大后降低,其中植株不同器官、不同部位以叶鞘和顶3鞘与产量性状相关性最大。
     (7)相同钾素处理的不同类型水稻,常规粳稻的产量大于杂交粳稻,拔节期到成熟期吸钾比例、钾素快速累积的起止时间和持续时间及钾素生理效率、生理指数、植株钾生产效率高于杂交粳稻,但群体吸钾量、钾素快速累积的最大速率和平均速率、茎鞘钾素分配量及比例、钾素回收效率低于杂交粳稻;常规粳稻的氮素利用效率大于杂交粳稻,抽穗后的光合效应强于杂交粳稻;常规粳稻基部节间长度、粗度、断面模数、横切面积、茎壁厚度、茎壁面积、机械强度及碳水化合物含量低于杂交粳稻,但基部节问充实度、秆型指数和茎秆系数高于杂交粳稻。
Potassium is one of the most important macronutrients for rice. It has a visible promotional action in the rice growth and development, and it takes part in the processes of plant physiological and biochemical reaction, including the activation of various enzymes, physical synthesis, assimilate transport, water metabolism, photosynthesis and ion balance. Thus, it plays a very important role in improving the nutrient utilization efficiency, increasing production and improving quality of rice. Under field and pot experiment conditions, through different potassium management methods of basal dressing, panicle dressing and fore-and-aft operation, the influences of potassium application rates on the nutrient absorption, transportation and use efficiency, photosynthetic physiology and defense systems, culm biomechanics and mechanical strength, rice quality and yields of different types of rice were analyzed, the plant potassium distribution character of the tiller stage and panicle stage and their correlation separately to percentage of tiller occured, yield composition were revealed. The results were as follows:
     1. Both rice yield and harvest index were increased with the proper potassium application under the condition of soil potassium deficiency, the range of yield increase rate was4.56-14.77%. Potassium application improved rice milling qualities, appearance qualities, eaten qualities and nutrition qualities of different types of rice. Potassium application increased brown rice rate, head rice rate, rice protein content and starch characteristic values of R.VA, reduced rice amylase content. Rice yield and quality were declined with a less or excessive potassium application. In addition, potassium application at basal dressing and panicle dressing relative to only basal dressing can further reduce the chalkiness rate and amylose content, increase gel consistency, and improved the quality of rice.
     2. Plant potassium content and accumulation at different growth stages were raised by potassium application. Plant potassium accumulation amount and absorption percentage reached the biggest from elongation stage to heading stage, which was further increased by potassium application in this stage. A larger percentage of the potassium absorption before elongation stage occurred at control experiment (no potassium application) and excessive potassium application, thereby suppressed tillering occurrence. The average and maximal rates of potassium speediness accumulation period under potassium application were increasing, but starting to terminating date and duration date of potassium speediness accumulation period were the opposite. Potassium application promoted potassium distribution amount in leaf, culm and sheath, panicle, and distribution percentage of culm and sheath, whereas reduced distribution percentage of leaf. The variation of potassium distribution amount in culm and sheath were larger than others. With the increment of potassium application rates, rice potassium recovery efficiency, plant potassium productivity and potassium utilization index decreased, while potassium agronomy efficiency, physiology efficiency and physiology index increased at first and then decreased. Among these estimation indexes, potassium physiology index and physiology efficiency correlate more to yield. Proper potassium application can significantly improve the utilization efficiency of rice. In addition, potassium application at basal dressing and panicle dressing relative to only basal dressing can significantly increased the amount and proportion of potassium absorption during elongation stage and heading stag, improve filled grains per panicle, setting panicle rate and grain yield.
     3. Potassium application increased nitrogen accumulation during growth stages, with the maximum from elongation stage to heading stage, but nitrogen uptake ratio decreased. Potassium application enhanced nitrogen transport amount and percentage after anthesis, as well as nitrogen accumulation in different rice organs, nitrogen distribution percentage in leaves and panicles, whereas reduced nitrogen distribution percentage in culm and sheath. Nitrogen absorption from fertilizer, basic nitrogen recovery efficiency before elongation stage, nitrogen recovery efficiency during the whole growing stage, and nitrogen harvest index were raised significantly, but plant nitrogen productivity was the opposite. Under the condition of soil potassium deficiency, nitrogen accumulation, nitrogen translocation amount and percentage after anthesis, and nitrogen distribution in different rice organs reached maximum at K2O application rate of12kg/667m2, as well as nitrogen absorption from fertilizer, basic nitrogen recovery efficiency before elongation stage, nitrogen recovery efficiency during the whole growing stage. However, nitrogen absorption percentage from elongation stage to heading stage, nitrogen distribution percentage in culm and sheath, and plant nitrogen productivity decreased to the minimum.
     4. Potassium application increased SPAD of high efficient leaf, net photosynthetic rate and stomatal conductance20days after heading stage, enhanced leaf chlorophyll fluorescence parameters, including leaf Fv/Fm, Fo, OPS Ⅱ, qP and so on. At the same time, Potassium application increased the activity of the key photosynthetic enzyme (RuBPCase) and the activity of antioxidant system (SOD and POD), reduced the MDA content in leaves. Leaf photosynthetic characteristics were strongest at K2O application rate of12kg/667m2.
     5. Potassium application increased the plant height, clum length, single clum weight, and clum strength, reduced clum length of the basal internode. Potassium application increased thickness of the basal internode, dry matter weight and internode substantial degree, and section modulus, cross-sectional area, thickness of culm wall, area of culm wall, number and area of large and small vascular bundle of the basal internode, as well as the clum of bending moment, bending stress, mechanical strength and clum type index, reduced clum coefficient and lodging index. Furthermore, potassium application also increased the soluble sugar, starch, cellulose, lignin content of the basal internode and plant C/N. As for the same type of rice, clum resistant press was positively correlated with clum length, thickness, single clum weight, culm substantial degree, and internode physical properties, biomechanics, carbohydrate content, and was negatively correlated with the basal internode length, clum coefficient, and lodging index. Under the condition of soil potassium deficiency, clum strength was biggest while lodging index was smallest at K2O application rate of12kg/667m2.
     6. Potassium application of basal dressing increased leaf, leaf sheath and plant shoot K content and K/N under the condition of soil potassium deficiency, while leaf sheath had the maximal potassium content, and K/N variance. Potassium application of basal dressing increased improved K content and K/N of different position leaf and leaf sheath, While3rd leaf sheath from the top had the maximal variance of potassium and K/N. The K/N of plant tiller germination required also increased with the leaf ages, proper potassium application of basal dressing promoted plant percentage of tiller occured, but a less or excessive potassium application reduced percentage of tiller occurred. Potassium application of panicle dressing also increased leaf, leaf sheath and plant shoot K content and K/N, thereinto, leaf sheath had the maximal variance of potassium content and K/N. K content and K/N of different position leaf and leaf sheath increased with Potassium application of panicle dressing, among these organs,3rd leaf sheath from the top had the maximal variance of potassium and K/N. Rice spikelets, filled grains per panicle and yield were also increased at first and then decreased with the K/N ratio of leaf, leaf sheath and plant shoot. Within different positions and organs, leaf sheath and3rd leaf sheath from the top correlate most with the yields.
