用户名: 密码: 验证码:
大豆根瘤固氮特性与影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是我国重要的粮食和油料作物,根瘤菌通过与大豆共生结瘤固氮,为大豆生长发育提供氮素营养,研究大豆根瘤固氮特性,及肥力和水分条件对根瘤固氮的影响,为科学合理施肥,提高产量,改善品质,降低生产成本,减轻环境污染具有重要意义。
     本试验于2009—2011年进行,应用15N示踪技术,采用框栽和砂培相结合的方法。框栽试验,选用不同品种大豆,利用DGGE和AFLP方法分析了与供试品种共生的根瘤菌差异,同时利用15N示踪技术研究了不同大豆品种根瘤固氮的差异;以绥农14为试验材料,利用15N示踪技术研究了肥力因素和水分条件对大豆根瘤固氮和产量的影响。砂培试验,选用绥农14为试验材料,利用15N示踪技术研究了磷素营养和钾素营养对大豆根瘤固氮和产量的影响。结果表明:
     与供试大豆品种共生的根瘤菌主要是未被培养的根瘤菌。利用DGGE方法研究了龙选1号、丰收10、绥农14、小金黄和秣食豆R4期根瘤菌的差异,其差异性体现在条带数量和条带的亮度上;对条带进行测序,并与NCBI数据库相似序列进行比对,与来自环境样品的未被培养的细菌DNA序列相似度达到94%-100%。
     主栽的大豆品种,黑河41、绥农14、黑农40和秣食豆AFLP结果表明,5对引物共扩增出578个位点,平均多态性位点百分率为68.86%;绥农14R2期和绥农14R6期的根瘤菌划分为一类,其余的划分为一类;不同生育时期干旱处理条件下,根瘤菌没有明显差异。
     生育期长的大豆品种在根瘤固氮方面具有明显优势,供试品种根瘤固氮量和固氮率均表现为:晚熟品种>中熟品种>早熟品种,而且根瘤固氮量达到显著差异水平。
     氮肥水平对大豆根瘤固氮的影响因土壤肥力而异。在速效氮含量为18.17mg-kg-1'的土壤条件下,大豆根瘤固氮量和根瘤固氮率均随氮肥水平的升高而呈单峰曲线变化,硫酸铵施用量为225kg/hm2(纯氮:47.73kg/hm2)时最有利于大豆根瘤固氮作用;在速效氮含量为50.38mg·kg-1的土壤条件下,硫酸铵施用量为75kg/hm2(纯氮:15.91kg/hm2)时最有利于大豆根瘤固氮作用,提高氮肥水平显著抑制了根瘤固氮作用。
     磷素营养对大豆根瘤固氮有明显影响。砂培条件下,大豆植株根瘤固氮量和固氮率,随着磷素水平的提高均呈单峰曲线变化,当磷素浓度达到11mg/L时,再提高磷水平对根瘤固氮率促进作用不显著,当磷素浓度达到21mg/L时,再提高磷素浓度对根瘤固氮量无明显的促进作用;V3-R1、R1-R5期间断磷严重抑制大豆植株根瘤固氮量和固氮率,而R5-R7期间断磷无明显影响,表明V3-R5期间是大豆氮代谢对磷素营养的敏感期,R5以后对磷素营养不敏感;在土壤速效磷含量为26.31mg-kg-1的框栽条件下,施用磷肥有利于提高大豆根瘤固氮量,但是当重过磷酸钙施用量达到150kg/hm2(P205:69kg/hm2)时,再提高磷肥用量对大豆根瘤固氮量促进作用不显著;大豆根瘤固氮率随着磷肥施用量的增加整体呈上升趋势,当重过磷酸钙施用量达到450kg/hm2(P205:207kg/hm2)时,明显促进了全株和籽粒的根瘤固氮率。
     钾素营养对大豆根瘤固氮也有一定影响。砂培条件下,大豆植株根瘤固氮量和固氮率,随着钾素营养水平的提高均呈单峰曲线变化,当钾素水平达到28mg/L时,能够满足根瘤固氮作用对钾素的需求;不同生育时期断钾对大豆植株根瘤固氮量和固氮率没有显著影响;在土壤速效钾含量为174.75mg·kg-1的框栽条件下,施钾肥促进了大豆植株根瘤固氮量和固氮率,当硫酸钾施用量达到90kg/hm2(K2O:45kg/hm2)时,能够满足根瘤固氮作用对钾素的需求。
     供试大豆品种合农60、嫩丰18和绥农14的根瘤固氮量和固氮率均随生育期间水分的增加整体呈上升趋势,根瘤固氮率对水分的敏感性较根瘤固氮量低;大豆生育期间阶段性干旱对根瘤固氮的影响没有明显的规律性。
     肥水因素会影响大豆产量。(1)两种供试土壤条件下,大豆产量均随施氮量的增加呈单峰曲线变化,表明氮肥水平过高和过低都会造成产量的下降。(2)砂培条件下,大豆产量随着磷素水平的提高而呈单峰曲线变化,31mg/L磷素浓度达到最大值,当磷素浓度达到21mg/L时,再提高磷素浓度无明显增产作用;V3-R1、R1-R5期间断磷显著降低了大豆产量,R5-R7期间断磷无显著影响;在十壤速效磷含量为26.31mg·kg-1的框栽条件下,施用磷肥无明显增产作用。(3)砂培条件下,大豆产量随着钾素水平的升高而呈单峰曲线变化,64mg/L钾素浓度达到最大值,当钾素浓度达到52mg/L时,再提高钾素浓度增产作用不显著;V3-R1和R1-R5断钾显著降低了大豆产量,R5-R7断钾未达到显著差异水平;在土壤速效钾含量为174.75mg·kg-1的框栽条件下,大豆产量随钾水平的升高呈上升趋势。(4)供试大豆品种合农60、嫩丰18和绥农14的产量均随着生育期间水分的增加而提高,表明提高降水量可以达到增产的目的;大豆R4-R7对干旱最敏感,此时期干旱导致产量明显下降。
Soybean is grain and oil crop in China. Nitrogen nutrition was provided for soybean growth by soybean-rhizobium symbiosis, studying on characteristics of nodule nitrogen fixation and influencing factors-fertility and moisture conditions are profound implications for appropriate application of fertilizer, increasing yield, improving quality, reduction in production costs and alleviation of environmental pollution.
     This work was conducted from2009to2011, using15N tracer technique with frame tests (pot without bottom) and sand culture. In frame experiment, DGGE and AFLP methods were used to study differences of rhizobium and nodule nitrogen fixation among different soybean varieties; effect of fertility factors and moisture conditions on nodule nitrogen fixation and yield were studied with SN14by15N tracer technique. In sand culture, effect of phosphorus nutrient and potassium nutrient on nodule nitrogen fixation and yield were researched with SN14by15N tracer technique. The results showed that:
     Symbiotic rhizobium with tested soybean varieties were mainly uncultured bacterium. DGGE method was used to research differences of R4rhizobium among LX1, FS10, SN14, XJH and MSD, the number and brightness of bands were different; sequence analysis of the bands with NCBI stated that the similarity was94%-100%with uncultured bacterium from environmental samples.
     AFLP results of HH41, SN14, HN40and MSD showed that there were578bands with5primer combinations, the percentage of polymorphic loci was68.86%; Rhizobium could be divided into two clusters, rhizobium of SN14R2and SN14R6were one kind, others were another kind; there was no difference of rhizobium under the condition of drought at different growth stages.
     Soybean varieties with the long growth period had obvious advantages on nodule nitrogen fixation, the accumulation and ratio of nodule nitrogen fixation of tested varieties both showed that late varieties>medium varieties>early varieties, and the accumulation of nodule nitrogen fixation had significant difference.
     The effect of nitrogen levels on nodule nitrogen fixation of soybean was different because of soil fertility. The accumulation and ratio of nodule nitrogen fixation of soybean presented a single peak curve with nitrogen levels when the available nitrogen content of soil was18.17mg·kg-1, nodule nitrogen fixation was the highest when the amount of (NH4)2SO4was225kg/hm2(pure N:47.73kg/hm2); nodule nitrogen fixation was the highest when the amount of (NH4)2SO4was75kg/hm2(pure N:15.91kg/hm2) under the condition of available nitrogen content of soil was 50.38mg·kg-1, nodule nitrogen fixation was significantly inhibited with the nitrogen levels increasing.
     There was significant effect of phosphorus nutrient on nodule nitrogen fixation of soybean. With sand culture, the accumulation and ratio of nodule nitrogen fixation of soybean presented a single peak curve with phosphorus levels, when phosphorus concentration was11mg/L, increasing phosphorus concentration again had no obvious promotion of ratio of nodule nitrogen fixation, when phosphorus concentration was21mg/L, increasing phosphorus concentration again had no obvious promotion of accumulation of nodule nitrogen fixation; accumulation and ratio of nodule nitrogen fixation decreased significantly when interruption of phosphorus supply during V3-R1and R1-R5period, while interruption of phosphorus supply during R5-R7period had no significant effect on those, which means that nitrogen metabolism of soybean was sensitive to phosphorus requirement during V3-R5period and not sensitive after R5; with frame, phosphate application could improve the accumulation of nodule nitrogen fixation of soybean when available phosphorus content of soil was26.31mg·kg-1, while the promotion effect on accumulation of nodule nitrogen fixation of soybean was not significant with phosphate fertilizer increasing when the amount of triple superphosphate was150kg/hm2(P2O5:69kg/hm2); the ratio of nodule nitrogen fixation of soybean showed an increasing tendency with phosphate fertilizer increasing, the ratio of nodule nitrogen fixation of whole plant and seeds was significantly increased when the amount of triple superphosphate was450kg/hm2(P2O5:207kg/hm2).
     There was effect of potassium nutrient on nodule nitrogen fixation of soybean. With sand culture, the accumulation and ratio of nodule nitrogen fixation of soybean presented a single peak curve with potassium levels, nodule nitrogen fixation could be satisfied when potassium levels was21mg/L; there was no significant effect of interruption of potassium supply during different periods on the accumulation and ratio of nodule nitrogen fixation; potassium fertilizer could improve the accumulation and ratio of nodule nitrogen fixation of soybean when available potassium content of soil was174.75mg·kg-1, potassium could satisfy the need of nodule nitrogen fixation when the amount of K2SO4was90kg/hm2(K2O:45kg/hm2).
     The accumulation and ratio of nodule nitrogen fixation showed an increasing tendency with moisture increasing in HN60, NF18and SN14, the sensitivity of the ratio of nodule nitrogen fixation to moisture was lower than the accumulation of nodule nitrogen fixation; there was no obvious rules of nodule nitrogen fixation under the condition of phased drought during growth period.
     Fertility and moisture factors could influence soybean yield.(1) Soybean yield presented a single peak curve with the increase of nitrogen rate under the condition of two soil treatments, which showed that the yield decreased either too high or too low.(2) With sand culture, soybean yield presented a single peak curve with phosphorus levels, the yield reached its maximum when phosphorus concentration was31mg/L, while increasing phosphorus concentration again had no obvious promotion of yield when phosphorus concentration was21mg/L; soybean yield decreased significantly when interruption of phosphorus supply during V3-R1and R1-R5period, while interruption of phosphorus supply during R5-R7period had no significant effect on yield; soybean yield was not significantly increased with phosphate application when available phosphorus content of soil was26.31mg·kg-1.(3) Soybean yield presented a single peak curve with potassium levels increasing with sand culture, the yield reached its maximum when potassium concentration was64mg/L, while increasing potassium concentration again had no obvious promotion of yield when potassium concentration was52mg/L; soybean yield decreased significantly when interruption of potassium supply during V3-R1and R1-R5period, while interruption of potassium supply during R5-R7period had no significant effect on yield; soybean yield showed an increasing tendency with potassium levels increasing when available potassium content of soil was174.75mg·kg-1.(4) The yield of HN60, NF18and SN14was increased with moisture improving, which showed that improving precipitation was beneficial to yield; podding-seed filling period of soybean was the most sensitive to drought, and the yield was significantly decreased.
引文
[1]Zahran H H. Rhizobium-legume symbiosis and nitrogen fixation under sever condition an din an arid climate[J]. Microbiol. Mol. Biol. Rev.,1999,63:968-989.
    [2]Tate R L. CharterⅫ:Symbiotic nitrogen fixation[J]. Soil Microbiology,1995,307-333.
    [3]Dalai R C, Strong W M, Weston E J, et al. Evaluation of forage and grain legumes, no-till and fertilisers to restore fertility degraded soils[C]. Mexico:In Transactions of the 15th World Congress of Soil Science,5a:62-74. The International Soc. Soil Sci. and Mexican Soc. Soil Sci.,1994.
    [4]沈昌蒲,季尚宁,龚振平。大豆肥田机制的研究Ⅵ.大豆肥田机制研究的总结和讨论[J].大豆科学,2002,21(1):43-46.
    [5]朱奇,陈彦.生物固氮在我国农业生产中的研究现状及发展对策[J].微生物学杂志,2003,23(5):40-44.
    [6]王镜岩.生物化学[M].北京:高等教育出版社,2002:377-382.
    [7]Young J P W. Phylogenetic classification of nitrogen-fixing organisms. In:Stacey G, Burris RH, Evans H J. ed. Biological Nitrogen Fixation. New York:Chapman and Hall,1992, 43-86.
    [8]Peoples M B, Craswell E T. Biological nitrogen fixation:investments, expections and actual contributions to agriculture[J]. Plant soil,1992,141:13-39.
    [9]Kennedy I R, Islam N. The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms:a review[J]. Aust J Exp Agric,2001,41:447-457.
    [10]Lovell C R, Piceno J M, Quattro J M. Molecular analysis of diazotroph diversity in the rhizosphere of the smooth cordgrass, Spartina alterniflora[J]. Appl Environ Microbiol,2000, 66:3814-3822.
    [11]Poly F L, Ranjard S, Nazaret F, et al. Comparison of NifH gene pool in soil and soil microenvironments with contrasting properties[J]. Appl Environ Microbiol,2001,67: 2255-2262.
    [12]Ribbe M, Gadkari D, Meyer O. N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and amanganese-superoxide oxidoreductanse that couple N2 reductionto the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase[J]. Biological Chemistry,1997,272:26627-26633.
    [13]Downie J A, Economou A, Scheu A K, et al. The Rhizobium leguminosarum bv. viciae NodO protein compensates for the exported signal made by the host-specific nodulation genes. In Nitrogen Fixation:Achievements and Objectives, pp.201-202. Edited by P. M. Gresshoff, L. E. Roth, G. Stacey & W. E. Newton. New York:Chapman & Hall,1990.
    [14]Kijne J W, Diaz C L, Pater B S, et al. Surface interactions between rhizobia and legume root hairs. In Nitrogen Fixation:Achievements and Objectives, pp.187-192. Edited by P. M. Gresshoff, L. E. Roth, G. Stacey & W. E. Newton. New York:Chapman & Hall,1990.
    [15]Lerouge P, Roche P, Prome J C, et al. Rhizobium meliloti nodulation genes specify the production of an alfalfa-specific sulfated lipooligosaccharide signal. In Nitrogen Fixation: Achievements and Objectives, pp.177-186. Edited by P. M. Gresshoff, L. E. Roth, G. Stacey & W. E. Newton. New York:Chapman & Hall,1990.
    [16]Panagiota M, Katharina P, and Ton B. Symbiotic Nitrogen Fixation[J]. The plant cell,1995, 7:869-885.
    [17]Goethals K, Van M M, Holsters M. Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveals a common structure in promoters regulated by LysR-type proteins[J]. Proc. Natl. Acad. Sci.,1992,89:1646-1650.
    [18]Fisher R F, Long S R. Rhizobium-plant signal exchange[J]. Nature,1992,357:655-660.
    [19]Spanik H P. Regulation of Plant morpHogenesis by lipo-chitin oligosacharides[J]. Critical reviews in Plant Science,1996,15(586):559-582.
    [20]Schmidt J, Rohrig H, John M, et al. Alternation of plant growth and developing by Rhizobium nidA and nodB genes involved in the synthesis of oligosaccharide signal molecules[J]. The Plant Journal,1993, (4):651-658.
    [21]窦新田.生物固氮[M].北京:农业出版社,1989:2-12.
    [22]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004:49-50.
    [23]Shaffer B T, Wildmer F, Porteous L A, et al. Temporal and spatial distribution of the nifH gene of N2-fixing bacteria in forests and clearcuts in western Oregon[J]. Microb Ecol,2000, 39:12-21.
    [24]Ueda T, Suga Y, Yahiro N, et al. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences[J]. J Bacteriol,1995,177: 1414-1417.
    [25]Chelius M K, Lepo J E. Restriction fragment length polymorphism analysis of PCR-amplified nifH sequences from wetland plant rhizosphere communities[J]. Environ Technol,1999, 20:883-889.
    [26]Zehr J P, Mellon M, Braun S, et al. Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat[J]. Appl Environ Microbiol,1995,61:2527-2532.