     7. For the same potassium application of different types of rice, yield, plant potassium absorption percentage from elongation stage to maturing stage, starting to terminating date and duration date of potassium speediness accumulation period, potassium physiology efficiency, potassium physiology index, plant potassium productivity of conventional japonica rice were higher than those of hybrid japonica rice, but population potassium absorption, the average and maximal rate of potassium speediness accumulation period, the amount and proportion of potassium distribution percentage of clum and sheath, potassium recovery efficiency of conventional japonica rice were lower than those of hybrid japonica rice. Nitrogen use efficiency and photosynthetic effect after heading stage of conventional japonica rice was greater than that of hybrid japonica rice. Moreover, basal internode length, thickness, section modulus, cross-sectional area, thickness of culm wall, area of culm wall, mechanical strength and carbohydrate content of conventional japonica rice were lower than those of hybrid japonica rice, but the substantial degree of basal internode, clum type index and clum coefficient of of conventional japonica rice were higher than those of hybrid japonica rice.
引文
[1]凌启鸿.作物群体质量[M].上海:上海科技出版社,2000,154-197
    [2]戴云仙.近50年我国粮食产量变化的数学分析[J].内蒙古农业大学学报(自然科学版),2001,22(3):109-113
    [3]Peng S, Cassman K G, Virmani S S, et al. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential[J]. Crop Sci.,1999,39,1552-1559
    [4]张宇.近40年我国粮食生产变化特征初步分析[J].中国农业气象.1995,16(3):10-13
    [5]Maathusis F J M, Schroeder J I. Machenisms of potassium absorption by higher plants roots[J]. Physiology Plant,1996,96:158-168
    [6]Maathusis F J M, Sanders D and Schroeder J I. Roles of higher plant K+channels[J]. Plant Physiology,1997,114:1141-1149
    [7]Smart C J, Garvin D F, Prince J P, et al. The molecular basis of potassium nutrition in plants[J]. Plant soil,1996,187:81-89
    [8]Thiel G, Wolf A H. Operation of K+channels in stomatal movement[J]. Trends plant science,1997, 2:339-345
    [9]Leighr A, Wynjones G R. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell[J]. New Phytol,1984,97:1-13
    [10]Hudcova O.1990. Factors of soil potassium regime in intensive fertilization[J]. Rostlincta Vyroba, 36(2):113-118
    [11]张连佳,潘金林,吴槐泓,等.红壤稻田土壤钾素消长与调控技术研究[J].浙江农业科学,1996,(3):101-105
    [12]谢建昌.钾与中国农业[M].南京:河海大学出版社,2000
    [13]王为木.水稻适应低钾胁迫的机理研究[D].浙江大学博士论文,2003
    [14]鲁如坤.我国土壤氮磷钾基本状况[J].土壤学报,1989,26(3):280-286
    [15]中国农业科院土肥所.中国化肥区划[M].中国农业科技出版社,1986
    [16]金继运,黄绍文,何萍.土壤钾素和植物钾素研究进展.见张福锁,杨新泉主编,植物营养研究、进展与展望[M].北京:中国农业大学出版社,2000
    [17]张会民,徐明岗,吕家珑,等.不同生态条件下长期施钾对土壤钾素固定影响的机理[J].应用生态学报,2007,18(5):1009-1014
    [18]Maathusis F J M, Schroeder J I. Mechanisms of potassium absorption by higher plants roots [J]. Plant physiol.,1996,96:158-168
    [19]Maathusis F JM, Sanders D, Schroeder J I. Roles of higher plant K+channels[J]. Plant Physiol., 1997,114:1141-1149
    [20]Smart C J, Garvin D F, Prince J P et al. The molecular basis of potassium nutrition in plants [J]. Plant Soil,1996,187:81-89
    [21]Thiel G, Wolf AH. Operation of K+channels in stomatal movement[J]. Trends Plant Sci.,1997,2: 339-345
    [22]谢建昌,周健民.我国土壤钾素的研究和钾肥使用的进展[J].1999,土壤,(5):244-254
    [23]关炎,宇万太,李建东.长期施肥对土壤养分库的影响[J].2004,生态学杂志,23(6):131-137
    [24]Munson R D,范钦桢、郑文钦译.农业中的钾[M].北京:科学出版社,1995
    [25]李华,杨肖娥,罗安程.不同氮源与钾水平对杂交组合及常规稻生长和养分吸收的影响.植物营养与肥料学报,2001,7(3):278-284
    [26]陈小琴,周健民,王火焰,杜昌文.氮肥形态及氮钾施用措施对水稻生长和养分吸收的影响.中国农学通报,2007,23(6):376-382
    [27]陈新平,张福锁,李晓林.我国北方钾素资源管理的研究现状与展望[J].1997,化肥工业,34(1):19-21
    [28]武际,郭熙盛,王允青,汪建来,杨晓虎.不同土壤供钾水平下施钾对弱筋小麦产量和品质的调控效应[J].麦类作物学报,2007,27(1):102-106
    [29]Mengel K, Header H E. Effect of potassium supply oil the rate of phloem sap exudation and the composition of phloem sap of Rizinos Commuinis[J]. Plant Physio 1.,1997,59:282-284
    [30]李冬花,郭瑞林.钾对小麦产量及营养品质的影响研究[J].河南农业大学学报,1997,31(4)357-361
    [31]张国平.钾素对小麦氮代谢与产量的影响[J].浙江农业大学学报,1985,(4):463-472
    [32]于振文,张炜,余松烈.钾营养对冬小麦养分吸收分配、产量形成和品质的影响[J].作物学报,1996,22(4):442-447
    [33]王旭东,于振文,樊广华,等.钾素对冬小麦品质和产最的影响[J].山东农业科学,2000,(5)16-18
    [34]王旭东,于振文,王东.钾对小麦茎和叶鞘碳水化合物含量及籽粒淀粉积累的影响[J].植物营养与肥料学报,2003,9(1):57-62
    [35]Yang X E, Liu J X, Wang W M, et al. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes[J]. Journal of Plant Nutrition,2004, 27(5):837-852
    [36]Tester M, Blat M R. Direct measurement of K+channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers[J]. Plant Physiol.,1989,91:249-252
    [37]Wildes R P. Iris recognition:an emerging biometric technology [J]. Proceeding of The IEEE,1997, 85(9):1348-1363
    [38]王明香,聂俊华,张华芳.钾素营养研究进展[J].云南农业大学学报,2000,15(4):356-358
    [39]武威永昌,富生才.作物缺钾的形态特征及钾对作物的作用[J].土壤肥料,2005,(5):36-37
    [40]Sachs MM, Ho THD. Alteration of gene expression during environmental stress in plants[J]. Ann. Rev. Plant Physiol.,1986,37:363-376
    [41]窦桂梅,王景盛,刘巧英.钾肥在农作物上的应用研究[J].山西农业科学,2001,29(1):49-52
    [42]刘国栋,刘更另.论缓解我国钾资源短缺问题的新对策[J].中国农业科学,1995,28(1):25-32
    [43]彭立友,赵为民.水稻高产栽培施肥技术[J].现代农业科技,2006, (8):17
    [44]赵天成,李友宏,陈晨,等.水稻需钾特性及施钾效应研究[J].宁夏农林科技,2005,(6):7-8
    [45]雷永振.北方水稻钾肥效应及高效施用技术[J].辽宁农业科学,2004, (1):1-4
    [46]Epsteine, Jefferies R L. The gene basis of selective ion transport in plants[J]. Ann Rev Physiol,1964, 15:169-184
    [47]Kochian L V, LucasW J. Potassium transport in roots[J]. Adv. Bot.Res.,1988,15:93-178
    [48]Kochian L V, Lucas W J. Potassium transport in corn roots[J]. Plant Physiol.,1982,70:1723-1731
    [49]赵淑清,郭剑波.高等植物根细胞高亲和性吸收钾的机制[J].生命科学,2001,13(3):132-134
    [50]Logan H, Basset M, Very A A, Sentenac H. Plasma membrane transport systems in higher plants: from black boxes to molecular physiology [J]. Physiologia Plantanrum,1997,100:1-15
    [51]Maathuis F J M, Sanders D. Mechanism of potassium absorption by higher plant roots[J]. Physiology Plant,1996,96:158-168
    [52]Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J M. Cloning and expression in yeast of a plant potassium ion transport system[J]. Science,1992,256:663-665
    [53]Schachtman D P, Schroeder J I, Lucas W J, Anderson J A, Gaber R F. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA[J]. Science,1992,258:1654-1658
    [54]Clarkson D T, Hawkesford M J. Molecular biological approaches to plant nutrition. In:Barrow N J, Plant nutrition-from genetic engineering to field practice[J]. Kluwer Academic Publishers,23-33
    [55]严小龙,张福锁主编.植物营养遗传学[M].北京:中国农业出版社,1997,51-53
    [56]王毅,武维华.植物钾营养高效分子遗传机制[J].植物学报,2009,44(1):27-36
    [57]刘伟宏,刘飞虎.植物根部细胞钾离子转运机制及其分子基础[J].江西农业大学学报,1999,21(4):451-455
    [58]库文珍,彭克勤,萧浪涛,等.水稻钾营养基因型差异研究进展[J].邵阳学院学报,2007,4(2):95-99
    [59]刘贯山,王元英,孙玉合,王卫锋.高等植物钾转运蛋白[J].生物技术通报,2006,(5):13-18
    [60]施卫明,王校常,严蔚东等.外源钾通道基因在水稻中的表达及其钾吸收特征研究[J].作物学报,2002,28(3):374-378
    [61]De Datta S K, Bresh R J. Integrated nitrogen management in irrigated rice[J].Adv. soil Sci. 1989,10:143-169
    [62]邹国元,李晓林.不同温度下施用钾肥对玉米生长及磷养分吸收的影响[J].华北农学报,1998,13(4):51-55
    [63]邰继承,杨荣华,苏雅乐其其格,等.钾素水平对水稻幼苗生长发育的影响[J].内蒙古民族大学学报(自然科学版),2007,22(1):48-52
    [64]林咸永,孙羲.不同水稻品种对钾的吸收及其对钾肥的反应[J].土壤学报,1995,32,(1):77-82
    [65]杨振明.耐低钾冬小麦基因型筛选方法的研究[J].土壤学报,.998,35,(3):376-382
    [66]张步阔,王巩,王鑫,等.不同水稻品种幼苗生长和吸钾能力的研究[J].种子,2002,(3)28-30
    [67]罗远培,李韵珠.根土系统与作物水氮资源利用效率[M].北京:中国农业科技出版社,1996,115-121
    [68]冯广龙,罗远培.土壤水分与冬小麦根、地上部功能均衡关系的模拟研究[J].生态学报,1999,19(1):96-103
    [69]Magnani F, Mencuccini M, Grace J. Age-related decline in stand productivity:the role of structural acclimation under hydraulic constraints[J]. Plant Cell and Environment,2000,23:251-263
    [70]李亦斌.氮、磷、钾对水稻秧苗根系生长的影响[J].湖南农业科学,2006,(3):29-30
    [71]袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983.203-206
    [72]乐开富,姜兆华,廖朝阳,等.N、P、K、有机肥对优质早稻金优2155产量和品质的影响研究[J].粮食作物,2006,(2):18-19
    [73]喻凤琴,熊清云,胡文秀,等.不同氮、钾肥运筹对早稻免耕抛秧产量及穗粒结构的影响[J].安徽农业科学,2007,35(12):3612-3613
    [74]黎用朝,李小相.影响稻米品质的遗传和环境因素研究进展[J].中国水稻科学,1998,12(S):58-62
    [75]李伟,张玲,谢崇华.氮钾对稻米品质影响的研究进展[J].安徽农业科学,2007,35(17):5213-5214,5289
    [76]盛宏达.水稻抽穗期根外追肥对稻米品质的影响[J].中国农学通报,1997(5):29
    [77]周瑞庆.肥料种类及营养元素对稻米产量与品质影响的初步研究[J].作物研究,1988,2(1): 14-17
    [78]Haeder H E, Mengel K. Role of K in crop production[J]. Int Potash Inst,1979,44(5):115-124
    [79]张三元,石玉海.水稻品种稻米品质研究Ⅱ.肥料对水稻蛋白质含量的影响[J].吉林农业科学,1991(3):5-8
    [80]Yonuexkull K. Factor and process affecting potassium requirement of crops[J]. Potash Rev, 1982(9):1-2
    [81]Xi. Z. Prospects for rice fertilization research in China for the Year 2000[C]. Proceedings of Rice Research Conference,1989, Hangzhou