    [27]Schubert S, Serraj R, Plies-Balzer E, et al. Effect of drought stress on growth, sugar concentrations and amino acid accumulation in N2-fixing alfalfa[J]. Journal of Plant Physiology,1995,146:541-546.
    [28]Walsh K B. Physiology of the legume nodule and its response to stress[J]. Soil Biology and Biochemistry,1995,27:637-655.
    [29]左元梅,刘永秀,张福锁.与玉米混作改善花生铁营养对其根瘤形态结构及豆血红蛋白含量的影响[J].植物生理与分子生物学学报,2003,29(1):33-38.
    [30]Felix D D. A functional relationship between leghaemoglobin and nitrogenase based on novel measurements of the two proteins in legume root nodules[J]. Annals of Botany,1995,75(1): 49-54.
    [31]Rachid S, Thomas R S. N2 fixation response to drought in common bean (Phaseolus vulgarisL.)[J]. Annals of Botany,1998,82(2):229-234.
    [32]李合生.现代植物生理学[M].北京:高等教育出版社,2005:218.
    [33]Jose F. Moran, Zhaohui Sun, Gautam Sarath, et al. Molecular Cloning, Functional Characterization, and Subcellular Localization of Soybean Nodule Dihydrolipoamide Reductase1,2[J]. Plant Physiology,2002,128:300-313.
    [34]Appleby C A. Leghemoglobin and Rhizobium respiration[J]. Annu Rev Plant Physiol,1984, 35:443-478.
    [35]King B J, Hunt S, Weagle G E, et al. Regulation of O2 concentration in soybean nodules observed by in situ spectroscopic measurement of leghemoglobin oxygenation[J]. Plant Physiol,1988,87:296-299.
    [36]Monroe J D, Owens T G, LaRue T A. Measurement of the fractional oxygenation of leghemoglobin in intact detached pea nodules by reflectance spectroscopy[J]. Plant Physiol, 1989,91:598-602.
    [37]Becana M, Klucas R V. Oxidation and reduction of leghemoglobin in root nodules of leguminous plants[J]. Plant Physiol,1992,98:1217-1221.
    [38]Lee K K, Shearman L L, Erickson B K, et al. Ferric leghemoglobin in plant-attached leguminous nodules[J], Plant Physiol,1995,109:261-267.
    [39]江木兰,张学江,徐巧珍,等.大豆-根瘤菌的固氮作用[J].中国油料作物学报,2003,25(1):50-54.
    [40]曾定.固氮生物学[M].福建:厦门大学出版社,1987:183-202.
    [41]洪国藩,宋鸿遇.固氮之光-共生固氮体系中最佳结瘤固氮控制模型的研究[M].湖南:湖南科技出版社,1997:134-169.
    [42]Yanni Y G, Rizk R Y, Corch V, et al. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessnient of its potential to promote rice growth[J]. Plant and Soil,1997,194:99-114.
    [43]Alami Y, Achouak W, Marol C, et al. Rhizosphere soil aggregation and plant, growth promotion of sunflowers by an exopolysacccharide-producing Rhizobium sp. strains isolated from sunflower roots[J]. Appl. Environ. Microbiol.,2000,66:3393-3398.
    [44]Agus J E, Steven D G, Brian N D. Isolation and characterization of 2,3-dichloro-lpropanol-degrading rhizobia[J]. Appl Environ Microbiol,2000,66(7): 2882-2887.
    [45]Sierra S, Rodelas B, M V Martinez-Toledo, et al. Production of B-group vitamins by two Rhizobium strains in chemically defined media[J]. J Appl Microbiol,1999,86:851-858.
    [46]Jordan D C. Transfer of Rhizobium japonicum(Buchanan 1980) to Bradyrhizobium japonicum gen. nov., a genus of slow-growing, root nodule bacteria form leguminous plants[J]. Int. J. Syst. Bacteriol,1982,32:136-139.
    [47]Jordan D C. Family Ⅲ Rhizobiaceae, p.234-244. In N. R. Krieg and J. G. Holt(ed.), Bergey's Manual of Systematic Bacteriology, Volume I, Williams and Wilkins, Baltimore, MD. USA,1984.
    [48]陈文新.中国豆科植物根瘤菌资源多样性与系统发育[J].中国农业大学学报,2004,9(2):6-7.
    [49]龚明福.新疆豆科植物根瘤菌资源多样性研究[D].杨凌:西北农林科技农学院,2005.
    [50]Lawn R J, Brun W A. Symbiotic nitrogen fixation in soybeans. I. Effect of photosynthetic source-sink manipulations[J]. Crop Science,1974,14:11-16.
    [51]Thibodeau P S, Jaworshi E G. Pattern of nitrogen utilization in soybean[J]. Planta,1975, 127:133-147.
    [52]Myers R J K. Nitrogen management of upland crops:from cereals to food legumes to sugar cane:In Advances in Nitrogen Cycling in Agricultural Ecosystems[C]. Ed. J R Wilson.57-273. CAB International, Wallingford.1988.
    [53]Ledgard S F. Transfer of fixed nitrogen from white clover to associated grasses in swards grazed by dairy cows, estimated using 15N method[J]. Plant and Soil,1991,131:215-223.
    [54]Thomas R J. Role of legumes in providing N for sustainable tropical pasture systems[J]. Plant and Soil,1995,174:103-118.
    [55]Peoples M B, Herridge D E, Rerkasern B, et al. Improving nitrogen fixation by soybean[C]. In Proc. World Soybean Research Conference V, Chiang Mai, Thailand. (In press).1994.
    [56]Steele K W. Vallis I. The nitrogen cycle in pastures. In Advances in Nitrogen Cycling in Agricultural Ecosystems[C]. Ed. J R Wilson.274-291. CAB International, Wallingford, UK..1988.
    [57]Herridge D F, Marcellos H, Felton W L, et al. Legume N2 fixation-an efficient source of N for cereal production. In Nuclear Related Methods in Soil/Plant Aspects of Sustainable Agriculture, FAO/IAEA,Vienna.1994.
    [58]Doyle P J, Cowell L E. Balances of nutrient inputs and exports(grain)in Alberta, Manitoba and Saskatchewan. In Impacts of Macronutrients on Crop Responses and Environmental Sustainability on the Canadian Prairies. Eds. D A Rennie, C A Campbell and T L Roberts.1-25. Can. Soc. Soil Sci., Ottawa, Canada,1993.
    [59]Sanchez P A. Tropical soil fertility research:towards the second paradigm[C]. In Transactions of the 15th World Congress of Soil Science.1:65-88. The International Soc. Soil Sci. and Mexican Soc. Soil Sci., Acapulco, Mexico.1994.
    [60]Bergeren F J. Root Nodules of Legumes, Structures and Functions[M]. Hertfordshire: Research Studies Press,1982,12-19.
    [61]Burns R C, Hardy R W F. New York:Nitrogen fixation in bacteria and higher plants[M], 1975:1-189.
    [62]Paul E A. Towards the year 2000:directions for future nitrogen research. In Advances in Nitrogen Cycling in Agricultural Ecosystems[C]. Ed. J R Wilson.417-425. CAB International, Wallingford.1988.
    [63]Jensen E S, Haahr V. The effect of pea cultivation on succeeding winter cereals and winter oilseed rape nitrogen nutrition[J]. Appl. Agric. Res.,1990,5:102-107.
    [64]McDonagh J F, Toomsan B, Limpinutana V, et al. Estimates of the residual nitrogen benefit of groundnut to maize in Northern Thailand[J]. Plant and Soil,1993,154:267-277.
    [65]Peoples M B, Herridge D E and Ladha J K.Biological nitrogen fixation:An efficient source of nitrogen for sustainable agricultural production? [J]. Plant and Soil,1995,174:3-28.
    [66]Bergersen F J, Brockwell J, Gault R R, et al. Effects of available soil nitrogen and rotes of inoculation on nitrogen fixation by irrigated soybeans and evaluation of I5N methods for measurement[J]. Aust. J. Agric. Res.,1989,40:763-780.
    [67]Hughes R M, Herridge D F. Effect of tillage on yield, nodulation and nitrogen fixation of soybean in far north coastal New South Wales[J]. Aust. J. Exp. Agric.,1989,29:671-677.
    [68]Bell M J, Wright G C, Suryantini, et al. The N2 fixing capacity of peanut cultivars with differing assimilate partitioning characteristics[J]. Aust. J. Agric. Res.,1994,45: 1455-1468.
    [69]Doughton J A, Vallis I, Saffigna P G. Nitrogen fixation in chickpea. Influence of prior cropping or fallow, nitrogen fertilizer and tillage[J]. Aust. J. Agric. Res.,1993,44: 1403-1413.