    [82]朱鹤健.水稻土[M].北京:农业出版社,1985,419-427
    [83]邹春琴.植物高效利用钾素资源的研究进展[J].生态农业研究,1996,4(3):10-14
    [84]蒋德安,饶立华,彭佐权.低钾条件下水稻的光合特性[J].植物生理学报,1988,14(1):50-56
    [85]饶立华,蒋德安,薜建明,等.钾营养对水稻光合器功能的效应与谷粒产量的影响[J].植物生理学报,1989,15(2):191-197
    [86]蒋德安,陆庆,薜建明,等.钾营养对稻叶光合功能及光能吸收的调节[J].浙江农业大学学报,1992,18(4):25-29
    [87]郑炳松,蒋德安,翁晓燕,等.钾营养对水稻剑叶光合作用关键酶活性的影响[J].浙江大学学报(农业与生命科学版),2001,27(5):489-494
    [88]蒋德安,翁晓燕,陆庆,等.钾营养对水稻光合速率(Pn),Hill反应及SOD活力日变化的影响[J].植物生理学报,1996,22(1):87-93
    [89]孙骏威,翁晓燕,李峤,等.缺钾对水稻不同品种光合和能量耗散的影响[J].植物营养与肥料学报,2007,13(4):577-584
    [90]曾广文,蒋德安.植物生理学[M].四川:成都科技大学出版社,1998
    [91]郑炳松,程晓建,蒋德安,等.钾元素对植物光合速率、Rubisc和RCA的影响[J].浙江林学院学报,2002,19(1):104-108
    [92]孙骏威,李素芳,付贤树,等.低钾对水稻不同叶位叶片光合特性及抗氧化系统的影响[J].核农学报,2006,21(4):404-408
    [93]Huang ZA, Jiang DA, YangY, et al. Effects of nitrogen deficiency ogas exchange, chlorophyll luorescence, and antioxidant enzymes in leaves of rice plants[J]. Photosynthetica,2004,42(3):357-364
    [94]Evan BreusegemF, VranovaE, et al. The role of active oxygen species in plant signal transduction[J]. Plant Sci,2001,161(3):405-414
    [95]马忠玉,吴永常.我国水稻品种遗传改进在增产中的贡献分析[J].中国水稻科学,2000,14(2):112-114
    [96]Dobermann A, Cassman K G. Namaril C P, Sheehy J E. Man—agement of phosphorus, potassium and sulfur in intensive, irrigated lowland rice[J]. Field Crops Res,1998,56:113-138
    [97]王为木,杨肖娥,李华,等.低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响[J].中国水稻科学,2003,17(1):52-5
    [98]Baligar V C, Fageria N K. Nutrient use efficiency in acid soils:nutrient management and plant use efficiency[M]. In:Moniz A C. Plant—Soil Interactions at Low pH.1997,75-95
    [99]明凤,郑先武.水稻对低磷反应的基因型差异及其生理适应机制的初步研究[J].应用与环境生物学报,2000,6(2):138-141
    [100]姜桂敏,陈玉娟,肖桂秀.适施钾肥能改善水稻品质提高产量[J].土壤肥料,2003,24
    [101]刘井兰,于建飞,吴进才,等.褐飞虱侵害后不同水稻品种根及地上部氮、磷、钾含量的变化[J].昆虫学报,2007,50(10):1034-1041
    [102]王强盛,甄若宏,丁艳锋,等.钾肥用量对优质粳稻钾素积累利用及稻米品质的影响[J].中国农业科学,2004,37(10):1444-1450
    [103]农业部科学技术司.中国南方农业中的钾[M].北京:农业出版社,1991
    [104]Claassen M E,Wilcox G E.Comparative reduction of calcium and magnesium composition of corn tissue by NH4-N and potassium fertilization[J]. Agron J,1974,66:521-522
    [105]Mengel K, Viro M, Hehl G. Effect of potassium on uptake and incorporation of ammonium nitrogen of rice plants[J]. Plant Soil,1976,44:547-558
    [106]Lips S H,郑文钦译.钾在改善作物氮素吸收、同化方面的作用.见:谢建昌,范钦桢,郑文钦.农业生产中钾氮的交互作用[M].南京:江苏科学技术出版社,1985:14-23
    [107]Loue A,周健民译.钾与氮的相互作用.见:谢建昌,范钦桢,郑文钦.农业生产中钾氮的交互作用[M].南京:江苏科学技术出版社,1985:32-47
    [108]祖艳群,林克惠.氮钾营养的交互作用及其对作物产量和品质的影响[J].土壤肥料,2000,(2):3-7
    [109]陈清,汤丽玲,张宏彦,等.水分和氮素供应对菠菜硝酸盐累积和钾素吸收的影响[J].应用与环境生物学报,2003,9(5):485-488
    [110]钱晓晴,封克,汤炎,等.作物NH4+和K+营养关系的土壤及矿物因素研究[J].土壤,1996,1:24-29
    [111]杨宗飞.氮磷钾及种植密度4要素对杂交籼稻产量的影响研究[J]。云南农业科技,2005,(2):13-14
    [112]李卫国,任永玲。氮、磷、钾、硅肥配施对水稻产量及其构成因素的影响[J].山西农业科学,2001,29(1):53-58
    [113]文菀玉,王凯荣,谢小立.红壤稻田不同施肥制度对土壤钾平衡和水稻产量的影响[J].中国生态农业学报,2007,15(3):41-44
    [114]鲁如坤,刘鸿翔,闻大中,等.全国典型地区农业生态系统养分循环和平衡研究.Ⅲ.全国和典型地区养分循环和平衡现状[J].土壤通报,1996,27(5):193-196
    [115]李秋梅,陈新平,张福锁,等.冬小麦-夏玉米轮作体系中磷钾平衡的研究[J].植物营养与肥料学报,2002,8:152-156
    [116]曹荣祥,王志明,童晓利,等.稻麦轮作制中秸秆钾与化肥钾利用的研究[J].土壤肥料,2000,(4):23-26
    [117]谭德水,金继运,黄绍文,等.不同种植制度下长期施钾与秸秆还田对作物产量和土壤钾素的影响[J].中国农业科学,2007,40(1):133-139
    [118]刑素丽,刘孟朝,韩保文.12年连续施用秸秆和钾肥对土壤钾素含量和分布的影响[J].土壤通报,2007,38(3):486-490
    [119]曹荣祥,王志明.稻麦轮作制中秸秆钾与化肥钾利用的研究[J].土壤肥料,2000, (4):23-26
    [120]倪吾钟,林荣新.秸秆还田条件下连作晚稻钾肥施用适期的初探[J].土壤通报,1995,26(7):37-39
    [121]李忠佩,唐永良,石华,等.不同施肥制度下红壤稻田的养分循环与平衡规律[J].中国农业科学,1998,,31(1):46-54
    [122]Singh M, Singh V P, Damodar Reddy D. Potassium balance and release kinetics under continuous rice-wheat cropping system in Vertisol[J].Field Crops Research,2002,77:81-91
    [123]Evans H J, Sorger G J. Role of mineral elements with emphasis on thunivalent cations[J]. Ann. Rev. Plant Physiol.,1966,17:47-76
    [1]卢景波.中国水稻产业:供需、流通与未来政策导向[J].中国稻米,2002,(6):17-20
    [2]孙雅君.全国优质粳稻优良食味品评情况报告[J].北方水稻,2007,(5):1-5
    [3]陈翠竹,徐艳,相华.氮肥对稻米品质影响研究综述[J].安徽农学通报,2008,14(18):51-54
    [4]Ghosh AK and PK Bhattacharya. Influence of nitrogen and growing season on the genetic variability of protein content in semidwarf high-yielding rice varieties[J]. Indian J. Agric. Sci.,1980,59(5):398-401
    [5]姜桂敏,陈玉娟.适施钾肥能改善水稻品质提高产量[J].土壤肥料,2003,(3):24