    [70]Badameh D M D, Ghawi I O. Effectiveness of inoculation on biological nitrogen fixation and water consumption by lentil under rained conditions[J]. Soil Biol. Biochem,1994,26: 1-5.
    [71]Evans J, O'Connor G E, Turner G L, et al. N2 fixation and its value to soil N increase in lupin, field pea and other legumes in south-eastern Australia[J]. Aust. J. Agric. Res.,1989, 40:791-805.
    [72]Ying J, Herridge D E, Peoples M B, et al. Effects of N fertilization on N2 fixation and N balances of soybean grown after lowland rice[J]. Plant and Soil,1992,147:235-242.
    [73]Peoples M B, Mosier A R, Freney J R. Minimizing gaseous losses of nitrogen. In Nitrogen Fertilization and the Environment. Ed. P E Bacon. Marcel Dekker Inc., New York 1994: 565-602.
    [74]王留方,王立祥,傅增光.一年生豆类作物固氮力及后效研究[J].西北农业大学学报,1986,12(4):34-49.
    [75]Zapata F. Time course ofnitrogen fixation in field soybean using 15N methodology[J]. Agronomy J,1987,19(1):172-179.
    [76]迟凤琴.大豆肥田机制的研究Ⅲ.大豆对耕层土壤含氮物质影响[J].大豆科学,2001,20(1):35-40.
    [77]龚振平,马春梅,金喜军,等.种植大豆对土壤氮素盈亏影响的估算[J].核农学报,2010, 24(1):125-129.
    [78]Gault R R, Peoples M B, Turner G L, et al. Nitrogen fixation by irrigated lucerne during the first three years after establishment[J]. Aust. J. Agric. Res.,1995,46(7):1401-1425.
    [79]Holford I C R. Changes in nitrogen and organic carbon of wheat-growing soils after various periods of grazed lucerne,extended fallowing and continuous wheat[J]. Aust. J. Soil Res. 1981,19:239-249.
    [80]Kundu D K, Ladha J K. Efficient management of soil and biologically fixed nitrogenin intensivelycultivated rice soils[J]. Soil Biol. Biochem.1994,26.
    [81]Wani S P, Rupela O P, Lee K K. Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain Iegumes[J]. Plant and Soil,1995,174.
    [82]Reeves T G, Ellington A, Brooke H D. Effects of lupin-wheat rotations on soil fertility, crop disease and crop fields[J]. Aust. J. Exp. Agric. Anim. Husb.,1984,24:595-600.
    [83]Strong W M, Harbison J, Nielsen R G H, et al. Nitrogen availability in a Darling Downs soil following cereal, oilseed and grain legume crops.1. Soil nitrogen accumulation[J]. Aust. J. Exp. Agric,1986,26:347-351.
    [84]Rowland I C. The esperance rotation trial. Effect of rotations on crop yields and soil fertility[J]. Division of Plant Research Technical,1987,8:49.
    [85]Vance C P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources [J]. Plant Physiology,2001,127:390-397.
    [86]Chalk P M, Smith C J, Hamilton S D, et al. Characterization on the N benefit of a grain legume (Lupinus augustifolius L.) to a cereal(Hordeum vulgare L.) by an in situ 15N isotope dilution technique[J]. Biol. Fert. Soils,1993,15:39-44.
    [87]Kumar Rao J V D K, Dart P J. Nodulation, nitrogen fixation and nitrogen uptake in pigeonpea (Cajanus cajan(L.) Millsp) of different maturity groups[J]. Plant and Soil,1987, 99:255-266.
    [88]Chapman A L, Myers R J K. Nitrogen contributed by grain legumes to rice grown in rotation on the Cununurra soils of the Ord imgation area, Western Australia[J]. Aust. J. Exp. Agric. 1987,27:155-163.
    [89]Unkovich M J, Pate J S, Hamblin J. The nitrogen economy of broadacre lupin in southwest Australia[J]. Aust. J. Agric. Res.,1994,45:149-164.
    [90]Sisworo W H, Mitrosuhardjo M M, Rasjid H, et al. The relative roles of N fixation, fertilizer, crop residues and soil in supplying N in multiple cropping systems in a humid, tropical upland cropping system[J]. Plant and Soil,1990,121:73-82.
    [91]Becker M, Ladha J K, Ottow J C G. Nitrogen losses and lowland rice yields as affected by residue nitrogen release[J]. Soil Sci. Soc. Am. J.,1994a,58:1660-1665.
    [92]Buresh R J, De Datta S K. Nitrogen dynamics and management of rice-legume cropping systems[J]. Adv Agron.,1991,45:1-59.
    [93]Diekmann K H, De Datta S K, Ottow J C G. Nitrogen uptake and recovery from urea and green manure in lowland rice measured by 15N and non-isotope techniques[J]. Plant and Soil,1993,148:91-99.
    [94]Kumarasinghe K S, Eskew D L. Isotopic Studies of Azolla and Nitrogen Fertilization of Rice[M]. New York:Kluwer Academic Publishers, Dordrecht.1993:145.
    [95]龚振平,沈昌蒲,赵福华.大豆肥田机制的研究Ⅱ.常规技术条件下大豆根系动态[JJ.大豆科学,2000,19(4):351-355.
    [96]Rovira A D. Diffesion of carbon compound away from wheat roots[J]. Aust. J. BiolSci., 1969,22:1287-1290.
    [97]Harris R F, Chesters G, Anon D N. Dynamics of soil aggregation[J]. Adv. Agron.,1966, 18:107-169.
    [98]Skidmore W A, Carstenson W A, Banbury E F. Soil changes resulting from cropping[J]. Soil Sci. Soc. Am. J,1975,39:964-967.
    [99]刘美金,琚忠和,吴跃忠.丰产大豆的施肥、管理及其效果[J].土壤肥料,1988,2:25-28.
    [100]王国义,张培英,孙聪殊,等.大豆肥田机制的研究Ⅳ.大豆对耕层土壤微形态的动态影响[J]。大豆科学,2001,20(3):204-208.
    [101]马和平,龚振平,王国义,等。人豆肥田机制的研究Ⅴ.人豆对耕层土壤结构性的影响[J]。大豆科学,2001,20(4):257-261.
    [102]Gordon A J, Minchin F R, Skat L, et al. Stress-induced declines in soybean N2 fixation are related to nodule sucrose synthase activity[J]. Plant Physiol,1997,114:937-946.
    [103]Gonzalez E M, Galvez L, Arrese-lgor C. Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity[J]. Journal of Experimental Botany,2001,52:285-293.
    [104]Witty J F, Minchin F R, Sk(?)t L, et al. Nitrogen fixation and oxygen in legume root nodules[J]. Oxf Surv Plant Mol Cell Biol,1986,3:275-314.
    [105]Hunt S, Layzell D B. Gas exchange of legume nodules and the regulation of nitrogenase activity[J]. Annu Rev Plant Physiol Plant Mol Biol,1993,44:483-511.
    [106]Guerin V, Pladys D, Trinchant J C, et al. Nitrogen fixation (C2H2 reduction) by broad bean {Vicia faba L.) nodules and bacteroids under water-restricted conditions[J]. Plant Physiology,1990,92:595-601.
    [107]Diaz del C L, Hunt S, Layzell D B. The role of oxygen in the regulation of nitrogenase activity in drought-stressed soybean nodules[J]. Plant Physiology,1994,106:949-955.
    [108]Diaz del C L, Layzell D B. Drought stress, permeability to O2 diffusion and the respiratory kinetics of soybean root nodules[J]. Plant Physiology,1995,107:1187-1194.
    [109]O'Hara G W. Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation:a review[J]. Australian Journal of Experimental Agriculture,2001,41:417-433.
    [110]Giller K E, Cadisch G. Future benefits from biological nitrogen fixation:an ecological approach to agriculture[J]. Plant and Soil,1995,174:255-277.
    [111]Graham P H, Vance C P. Nitrogen fixation in perspective:an overview of research and extension needs[J]. Field Crops Research,2000,65:93-106.
    [112]Salvagiotti F, Cassman K G, Specht J E, et al. Nitrogen uptake, fixation and response to fertilizer N in soybeans:A review[J]. Field Crops Research,2008,108:1-13.
    [113]Takahashi Y, Chinushi T, Nakano T, et al. Evaluation of N2 fixation and N absorption activity by relative ureide method in field grown soybean plants with deep placement of coated urea[J]. Soil Sci. Plant Nutr.,1992,38:699-708.
    [114]Takahashi Y, Chinushi T, Nagumo Y, et al. Effect of deep placement of controlled release nitrogen fertilizer (coated urea) on growth, yield and nitrogen fixation of soybean plants[J]. Soil Sci. Plant Nutr.,1991,37:223-231.
    [115]Semu E, Hume D J. Effect of inoculation and fertilizer levels on N2 fixation and yield of soybean in Ontario[J]. Can. J. Plant Sci.,1979,59:1129-1137.
    [116]Kaushal T, Onda M, Ito S, et al. Effect of deep placement of slow-release fertilizer (lime nitrogen) applied at different rates on growth, n2 fixation and yield of soya bean (Glycine max[L.] Merr.)[J]. Journal of Agronomy and Crop Science,2006,192(6):417-426.
    [117]Streeter J. Inhibition of legume nodule formation and NH4 fixation by nitrate[J]. CRC Crit Rev Plant Sci.,1988,7:1-23.
    [118]王树起,韩晓增,乔云发,等.施氮对大豆根瘤生长和结瘤固氮的影响[J].华北农学报.2009,24(2):176-179.
    [119]Abdelaal Shamseldin and Hassan Moawad. Inhibition of Nitrogenase Enzyme and Completely Suppression of Nodulation in Common Bean (Phaseolus vnlgaris L.) at high Levels of Available Nitrogen[J]. American-Eurasian J. Agric.& Sci.,2010,1(1):75-79.
    [120]Jacobsen E. Modification of symbiotic interaction of pea (Pisum sativum L.) and Rhizobium leguminosarura by induced mutations[J]. Plant and Soil,1984,82:427-438.
    [121]Park S J, Buttery B R. Nodulation mutants of white bean (Phaseolus vulgaris L.) induced by ethyl-methane sulphonate[J]. Can. J. Plant. Sci.,1988,68:199-202.
    [122]Carroll B J, McNeill D L, Gresshoff P M. Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations[J]. Proc. Natl. Acad. Sci.,1985,82:4162-4166.
    [123]谢田玲,沈禹颖,高崇岳,等.不同耕作处理下大豆生物固N能力及对系统N素的贡献[J].生态学报,2006,26(6):1772-1780.
    [124]Harper J E. Nitrogen metabolism. In:Wilcox JR (ed) Soybeans:improvement, production and uses. ASACSSA-SSSA, Madison, WI,1987:497-523.
    [125]赵秀芬,房增国.大豆、花生固氮与施氮关系的研究进展[J].安徽农学通报,2005,11(3):48-49.
    [126]Giannakis C, Nicholas D J D, Wallace W. Utilization of nitrate by bacteroids of Bradyrhizobium japonicum in the soybean root nodule[J]. Planta,1988,174:51-58.
    [127]Alcantar-Gonzales G M, Migianac-Maslow A, Champigny M L. Effect of nitrate supply on energy balance and acetylene reduction and nitrate reductase activities of soybean root nodules infected with Bradyrhizobium japonicum[J]. CR Acad Sci Paris,1988,307: 145-152.
    [128]Denison R F, Layzell D B. Measurement of legume nodule respiration and 02 permeability by noninvasive spectrophotometry of leghemoglobin[J]. Plant Physiol.,1991,96(1): 137-143.
    [129]Denison R F, Hunt S, Layzell D B. Nitrogenase activity, nodule respiration, and O2 permeability following detopping of alfalfa and birdsfoot trefoil [J]. Plant Physiol,1992, 98(3):894-990.
    [130]Escuredo P R. Involvement of activated oxygen in nitrate indueed senescence of Pea root nodules[J]. Plant Physiol.1996,110(4):1187-1195.
    [131]Vessey J K, Waterer J. In search of the mechanism of nitrate inhibition of nitrogeanase activity in legume nodules:recent developments[J]. Physiologia Plantarum.1992,84(1): 171-176.
    [132]Liu L, Zhou J C, Chen H K. The effect of the compound nitrogen concerntration on the nodulation and nitrogen fixation in soybean[J]. Scientia agricultura Sinica.1998,31(4): 87-89.
    [133]Herridge D F, Brockwell J. Contribution of fixed nitrogen and soil nitrate to the nitrogen economy of irrageted soybean[J]. Soil Biology &Biochemistry,1988,20(5):711-717.
    [134]Silsbury J H, Catchpole D W, Wallace W. Effects of nitrate and ammonium on nitrogenase (C2H2 reduction) activity of swards of subterranean clover, Trifolium subterraneum L[J]. Australian Journal of Plant Physiology,1986,13:257-273.
    [135]Rafin A, Roumet P. Shoot-root control of nitrate tolerance of N2 fixation in spontaneously tolerant soybean lines:reciprocal grafting experiments[J]. Agronomie,1994,14:473-480.
    [136]Bacanamwo M, Harper J E. The feedback mechanism of nitrate inhibition of nitrogenase activity in soybean may involve asparagine and/or products of its metabolism[J]. Physiologia Plantarum,1997,100:371-377.
    [137]Neo H H, Layzell D B. Phloem glutamine and the regulation of O2 diffusion in legume nodules[J]. Plant Physiology,1997,113:259-267.
    [138]Pagan J D, Scowcroft W R, Dudman W F, et al. Nitrogen fixation in nitrate reductase-deficient mutants of cultured rhizobia[J]. J Bacteriol,1977,129:718-723.
    [139]Rigaud J, Bergersen F J, Turner G L, et al. Nitrate-dependent anaerobic acetylene reduction and nitrogen fixation by soybean bacteroids[J]. J Gen Microbiol,1973,77:137-144.
    [140]Kennedy I R, Rigaud J, Trinchant J C. Nitrate reductase from bacteroids of Rhizobium japonicum:enzyme characteristics and possible interaction with nitrogen fixation[J]. Biochim Biophys Acta,1975,397:24-35.
    [141]Virtanen A I. Microbiology and chemistry of symbiotic nitrogen fixation[C]. In Proc 7th Int Bot Cong, Stockholm,1950:156-159.
    [142]Manhart J R, Wong P P. Nitrate Effect on Nitrogen Fixation (Acetylene Reduction) [J]. Plant Physiology,1980,65:502-505.
    [143]张宏,张桂芝,王晓明.施用硫铵和硝铵对大豆根瘤菌共生固氮量及产量的影响[J].吉林农业科学,1985,4:43-48.
    [144]宋海星,王萍,申斯乐,等.大豆共生固氮与叶片全氮含量之间关系的研究[J].吉林农业科学,2000,25(6):9-11.
    [145]Bieleski R L. Phosphate pools, phosphate transport, and phosphate availability [J]. Annu Rev Plant Physiol,1973,24:225-252.
    [146]Vance C P, Graham P H, Allan D L. Biological nitrogen fixation:phosphorus Ba critical future need? In FO Pederosa, M Hungria, M G Yates, W E Newton, eds, Nitrogen fixation from molecules to crop productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands,2000,509-518.
    [147]王建国,李兆林,李文斌,等.磷肥与大豆产量及品质的关系[J].农业系统科学与综合研究,2006,22(1):55-57.
    [148]沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J].土壤学报,1992,29(1):80-86.
    [149]郭晓冬,杨玲,张雪琴.甘肃省主要耕地土壤磷素形态及其有效性研究[J].土壤通报,1998,29(3):119-122.
    [150]林葆,林继雄,李家康.关于合理施用磷肥的几个问题[J].土壤学报,1992,24(2):57-60.
    [151]王兴仁,李洁茹,苏德纯,等.北京石灰性潮土长期轮作的磷肥合理运筹[J].中国农业大学学报,1999,4(5):43-49.
    [152]沈善敏,廉鸿志,张璐,等.磷肥残效及农业系统养分循环再利用中长期试验[J].植物营养与肥料学报,1998,4(4):339-344.
    [153]顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法[J].土壤,1990,22(2):101-110.
    [154]顾益初,钦绳武.长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性[J].土壤,1997,(1):13-17.
    [155]蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业科学,1989,22(3):58-66.
    [156]蒋柏藩,沈仁芳.土壤无机磷分级的研究[J].土壤学进展,1990,18(1):1-8.
    [157]Graham, P H, Rosas, J C. Phosphorus fertilization and symbiotic nitrogen fixation in common bean[J]. Agron. J.,1979,71:925-926.
    [158]Cassman, KG, Whitney, AS, Stockinger, KR. Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen source[J]. Crop Sci., 1980,20:239-244.
    [159]Cassman, KG, Whitney, AS, Fox, RL. Phosphorus requirements of soybean and cowpea as affected by mode of N nutrition[J]. Agron. J.,1981,73:17-22.
    [160]Jakobsen I. The role of phosphorus in nitrogen fixation by young pea plants(Pisum sativum)[J]. Physiologia Plantarum,1985,64:190-196.
    [161]Israel D W. Investigation of the role phosphorus in symbiotic dinitrogen fixation[J]. Plant Physiology,1987,84:835-840.