    [6]郑炳松,蒋德安,翁晓燕,等.钾营养对水稻剑叶光合作用关键酶活性的影响[J].浙江大学学报(农业与生命科学版),2001,27(5),489-491
    [7]贾彦博,杨肖娥,王为木.不同供钾水平下水稻钾素吸收利用与产量的基因型差异[J].水土保持学报,2006,20(2):64-67
    [8]叶定池,林华,赵佩欧,等.钾肥施用技术对水稻产量及稻米品质的影响[J].安徽农学通报,安徽农业科学,2007,13(17):91-92
    [9]王强盛,甄若宏,丁艳锋,等.钾肥用量对优质粳稻钾素积累利用及稻米品质的影响[J].中国农业科学,2004,37(10):1444-1450
    [10]中华人民共和国国家标准-优质稻谷(GB/T17891-1999)[M].中国标准出版社,1999,7-9
    [11]蔡武城,袁厚积.生物物质常用化学分析法[M].北京:科学出版社,1982,15-16
    [12]何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社.1985,72-75
    [13]中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南[M].科学出版社,1999
    [14]Brabender M. The new MICRO-VISCO-AMYLO-GRAPH:comparison of some results with those of the Viscograph[C]. Poster presentation at 1998 American Association of Cereal Chemists Annual Meeting, Minneapoils.1998
    [15]Tomio I, Masahiko T, Eiko A, et al. Distribution of amylase, nitrogen, and minerals in rice kernels with various characters[J]. J. Agric. Food Chem.2003,54,526-532
    [16]丁玉川,罗伟,徐国华.镁、钾营养及其交互作用对水稻产量、产量构成因素和养分吸收的影响[J].水土保持学报,2008,22(3):178-182
    [17]陈小琴,周健民,王火焰,等.氮肥形态及氮钾施用措施对水稻生长和养分吸收的影响[J].中国农学通报,2007,23(6):376-382
    [18]钟旭华.稻米垩白形成与籽粒灌浆动态的关系[J].江西农业学报,1995,7(1):55-60
    [19]程方民,钟连进,舒庆尧,等.早籼水稻垩白部位淀粉的蒸煮食味品质特征[J].作物学报,2002,28(3):363-368
    [20]蔺万煌,萧浪涛,彭克勤,等.稻米垩白的形成及其调控[J].湖南农业大学学报(自然科学版),2001,27(3):235-239
    [21]谭震波,况浩池.稻米垩白的研究综述[J].种子,1993,64(2):36-37
    [22]赵式英.稻米的垩白[J].国外农学(水稻),1982,(6):43-46
    [23]周拾禄.稻作科学技术[M].北京:农业出版社,1981:263-266
    [24]许仁良,戴其根,霍中洋,等.施氮量对水稻不同品种类型稻米品质的影响[J].扬州大学学报(农业与生命科学版),2005,26(1):66-68
    [25]赵居生,陈秀琴,李素敏,等.施肥对粳稻食味品质的影响[J].天津农业科学,2004,10(3):15-17
    [26]王艳,崔晶,王小波,等.不同肥料种类对水稻食味品质的影响[J].陕西农业科学,2009(3):8-10
    [27]佘纲哲,周景星,朱永义.稻米化学加工贮藏[M].北京:中国商业出版社,1994
    [28]姚人勇,沈明,刘英.稻米的品质评价及展望[J].粮食与加工工业,2009,(1):4-7
    [29]Bason M L, Blakcncy A B, Booth R I. Assessing rice quality using the RVA results of an international collaborative trial[J]. RVA World,1994,(6):2-5
    [30]Reddy K R, Suhramanian R, Zakiuddin S A. Viscoelastic properties of rice flour pastes and the rice relationship to amylase content and rice quality[J]. Cereal Chem,1994,71:548-552
    [31]黄发松,孙宗修,胡培松.食用稻米品质形成研究的现状与展望[J].中国水稻科学,1998,12(3):172-176
    [32]Lim S. Varietal variation of amylogram properties and its relationship with other eating quality characteristics in rice[J]. Korean J Breeding,1995,27(3):268-275
    [33]Kim K H. Varietal variation of cooking quality and interrelationship between cooking and pysicochemical properties of rice grain[J]. Korean J Crop Sci,1994,39(1):45-54
    [34]Kim K H. Varietal and environmental variation of gel consistency of rice flour[J]. Korean J Crop Sci. 1993,38(1):38-45
    [35]Cheong .J I. Effects of slow release fertilizer application on rice grain quality at different culture methods[J]. Korean J Crop Sci,1996,41(3):286-294
    [36]金正勋,秋太权,孙艳丽,等.黑龙江省稻米蒸煮食味品质特性的品种间变异研究[J].黑龙江农业科学,2000,(1):1-4
    [37]郑向华,何琴,叶新福.稻米营养品质及功能稻育种概述[J].现代农业科技,2005,94-95
    [38]刘艳阳,张洪程,戴其根,等.不同地力水平下施氮量对水稻淀粉RVA谱特征的影响[J].中 国水稻利学,2006,20(5):529-534
    [39]盛宏达,徐庆海.水稻抽穗期根外追肥对稻米品质的影响[J].中国农学通报,1997,(5):29-30
    [40]周瑞庆.肥料种类及营养元素对稻米产量与品质影响的初步研究[J].作物研究,1988,2(1):14-17
    [41]陶其骧,罗奇祥,刘光荣,等.施K对改善作物产品品质的效果[J].江西农业学报,1999,11(3):29-34
    [42]周瑞庆.施肥对稻米品质和产量影响的研究[J].湖南农学院学报,1989,15(3):1-5
    [43]唐湘如,余铁桥.磷钾肥对饲用稻产量和蛋白质含量的影响及其机理研究[J].中国农业科学,2002,35(4):372-377
    [44]陈能,罗玉坤,朱智伟,等.食用稻米米饭质地及适口性的研究[J].中国水稻科学,1999,13(3):152-156
    [45]Lyon B G, Champagne E T, Vinyard B T, Wiindham W R. Sensory and instrumental relationships of texture of cooked rice from selected cultivars and postharvest handling practices[J]. Cereal Chemistry, 2000,77(1):64-69
    [46]熊善柏,赵思明,李建林,等.米饭理化指标与感官品质的相关性研究[J].华中农业大学学报,2002,21(1):83-87
    [1]王强盛,甄若宏,丁艳锋,等.钾肥用量对优质粳稻钾素积累利用及稻米品质的影响[J].中国农业科学,2004,37(10):1444-1450
    [2]Dobermann A, Cassman K G, Mamaril C P, et al. Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice[J]. Field Crops Re-search,1998,56:113-118
    [3]农业部科学技术司主编.中国南方农业中的钾[M].北京:农业出版社,1991,131-150
    [4]刘建祥,杨肖娥,吴良欢,等.不同水稻基因型地上部钾素累积和转运规律的研究[J].中国水稻科学,2002,16(2):189-192
    [5]林咸永,何念祖,章永松,等.不同水稻品种对钾的吸收和利用的差异及其与产量和品质的关系[J].土壤通报,1995,26(7):49-52
    [6]王为木,杨肖娥,李华,等.钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响[J].中国水稻科学,2003,17(1):52-56
    [7]贾彦博,杨肖娥,王为木.不同供钾水平下水稻钾素吸收利用与产量的基因型差异[J].水土保持学报,2006,20(2):64-67
    [8]祖艳群,林克惠.氮钾营养的交互作用及其对作物产量和品质的影响[J].土壤肥料,2000,(2):3-7
    [9]李华,杨肖娥,罗安程.不同氮源与钾水平对杂交组合及常规稻生长和养分吸收的影响[J].植物营养与肥料学报,2001,7(3):278-284
    [10]李华,杨肖娥,罗安程.不同氮钾条件下水稻基因型氮、钾积累利用差异[J].中国水稻科学,2002,16(1):86-88
    [11]王正银,姚建祥.不同施氮量条件下不品种水稻对紫色土钾吸收利用的影响[J].植物营养与肥料学报,1998,4(2):183-187
    [12]罗安程,杨肖娥.氮钾供应水平与水稻生育后期对不同形态氮吸收的关系[J].中国农业科学,1998,31(3):1-4
    [13]胡泓,王光火.施钾条件下杂交水稻氮磷养分吸收利用特点[J].土壤通报,2003,34(3):202-204
    [14]戴平安,李明德,郑圣先.钾、氮平衡及其相互作用对水稻产量和养分吸收的影响[J].土壤通报,1992,23(4):162-164
    [15]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000,263-271
    [16]凌启鸿.作物群体质量[M].上海:上海科技出版社,2000,154-197
    [17]Yang X E, Liu J X, Wang W M, et al. Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice[J]. Nutrient cycling in agroecosystems,2003, 67(3):273-282
    [18]刘建祥,杨肖娥,杨玉爱,等.低钾胁迫下水稻钾高效基因型若干生长特性和营养特性的研究[J].植物营养与肥料学报,2003,9(2):190-195
    [19]Witt C, Dobermann A, Abdulrachman S, et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia[J]. Field Crop Research,1999,63(2):113-138
    [20]Siddiqi M Y, Glass A D M. Utilization index:a modified approach to the estimation and comparison of nutrient utilization efficiency in plants[J]. Journal of plant nutrition,1981,4:289-302
    [21]项虹艳,丁洪,郑金贵,等.耐低钾水稻品种的筛选[J].江西农业大学学报,2004,26(3):338-344
    [22]魏海燕,张洪程,杭杰,等.不同氮素利用效率基因型水稻氮素积累与转移的特性[J].作物学报,2008,34(1):119-125
    [23]Zheng Y M, Ding Y F, Wang Q S, Li G H, Wu H, Yuan Q, Wang H Z, Wang S-H. Effect of nitrogen applied before transplanting on NUE in rice[J]. Agric Sci China,2007,6(7):842-848
    [24]丁艳锋,刘胜环,王绍华,等.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报,2004,30(8):762-767
    [25]陈小琴,周健民,王火焰,等.氮肥形态及氮钾施用措施对水稻生长和养分吸收的影响[J].中国农学通报,2007,23(6):376-382
    [26]Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions[J]. Field Crops Res,2002,74:93-101
    [27]程建峰,戴廷波,曹卫星,等.不同氮收获指数水稻基因型的氮代谢特征[J].作物学报,2007,33(3):497-502
    [28]Lin X Q, Zhou W J, Zhu D F, Chen H Z, Zhang Y P. Nitrogen accumulation, remobilization and partitioning in rice under an improved irrigation practice[J]. Field Crops Res,2006,96:448-454
    [29]Ohnishi M, Horie T, Homma K, Supapoj N, Takano H, Yamamoto S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand[J]. Field Crops Res, 1999,64:109-120
    [30]Peng S B, Buresh R J, Huang J L, Yang J C, Zhou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field Crops Res,2006,96:37-47
    [1]王先俱,邵国军,商文奇,等.水稻灌浆时期叶绿素与光合效率的研究[J].吉林农业科学,2008,33(3):14-15,26
    [2]蒋德安,陆庆,薛建明,等.钾营养对稻叶光合功能及光能吸收的调节[J].浙江农业大学学报,1992,18(4):25-29
    [3]饶立华,薛建明,蒋德安,等.钾营养对杂交稻光合作用动态及产量形成的效应[J].中国水稻科学,1990,4(3):106-112
    [4]郑炳松,蒋德安,翁晓燕,等.钾营养对水稻剑叶光合作用关键酶活性的影响[J].浙江大学学报(农业与生命科学版),2001,27(5):489-494
    [5]刘建洋,杨肖娥,吴良欢,等.低钾胁迫对水稻叶片光合功能的影响及其基因型差异[J].作物学报,2001,27(6):1000-1006
    [6]彭海欢,翁晓燕,徐红霞,等.缺钾胁迫对水稻光合特性及光合防御机制的影响[J].中国水稻科学,2006,20(6):621-625
    [7]李峤,孙骏威,李海霞.缺钾对水稻叶片叶绿素荧光参数的影响[J].中国计量学院学报,2006,17(1):79-83
    [8]徐增富,方志伟,张荣铣,等.小麦二磷酸核酮糖梭化酶和叶片导度与光合速率的关系[J].南京农业大学学报,1990,13(4增):5-11
    [9]Kochba J, Lave E S, Spiegel-Roy P. Difference in peroxidase activity and isozymes in embryogenic and non-embryogenic'Shamouti'orange ovular callus lines[J]. Plant Cell Physiol,1977,18:463-467
    [10]王建林,徐正进,高峰.杂交稻与常规稻叶绿素变化规律的研究[J].辽宁农业科学,2001,(5):18-21
    [11]牟会荣,姜东,戴廷波,等.遮荫对小麦旗叶光合及叶绿素荧光特性的影响[J].中国农业科学,2008,41(2):599-606
    [12]李峤,孙骏威,李海霞.缺钾对水稻叶片叶绿素荧光参数的影响[J].中国计量学院学报,2006,17(1):79-83
    [13]Govidjee. A role for a light—harvesting antenna complex of photosystem Ⅱ in photo protection[J]. The Plant Cell,2002,14:1663-1667
    [14]GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochem Biophys Aeta, 1989,900:87-92
    [15]刘建洋,杨肖娥,吴良欢,等.低钾胁迫对水稻叶片光合功能的影响及其基因型差异[J].作物学报,2001,27(6):1000-1006
    [16]朱维琴,吴良欢,陶勤南.不同氮营养对干旱逆境下水稻生长及抗氧化性能的影响研究[J].植物营养与肥料学报,2006,12(4):506-51
    [17]孙骏威,李素芳,付贤树,等.低钾对水稻不同叶位叶片光合特性及抗氧化系统的影响[J].核农学报2006,21(4):404-408
    [18]阳成伟,欧志英,林桂珠,等.超高产杂交稻剑叶衰老过程中的抗氧化性的变化[J].热带亚热带植物学报2003,11(2):148-152
    [19]陆定志,潘裕才,马跃芳,等.杂交水稻抽穗结实期间叶片衰老的生理生化研究[J].中国农业科学,1988,21(3):21-26
    [20]王玲,黄世文,王全永,等.植物生长素对水稻叶片衰老及抗氧化酶活性的影响[J].浙江农业科学,2008, (3):310-313
    [21]Bradford K J. Tsiao T C. Physiological response to moderate water stress. In:Physiological Plant Ecology Ⅱ. Encyclopedia of Plant Physiology. New Series, Vol.12B, Heidelberg, Berling: Springer-Verlag,1982,263-324