    [162]Israel D W. Symbiotic dinitrogen fixation and hostplant growth during development of and recovery from phosphours deficiency[J]. Physiologia Plantarum,1993,88(2):294-300.
    [163]Drevon J J, Hartwig U A. Phosphorus deficiency increased the argon-induced decline ofnodule nitrogenase activity in soybean and alfalfa[J]. Planta,1997,201:463-469.
    [164]Almeida J P F, Hartwig UA, Frehner M, et al. Evidence that P deficiency induces feedback regulation of symbiotic N2 fixation in white clover(Trifolium repensL.)[J]. Journal of Experimental Botany,2000,51:1289-1297.
    [165]Hellsten A, Huss Danell K. Interaction effects of nitrogen and phosphorus on nodulation in red clover(Trifolium pratenseL.)[J]. ActaAgriculturae Scandinavica, Section B, Soil and Plant Science,2001,50:135-142.
    [166]Cassman K G, Singleton P W, Linquist B A. Input/output analysis of the cumulative soybean response to phosphorus on an Ultisol[J]. Field Crops Research,1993,34:23-36.
    [167]Sa T M, Israel D W. Energy status and functioning of phosphorus- deficient soybean nodules[J]. Plant Physiol,1991,97:928-935.
    [168]苗淑杰,乔云发,韩晓增.大豆结瘤固氮对磷素的需求[J].农业系统科学与综合研究,2006,22(4):276-282.
    [169]吴明才,肖昌珍,郑普英.大豆磷素营养研究[J].中国农业科学,1999,32(3):59-65.
    [170]Robson A D, O'Hara G W. Involvement of phosphorus in nitrogen fixation by subterranean clover (Trifolium subterraneum L.)[J]. Aust. J. Plant Physiology,1981,8:427-436.
    [171]Ohwaki Y, Sugahara P. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (CicerarietinumL.)[J]. Plant Soil,1997, 189:49-55.
    [172]苗淑杰,乔云发,韩晓增,等.缺磷对已结瘤大豆生长和固氮功能的影响[J].作物学报,2009,35(7):1344-1349.
    [173]王树起,韩晓增,乔云发,等.缺磷胁迫对大豆根瘤生长和结瘤固氮的影响[J].大豆科学,2009,28(6):1000-1003.
    [174]Tsvetkova G E, Georgiev G I. Effect of phosphorus nutrition on the nodulation, nitrogen fixation and nutrient use efficiency of bradyrhizobium japonicum soybean(glycine max 1. merr.)symbiosis[J]. Bulg. j. plant physiol. special issue,2003,331-335.
    [175]苗淑杰,乔云发,韩晓增.磷和根瘤菌交互作用对大豆结瘤和生长的影响[J].大豆科学,2009,28(2):271-274.
    [176]Beringer H, Haeder H E, Lindhauer M G. Water relationships and incorporation of 14C assimilates in tuber of potato plants differing in potassium nutrition[J]. Plant Physiol,1983, 73:956-960.
    [177]Duke S H, Collins M M. Role of potassium in legume dinitrogen fixation. In Potassium in Agriculture. Ed. R Munns. pp 443-466. Am. Soc. Agron., Madison, USA,1985.
    [178]Lindhauer M. Role of potassium in cell extension, growth and storage of assimilates. In Methods of Potassium Research in Plants, pp 161-188. International Potash Institute, Berne, Switzerland,1989.
    [179]Marschner H. Mineral Nutrition of Higher Plants[M]. London:2nd ed. Academic Press, 1995:889.
    [180]Andrew C S, Robins M F. The effect of potassium on the growth and chemical composition of some tropical and temperate pasture legumes[J]. Aust J Agric Res,1969,20:999-1007.
    [181]Barta A L. Response of symbiotic N-fixation and assimilate partitioning to K supply in alfalfa[J]. Crop Science,1982,22:89-92.
    [182]Chalamet A, Audergon J M, Maitre J P. Study of the effect of potassium on symbiotic nitrogen fixation in Trifolium pretense L. using the 15 N method[J]. Plant soil,1989,98: 347-352.
    [183]Collins M, Duke H S. Influence of potassium-fertilization rate and form on photosynthesis and N2 fixation of alfalfa[J]. Crop Science,1981,21:481-485.
    [184]Haghparast Tanha M R. The influence of potassium on the activity of rhizobium bacteria. In: Fertilizer use and protein production, pp 169-178. International Potash Institute.11th Colloquium, Berne, Switzerland,1975.
    [185]Jones G D, Lutz J A(Jr), Smith T J. Effects of phosphorus and potassium on soybean nodules and seed yield[J]. Agron J,1977,69:1003-1006.
    [186]Lynd J Q, Odell G V(Jr), McNew R W. Soil potassium effects on nitrogenase activity with associated nodule components of hairy vetch at anthesis[J]. J Plant Nutr,1981,4(3): 303-318.
    [187]de Mooy C J, Pesck J. Nodulation response of soybean to added phosphorus, potassium and calcium salts[J]. Agron J,1966,58:275-280.
    [188]Duke S H, Collins M, Soberalske R M. Effects of potassium fertilization on nitrogen fixation and nodule enzymes of nitrogen metabolism in alfalfa[J]. Crop Science,1980,20:213-219.
    [189]Lynd J Q, Hanlon Ed A, Odell G V(Jr). Wirkungen von Kalium anf die Verbessernng des Wachstums die KnOlchenbildung und die Stickstoff-Fixierung der zottigen Wicke. Kali Briefe, Fachgebiet 13, Htilsenfrnchtbau,6. Folge,1982.
    [190]Lynd J Q, Ansman J R. Soil fertility effects on growth, nodniation nitrogenase and seed components of jack bean (Canavalia ensiform L.) [J]. J Plant Nutr,1989,12 (5):563-579.
    [191]Mengel K, Haghparast M R, Koch K. The effect of potassium on the fixation of molecular nitrogen by root nodules of Vicia faba[J]. Plant Physiol.,1974,54:535-538.
    [192]Thomas RJ, Hungria M. Effect of potassium on nitrogen fixation, nitrogen transport, and nitrogen harvest index of bean[J]. J Plant Nutr,1988,11(1):175-178.
    [193]Wiersama D, Christie B R. Water and agricultural productivity. In Handbook of Plant Science in Agriculture. Ed. E R Christie. pp 3-56. CRC Press, USA,1987.
    [194]Sangakkara U R, Hartwig U A, NOsberger J. Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean[J]. Plant and Soil,1996,184:123-130.
    [195]Premaratne K P, Oertli J J. The influence of potassium supply on nodulation, nitrogenase activity and nitrogen accumulation of soybean (Glycine max L. Merrill) grown in nutrient solution[J]. Fertilizer Research,1994,38:95-99.
    [196]Serraj R, Sinclair T R, Purcell L C. Symbiotic N2 fixation response to drought[J]. Journal of Experimental Botany,1999,50:143-155.
    [197]Wilson J K. The shedding of nodules by beans[J]. Agronomy Journal,1931,23:670-674.
    [198]Sprent J I. The effects of water stress on nitrogen fixing root nodules. Ⅲ. Effects of osmotically applied stress[J]. New Phytologist,1972,71:451-460.
    [199]Zablotowicz R M, Focht D D, Cannell G H. Nodulation and N fixation of field-grown California cowpeas as influenced by well-irrigated and droughted conditions[J]. Agronomy Journal,1981,73:9-12.
    [200]Kirda C, Danso S K A, Zapata F. Temporal water stress effects on nodulation, nitrogen accumulation and growth of soybean[J], Plant and Soil,1989,120:49-55.
    [201]Kuo T, Boersma L. Soil water suction and root temperature effects on nitrogen fixation in soybeans[J]. Agronomy Journal,1971,63:901-904.
    [202]Sinclair T R. Water and nitrogen limitations in soybean grain production. I. Model development[J]. Field Crops Research,1986,15:125-141.
    [203]Durand J L, Sheehy J E, Minchin F R. Nitrogenase activity, photosynthesis and nodule water potential in soybean plants experiencing water deprivation[J]. Journal of Experimental Botany,1987,38:311-321.
    [204]Djekoun A, Planchon D. Water status effect on dinitrogen fixation and photosynthesis in soybean[J]. Agronomy Journal,1991,83:316-322.
    [205]Finn G A, Brun W A. Effect of atmospheric CO2 enrichment on growth nonstructural carbohydrate content and root nodule activity in soybean[J]. Plant Physiology,1982,69: 327-331.
    [206]Bennett J M, Albrecht S L. Drought and flooding effects on N2 fixation, water relations, and diffusive resistance of soybean[J]. Agronomy Journal,1984,76:735-740.