    [22]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33:317-345
    [23]许大全.气孔运动与光合作用[J].植物生理学通讯,1984,(6):6-12
    [24]向明惠,余叔文.以保卫细胞原生质体为实验系统的气孔生理研究进展[J].植物生理学通讯,1991,27(1):1-6
    [25]J Maxwell K, Johnson G N. Chlorophyll fluorescence:practical guide. J Exp Bot,2000,51:659-668
    [26]黄建中,饶立华,陆定志.钾营养对杂交稻叶片发育期间光合作用的影响[J].植物生理学通讯,1991,27(2):91-94
    [27]Gupta A S, W ebb R P, Holaday A S, et al. Overexpression of superoxide dismutase protects plants from oxidative stress(Induction of ascOrbate peroxidase in superoxide[J].Plant Physiology,1993,103: 1067-1073
    [1]游晴如,马宏敏,杨东,涂诗航,张水金,董瑞霞,黄庭旭.水稻倒伏性研究进展[J].安徽农学通报,2007,13(6):84-86
    [2]松江勇次.移栽和倒伏时期对稻米食味和理化特性的影响[J].日本作物学会纪事,1991,60(4):490-496
    [3]马均,马文波,田彦华,杨建昌,周开达,朱庆森.重穗型水稻植株抗倒伏能力的研究[J].作物学报,2004,30(2):143-148
    [4]肖应辉,罗丽华,闫晓燕,高艳红,王春明,江玲,矢野昌裕,翟虎渠,万建民.水稻品种倒伏指数QTI,分析[J].作物学报,2005,31(3):348-354
    [5]马国辉,邓启云,万宜珍,王学华.超级杂交稻抗倒生理与形态机能研究Ⅰ.培矮64S/E32与汕优63植株钾、硅和纤维素含量差异[J].湖南农业大学学报,2000,26(5):329-331
    [6]万宜珍,马国辉.超级杂交稻抗倒生理与形态机能研究Ⅱ.培矮64S/E32与汕优63茎秆抗倒力学差异[J].湖南农业大学,2003,29(2):92-94
    [7]石扬娟,黄艳玲,申广勒,王维刚,张志转,石英尧,陈多璞.氮肥用量和栽插密度对水稻茎秆力学特性的影响研究[J].中国农学通报,2008,24(7):101-106
    [8]段传人,王伯初,王凭青.水稻茎秆的结构及其性能的相关性[J].重庆大学学报,2003,26(11):38-40
    [9]王秀凤,党立华,都华,郭玉华,苗雨佳.水稻茎秆抗倒性构成因素的研究[J].北方水稻,2008,38(2):16-21
    [10]梁康迳,王雪仁,章清杞,陈志雄.基因型×环境互作效应对水稻茎秆抗倒性杂种优势的影响[J].福建农业大学学报,2000,29(1):12-17
    [11]李荣田,姜廷波,秋太权,崔成焕,龚振平.水稻倒伏对产量影响及倒伏和株高关系的研究[J].黑龙江农业科学,1996,(1):13-17
    [12]梁康迳,林文雄,王雪仁,郭玉春,梁义元,陈志雄.水稻茎秆抗倒性的遗传及基因型×环境互作效应研究[J].福建农业学报,2000,15(3):9-15
    [13]郭玉华,朱四光,张龙步,都华.不同栽培条件对水稻茎秆材料学特性的影响[J].沈阳农业大学学报,2003,34(1):4-7
    [14]杨世民,谢力,郑顺林,李静,袁继超.氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J].作物学报,2009,35(1):93-103
    [15]申广勒,石英尧,黄艳玲,石扬娟,王维刚,张从合,陈多璞.水稻抗倒伏特性及其与茎秆性状的相关性研究[J].中国农学通报,2007,23(12):58-62
    [16]张喜娟,姜树坤,郑旭,徐正进,陈温福,马殿荣,徐海.水稻基部伸长节间性状与茎秆机械强度的相关分析和QTL定位[J].植物生理学通讯,2009,45(3):223-228
    [17]窦永秀.水稻结实期抗倒性评价及倒伏对产量与品质影响的研究[D].扬州大学硕士论文,2008
    [18]张忠旭,陈温福,杨振玉,华泽田,高日玲,高勇,赵迎春.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].沈阳农业大学学报,1999,30(2):81-85
    [19]闫川,丁艳锋,王强盛,李刚华,黄丕生,王绍华.行株距配置对水稻茎秆形态生理与群体生态的影响[J].中国水稻科学,2007,21(5):530-536
    [20]Kashiwagi T, Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice[J]. Plant Physiology,2004,134(22):676-683
    [21]胡江,藤本宽,郭龙彪,曾大力,张光恒,董国军,王小虎,朱立煌,钱前.水稻抗倒力及相关抗倒伏性状的QTL分析[J].中国水稻科学,2008,22(2):211-214
    [22]Isao Sakata, MakotoSakai, Tokio Imbe-The correlationofthe resistance to root lodgingwith growth angle, diameter and pulling strength of grown roots in rice seedlings[J]. Japanese Journal of Crop Science,2003,72 (1):56-61
    [23]Kazuo Terashima, Kiwamu Sakai, Nobuyuki Kabaki-Relationship between biomass of an individual hill androot lodgingtolerance in direct seeded rice[J]. Japanese Journal of Crop Science,2002,71 (2): 161-168
    [24]彭世彰,张正良,庞桂斌.控制灌溉条件下寒区水稻茎秆抗倒伏力学评价及成因分析[J].农业工程学报,2009,25(1):6-10
    [25]袁志华,冯宝萍,赵安庆,梁爱琴.作物茎秆抗倒伏的力学分析及综合评价探讨[J].农业工程学报,2002,18(6):30-31
    [26]郭玉明,袁红梅,阴妍,梁莉,李红波.茎秆作物抗倒伏生物力学评价研究及关联分析[J].农业工程学报,2007,23(7):14-18
    [27]张宪政.作物生理研究法[M].北京:农业出版社,1992
    [28]张书标,杨仁崔.杂交水稻的若干生物学特性[J].作物学报,2003,29(6):919-924
    [29]李红娇,张喜娟,李伟娟,徐正进.超高产粳稻品种抗倒伏性的初步研究[J].北方水稻,2008,38(2):22-27
    [30]罗茂春,田翠婷,李晓娟,林金星.水稻茎秆形态结构特征和化学成分与抗倒伏关系综述[J].西北植物学报,2007,27(11):2346-2353
    [31]孙旭初.水稻茎秆抗倒伏性的研究[J].中国农业科学,1987,20(4):32-37
    [32]关玉萍,沈枫.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].吉林农业科学,2004,29(4):6-11
    [33]Setter T L, Laureles E V, Mazaredo A M. Lodging reduces yield of rice by self-shading and reduction in canopy photosynthesis[J]. Field Crops Research,1997,49(2):95-106
    [34]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].沈阳:辽宁科技出版社,2003,220-223
    [35]杨守仁.水稻理想株型育种新动向[J].中国水稻科学,1988,2(3):1-5
    [36]杨惠杰,杨仁崔,李义珍,姜照伟,郑景生.水稻茎秆性状与抗倒性的关系[J].福建农业学报,2000,15(2):1-7
    [37]黄艳玲,石英尧,申广勒,石扬娟,王维刚,陈多璞.水稻茎秆性状与抗倒伏及产量因子的关系[J].中国农学通报,2008,24(4):203-206
    [38]Dunn G J, Brigg K G. Variation in culm anatomy among barley cultivars differing in lodging resistance[J].Canadian Journal of Botany,1989,67:1938-1843
    [39]Duan C R, Wang B C, Wang P Q, Wang D H, Cai S X. Relationship between the minute structure and the lodging resistance of rice stems[J].Colloids and Surfaces B:Biointerfaces,2004,35:155-158
    [40]Kashiwagi T, Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice[J]. Plant Physiology,2004,134:676-683
    [41]周丽华.杂交稻茎秆生理特性对其抗倒伏能力的影响[J].河南农业科学,2006,(10):20-23
    [42]吴娜,张婷婷,周惠萍,范静华.品种多样性种植对水稻茎秆化学成分的影响[J].云南农业大学学报,2008,23(2):184-188
    [43]郭玉华,朱四光,张龙步.不同栽培条件对水稻茎秆生化成分的影响[J].沈阳农业大学学报,2003,34(2):89-91
    [44]刘立军,袁莉民,王志琴,徐国伟,陈云.旱种水稻倒伏生理原因分析与对策的初步研究[J].中国水稻科学,2002,16(3):225-230
    [45]Baucher M, Monties B, Van M M.Boerjan W. Biosynthesis and genetic engineer in lignin[J].Critical Reviews in Plant Science,1998,17:125-197
    [46]王健,朱锦懋,林青青,李晓娟,滕年军,李振声,李滨,张爱民,林金星.小麦茎秆结构和细胞壁化学成分对抗压强度的影响[J].科学通报,2006,51(6):679-685
    [47]Ookawa T, Ishihara K V. Differences in the physical characteristics of the culm in relation to lodging resistance in paddy rice[J]. Japanese Journal of Crop Science,1992,61 (3):419-425
    [1]王明香,聂俊华,张华芳.钾素营养研究进展[J].云南农业大学学报,2000,15(4):356-358
    [2]张相林,姜福臣,李淑芹,许景刚,祝崇学,何万元.水稻吸钾规律与钾素平衡的研究[J].东北农业大学学报,1994,25(4):319-327
    [3]国家质量技术监督局发布.主要粮食质量标准[M].北京:中国标准出版社,1999,1-12
    [4]Blevins Dale G, Role of potassium in protein metabolism in plants, potassium in agriculture, American Society of Agronomy,1985:413-424
    [5]凌启鸿主编.作物群体质量[M].上海科学技术出版社,2000,154-197
    [6]刘富春.水稻磷钾不同配比用量施肥效应分析[J].耕作与栽培,2002(2):43-44
    [7]毛知耘主编.肥料学[M].北京:中国农业出版社,1997,157-167
    [8]李泽远,葛滢,葛旦之.水稻钾肥施用技术的探讨Ⅱ.淹水稻田土壤钾动力学性质及其对水稻钾素吸收的影响[J].湖南农业科学,1999,(1):42-43
    [9]马宏卫,肖泽海,毛久庚,秦文远.水稻旱育稀植条件下钾肥合理施用技术[J].土壤肥料,1997(6):14-16
    [10]蒋毅敏,刘怀富,李义刚,石壬生.水稻施钾技术应用研究[J].广西农学报,2002,(2):1-4
    [11]刘国栋,刘更另.籼稻不同品种(系)钾素积累动态变化的微区试验[J].作物学报,2000,26(2):243-249
    [1]王强盛,甄若宏,丁艳锋,等.钾肥用量对优质粳稻钾素积累利用及稻米品质的影响[J].中国农业科学,2004,37(10):1444-1450
    [2]施卫明,王校常,严蔚东,等.外源钾通道基因在水稻中的表达及其钾吸收特征研究[J].作物学报,2002,28(3):375-378
    [3]Hu Hong, Wang Guanghuo. Nutrient uptake and use efficiency of irrigated rice in response to potassium application[J]. Pedosphere,2004,14(1):125-130
    [4]Dobermann A,.Sta Cruz P C, Cassman K G. Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems. I. Potassium uptake and K balance[J]. Nutrient cycling in agroecosystems,1996,46:1-10
    [5]Yang X E, Liu W M, Wang W M, Li H, Luo A C, Ye Z Q, Yang Y. Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice[J]. Nutrient cycling in agroecosystems,2003,67:273-282
    [6]王永锐.水稻营养与合理施肥[M].北京:科学出版社,1989:78-124
    [7]周拾禄.稻作科学技术[M].北京:农业出版社,1981,252-258
    [8]Munson R D,范钦桢、郑文钦译.农业中的钾[M].北京:科学出版社,1995,559-563
    [9]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000,264-271
    [10]郭彬,林义成,丁能飞,傅庆林,刘琛.水稻氮素及钾素叶位分布特点及诊断叶位研究[J].浙江农业学报,2009,21(3):299-302
    [11]朱维和,温应和,谢茂和.水稻植株体内钾素的分布[J].土壤通报,1982,(2):14-17
    [12]李泽远,罗来和,葛旦之.水稻钾肥施用技术的研究:Ⅰ.水稻主要生育期钾素营养水平及其对产量的影响[J].湖南农业科学,1998,(6):25-27
    [13]李金培,李华兴.土壤钾素不足与水稻营养失调问题[J].广东农业科学,1981,(5):18-20
    [14]詹长庚,陈四敏,姜丽娜.水稻施钾诊断指标的探讨[J].浙江农业科学,1984,(6):271-274
    [1]凌启鸿,张洪程,戴其根,丁艳锋,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467
    [2]刘建祥,杨肖娥,吴良欢,杨玉爱.水稻籽粒钾和蛋白质含量的基因型差异[J].中国水稻科学,2002,16(1):83-85
    [3]Smart C J, Garvin D F, Prince J P et al. The molecular basis of potassium nutrition in plants[J]. Plant soil,1996,187:81-89
    [4]宋桂云,徐正进,陈温福,等.田间低钾对不同穗型水稻钾的吸收和利用效率的影响[J].华北农学报,2006,21(6):89-94
    [5]胡泓,王光火,张奇春.间低钾胁迫条件下水稻对钾的吸收和利用效率[J].中国水稻科学,2004,18(6):527-532
    [6]符建荣,詹长庚,姜丽娜,余同海.两个籼稻品种的钾素生产效率与若干生理特性的比较研究[J].中国水稻科学,1994,8(2):85-90
    [7]刘国栋,刘更另.籼稻不同基因型钾素吸收利用效率的调控[J].植物营养与肥料学报,1995,1(2):47-53
    [8]姜存仓,王运华,鲁剑巍,徐芳森,高祥照.植物钾效率基因型差异机理的研究进展[J].华中农业大学学报,2004,23(4):483-487
    [9]戴平安,李明德,郑圣先.钾、氮平衡及其相互作用对水稻产量和养分吸收的影响[J].土壤通报,1992,23(4):162-164
    [10]李华,杨肖娥,罗安程.不同氮钾条件下水稻基因型氮、钾积累利用差异[J].中国水稻科学,2002,16(1):86-88
    [11]李华,杨肖娥,罗安程.不同氮源与钾水平对杂交组合及常规稻生长和养分吸收的影响[J].植物营养与肥料学报,2001,7(3):278-284
    [12]李峤,孙骏威,李海霞.缺钾对水稻叶片叶绿素荧光参数的影响[J].中国计量学院学报,2006,17(1):79-83
    [13]彭海欢,翁晓燕,徐红霞,蒋琴素,孙骏威.缺钾胁迫对水稻光合特性及光合防御机制的影响[J].中国水稻科学,2006,20(6):621-625
    [14]孙骏威,翁晓燕,李峤,邵建林.缺钾对水稻不同品种光合和能量耗散的影响[J].植物营养与肥料学报,2007,13(4):577-584
    [15]杨世民,谢力,郑顺林,李静,袁继超.氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J].作物学报,2009,35(1):93-103
    [16]张喜娟,姜树坤,郑旭,徐正进,陈温福,马殿荣,徐海.水稻基部伸长节间性状与茎秆机 械强度的相关分析和QTL定位[J].植物生理学通讯,2009,45(3):223-228
    [17]刘玲玲,彭显龙,刘元英,王诺.不同氮肥管理条件下钾对寒地水稻抗病性及产量的影响[J].中国农业科学,2008,41(8):2258-2262
    [18]刘晓燕,何萍,金继运.钾在植物抗病性中的作用及机理的研究进展[J].植物营养与肥料学报,2006,12(3):445-450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700