    [207]Serraj R, Sinclair T R. Variation among soybean cultivars in dinitrogen fixation response to drought[J]. Agronomy Journal,1997,89:963-969.
    [208]Sinclair T R, Muchow R C, Bennett J M, et al. Relative sensitivity of nitrogen and biomass accumulation to drought in field-grown soybean[J]. Agronomy Journal,1987,79:986-991.
    [209]Wery J, Silim S N, Knight E J, et al. Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food Iegumes[J]. Euphytica,1994, 73:73-83.
    [210]Purcell L C, King C A. Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean[J]. Journal of Plant Nutrition,1996,19:969-993.
    [211]Plies-Balzer E, Kong T, Schubert S, et al. Effect of water stress on plant growth, nitrogenase activity and nitrogen economy of four different cultivars of Vicia faba L[J]. European Journal of Agronomy,1995,4:167-173.
    [212]Williams P M, deMallorca S M. Effects of osmotically induced leaf moisture stress on nodulation and nitrogenase activity of Glycine max[J]. Plant and Soil,1984,80:267-283.
    [213]Sprent J I. Effects of water stress on nitrogen fixation in root nodules[J]. Plant Soil (Special Volume),1971,225-228.
    [214]Worall N L, Roughley R J. The effects of moisture stress on infection of Trifotium subterraneum L. by T. trifolii Dang[J]. Journal of Experimental Botany,1976,27: 1233-1241.
    [215]Swaraj K. Environmental stress and symbiotic N2 fixation in legumes[J]. Plant Physiology and Biochemistry,1987,14:117-130.
    [216]Mahler R L, Wollum I I A G. The influence of soil water potential and soil texture on the survival of Rhizobium japonicum and Rhizobium leguminosarum isolates in the soil[J]. Journal of the Soil Science Society of America,1981,45:761-766.
    [217]Hamdi Y A. Soil water tension and the movement of rhizobia[J]. Soil Biology and Biochemistry,1970,3:121-126.
    [218]Leung K, Bottomley P J. Growth and nodulation characteristics of subclover (Trifolium subterraneum L.) and Rhizobium leguminosarum bv. trifolii at diVerent soil water potentials[J]. Soil Biology and Biochemistry,1994,26:805-812.
    [219]Zahran H H, Karsisto L A M, Lindstorm K. Alteration of lipopolysacharides and protein profiles in SDS-PAGE of rhizobia by osmotic stress[J]. World Journal of Microbiology and Biotechnology,1994,10:100-105.
    [220]Graham P H. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions[J]. Canadian Journal of Microbiology,1992,38:475-484.
    [221]Smith D L, Dijak M, Hume D J. The effect of water deficit on N2 (C2H2)fixation by white bean and soybean [J]. Canadian Journal of Plant Science,1988,68:957-967.
    [222]Sinclair T R, Zimet A R, Muchow R C. Changes in soybean nodule number and dry weight in response to drought[J]. Field Crops Research,1988,18:197-202.
    [223]Athar M, Johnson D A. Influence of drought on competition between selected Rhizobium meliloti and naturalized soil rhizobia in alfalfa[J]. Plant and Soil,1996a,184:231-241.
    [224]Athar M, Johnson D A. Nodulation, biomass production, and nitrogen fixation in alfalfa under drought[J]. Journal of Plant Nutrition,1996b,19:185-199.
    [225]Hunt P G, Matheny T A, Wollum A G. Yield and N accumulation responses of late-season determinate soybean to irrigation and inoculation with various strains of Bradyrhizobium japonicum[J]. Communications in Soil Science and Plant Analysis,1988,19:1601-1612.
    [226]Venkateswarlu B, Saharan N, Maheswari M. Nodulation and N2 fixation in cowpea and groundnut during water stress[J]. Field Crops Research,1990,25:223-232.
    [227]Engin M, Sprent J I. Effects of water stress on growth and nitrogen fixing activity of Trifolium repens[J]. New Phytologist,1973,72:117-126.
    [228]Serraj R, Sinclair T R. Soybean cultivar variability of nodule formation and growth under drought[J]. Plant and Soil,1998. (in press)
    [229]Gordon A J, Ryle G J A, Mitchel D F, et al. The effect of defoliation on carbohydrate, protein and legheamoglobin content of white clover nodules[J]. Annals of Botany,1986,58: 141-156.
    [230]Becana M, Sprent J I. Nitrogen fixation and nitrate reduction in the root nodules of legumes[J]. Physiologia Plantarum,1987,70:757-765.
    [231]Huang C, Boyer J S, Vanderhoef L N. Limitation of acetylene reduction (nitrogen fixation) by photosynthesis in soybeans having low water potentials[J]. Plant Physiology,1975,56: 228-232.
    [232]Serraj R, Sinclair T R, Allen L H. Soybean nodulation and N2 fixation response to drought under carbon dioxide enrichment[J]. Plant Cell and Environment (in press),1998.
    [233]Morison J I L. Response of plants to CO2 under water limited conditions[J]. Vegetatio,1993, 104/105:193-209.
    [234]Purcell L C, deSilva M, King C A, et al. Biomass accumulation and allocation in soybean associated with genotypic diVerences in tolerance of nitrogen fixation to water deficits[J]. Plant and Soil,1997,196:101-113.
    [235]Wheeler C T. The causation of the diurnal changes in nitrogen fixation in the nodules of Alnus glutinosa[J]. New Phytologist,1971,70:487-495.
    [236]Streeter J G. Seasonal distribution of carbohydrates in nodules and stress exudate from field grown soybean plants[J]. Annals of Botany,1981,48:441-450.
    [237]Warembourg F R, Roumet C. Why and how to estimate the cost of symbiotic N2 fixation? A progressive approach based on the use of 14C and 15N isotopes[J]. Plant and Soil,1989, 115:167-178.
    [238]Streeter J G. Transport and metabolism of carbon and nitrogen in legume nodules[J]. Advances in Botanical Research,1991,18:129-187.
    [239]Weisbach C, Hartwig U A, Heim I, et al. Whole-nodule carbon metabolites are not involved in the regulation of the oxygen permeability and nitrogenase activity in white clover nodules[J]. Plant Physiology,1996,110:539-545.
    [240]Minchin F R. Regulation of oxygen diffusion in legume nodules[J]. Soil Biology and Biochemistry,1997,29:881-888.
    [241]Irigoyen J J, Emerich D W, Sanchez-Diaz M. Phosphoenol pyruvate carboxylase, malate and alcohol dehydrogenase activities in alfalfa (Medicago sativa) nodules under water stress[J]. Physiologia Plantarum,1992,84:61-66.
    [242]Gogorcena Y, Iturbe-Ormaetxe I, Escuredo P R, et al. Antioxidant defenses against activated oxygen in pea nodules subjected to water stress[J]. Plant Physiology,1995,108:753-759.
    [243]Gonzalez E M, Gordon A J, James C L, et al. The role of sucrose synthase in the response of soybean nodules to drought[J]. Journal of Experimental Botany,1995,46:1515-1523.
    [244]Pate J S, Gunning B E S, Briarty LG. Ultrastructure and functioning of the transport system of the leguminous root nodule[J]. Planta,1969,85:11-34.
    [245]Purcell L C, Sinclair T R. Nodule gas exchange and water potential response to rapid imposition of water deficit[J]. Plant, Cell and Environment,1995,18:179-187.
    [246]Serraj R, Vadez V, Denison R F, et al. Ureides inhibit N2-fixation and decrease nodule permeability to oxygen in soybean[J]. Plant Physiology (in press),1998d.
    [247]Oti-Boateng C, Silsbury J H. The effect of exogenous amino-acid on acetylene reduction activity of Vicia faba L[J]. cv. Fiord. Annals of Botany,1993,71:71-74.
    [248]Parsons R, Stanforth A, Raven J A, et al. Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen[J]. Plant, Cell and Environment,1993, 16:125-136.
    [249]Marino D, Frendo P, Ladrera R, et al. Nitrogen Fixation Control under Drought Stress. Localized or Systemic?l[OA][J]. Plant Physiology,2007,143:1968-1974.
    [250]Sheoran I S, Kaur A, Sing R. Nitrogen fixation and carbon metabolism in nodules of pigeonpea (Cajanus cajan L.) under drought stress[J]. Journal of Plant Physiology,1988, 132:480-483.
    [251]Gordon A J, Ougham H J, James C L. Changes in levels of gene transcripts and their corresponding proteins in nodules of soybean plants subjected to dark-induced stress[J]. J Exp Bot,1993,44:1453-1460.
    [252]Soussana J F, Hartwig U A. The effect of elevated CO2 on symbiotic N2 fiiation:a link between the carbon and nitrogen cycles in grassland ecosystems[J]. Plant soil,1996,187: 321-332.
    [253]Feigenbaum S, Mengel K. The effect of reduced light intensity and sub-optimal potassium supply on N2, fixation and N turnover in Rbizobium-infected lucerne[J]. Physiol plcrntcrrzrn,1979,45:245-249.
    [254]Fujita K, Masuda T, Ogata S. Dinitrogen fiiation ureide concentration in xylem exudate and translocation of pbotosyntbates in soybean as influenced by pod removal and defoliation[J]. Soil Sci Plant Nutri,1988,34:265-275.
    [255]Hardy R W F, Havelka U D. Nitrogen fixation research:A key to world food?[J]. Science, 1975,188:633-643.
    [256]Bordeleau L M, Prevost D. Nodulation and nitrogen fixation in extreme environments[J]. Plant and Soil,1994,161:115-125.
    [257]Munevar, F. Studies of the soybean-Rhizobium association as affected by high root temperature. Ph. D. Thesis. North Carolina State University,1981.
    [258]Waughman G J. The effect of temperature on nitrogenase activity [J]. J. Exp. Bot.,1977, 28:949-60.
    [259]Keerio M I. Chang S Y, Mirjat M A, et al. The Rate of Nitrogen Fixation in Soybean Root Nodules After Heat Stress and Recovery Period[J]. International journal of agriculture & biology,2001,03(4):512-514.
    [260]APO. Grain legume production in Asia[M]. Tokyo:Asian Productivity Organization, 1980:240.
    [261]Patanothai A, Ong C K. Limits imposed by management in rainfed farming systems. In Food Legume Improvement for Asian Farming Systems. Eds. E S Wallis and D E Bythe.72-82. ACIAR, Canberra, Australia,1987.
    [262]Purcell L C, Serraj R, Sinclair T R, et al. Soybean N2 fixation estimates, ureide concentration, and yield responses to drought[J]. Crop Sci,2004,44(2):484-492.
    [263]Singleton P W, Bohlool B B. Effect of Salinity on Nodule Formation by Soybean[J]. Plant Physiol,1984,74:72-76.
    [264]Balasumbramanian V, Sinha S K. Effects of salt stress on growth, nodulation, and nitrogen fixation in cowpea and mung bean[J]. Plant Physiol,1976,36:197-200.
    [265]Lakshmi-Kumari M, Singh C S, Subba Rao N S. Root hair infection and nodulation of Lucerne (Medicago sativa L.) as influenced by salinity and alkalinity[J]. Plant Soil,1974, 40:261-268.
    [266]Lauter D J, Munns D N, Clarkin K L. Salt response of chickpea as influenced by N supply[J]. Agron J,1981,73:961-966.
    [267]Tu J C. Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean[J]. Can J Plant Sci,1981,61:231-239.
    [268]Wilson J R. Response to salinity in Glycine. Ⅵ. Some effects of a range of short-term salt stresses on the growth, nodulation, and nitrogen fixation of Glycine wightii[J]. Aust J Agric Res,1970,21:571-582.
    [269]Jongruaysup S, Ohara G W, Dell B, et al. Effects of low molybdenum seed on nodule initia-tion, development and N2 fixation in black gran (Vigna mungo L)[J]. Plant Soil,1993, 156:345-348.
    [270]吴静,张福锁,李春俭,等。缺硼、不同光强及外源葡萄糖对大豆根瘤固氮活性的影响[J].植物营养与肥料学报.1997,3(2):147-152.
    [271]Lowther W L, Loneragan J F. Calcium and Nodulation in subterranean clover (Trifolium subterraneum L.)[J]. Plant Physiol.,1968,43(9):1362-1366.
    [272]Lowther W L, Loneragan J F. Calcium in the nodulation of legumes. Proceedings 11th int. Grassld Congr., Surfers Paradise,1970,446-450.
    [273]Keeling A A, Cook J A, Wilcox A. Effect of carbohydrate application on diazotroph population and nitrogen availability in grass swards established in garden waste compost[J]. Blores technol,1998,66:3814-3822.
    [274]Limmer C, Drake H L. Non-symbiotic N2-fixation in acidic and pH-neutral forest soil: aerobic and anaerobic differentials[J]. Soil Biol Biochem,1996,28:177-183.
    [275]陈灵芝.中国的生物多样性[M].北京:科学出版社,1993:99-113.
    [276]王伯荪,彭少麟.植被生态学-群落与生态系统[M].北京:中国环境科学出版社,1997.
    [277]黄建辉,白永飞,韩兴国.物种多样性与生态系统功能:影响机制及有关假说[J].生物多样性,2001,9(1):1-7.
    [278]杨永华.分子遗传技术与生物遗传多样性研究[J].农村生态环境,1996,12(4):28-31.
    [279]白建荣,郭秀荣,侯变英,等.分子标记的类型、特点及在育种中的应用[J].山西农业科学,1999,27(4):33-38.
    [280]陈灏,唐小树,林洁,等.不经培养的农田土壤微生物种群构成及系统分类的初步研究[J].微生物学报,2002,42(4):478-483.
    [281]Watanabe K, Baler P W. Environmentally relevant microorganisms[J]. J Biosci Bioeng, 2000,89(1):1-11.
    [282]陈强,张小平,李登煜,等.从豆科植物的根瘤中直接提取根瘤菌DNA的方法[J].微生物学通报,2002,29(6):63-67.
    [283]Vos P, Hoqers R, Bleeker M, et al. AFLP:a new technique for DNA finger printing[J]. Nucleic Acids Research,1995,23(21):4407-4414.
    [284]万俊芬,包振民,汪小龙,等.亲本数目对鲍养殖群体AFLP标记位点及其遗传结构的影响[J].水产学报,2004,28(2):127-132.
    [285]Mcgregor C E, Lambert C A, Greyling M M, et al. Acomparative assessment of DNA fingerprinting techniques (RAPD ISSR AFLP and SSR) in tetraploid potato germplasm[J]. Euphytica,2000,113:135-144.
    [286]王斌,翁曼丽.AFLP的原理及其应用[J].杂交水稻,1996,5:27-30.
    [287]Beebe S, Rengifo J, Gaitan E, et al. Diversity and origin of Andean landraces common bean[J]. Crop Science,2001,41(3):854-862.
    [288]Negri V, Tosti N. Phaseolus genetic diversity maintained on-farm in central Italy [J]. Genetic resources and crop evolution,2002,49(5):511-520.
    [289]Zeid M, Schon C C, Link W. Genetic diversity in recent elite faba bean lines using aflp markers[J]. Theoretical and Applied Genetics,2003,107(7):1304-1314.
    [290]Fisher S G, Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gel:correspondence with theory [J]. Proc. Natl. Acad. Sci., 1983,80:1579-1583.
    [291]柴丽红,彭谦,徐丽华,等.DGGE技术在微生物生态学研究中的应用[J].生物技术,2003,4:32-33。
    [292]刘上峰,傅俊江.双向电泳技术原理及其应用[J].国外医学:生理病理科学与临床分册,2002,22(2):197-199.
    [293]付琳林,李海星,曹郁生.利用变性梯度凝胶电泳分析微生物的多样性[J].生物技术通报,2004,2:38-40.
    [294]Omar N B, Ampe F, Raimbault M et al. Molecular diversity of lactic acid bacteria from cassava sour starch(Colombia) [J]. Syst. Appl. Microbiol,2000,23(2):285-291.
    [295]Tonso N L, Matheson V G, Holsen W E. Polyphasic characteritionof a suite of bacterial isolates capable of degrading 2,4-D[J]. Microb Ecol.1995,3-24.
    [296]罗海峰,齐鸿雁,薛凯,等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1570-1575.
    [297]Kawai M, Matsutera E, Kanda H, et al.16Sribosomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis[J]. Appl. Environ. Microbiol.,2002,68(2): 699-704.
    [298]Teske A, Wawer C, Muyzer, et al. Distribution of sulfate-reducing bacteria in a stratified Fjord (Manager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments[J]. Appl. Environ. Microbiol.,1996,62(4):1405-1415.
    [299]Vybiral D, Witte A, Velimirov B. Investgation of 2um filterable bacteria from the western mediteranean sea using a molecular approach:dominance of potential starvation forms[J]. FEMS Microbiol. Ecol,2000,31(2):153-161.
    [300]房春红.根瘤菌与大豆、土壤间相互适应性研究[D].哈尔滨:东北农业大学资源与环境学院,2007.
    [301]毕远林.大豆干物质积累与氮、磷、钾吸收与分配的研究[J].大豆科学,1999,18(4):331-335.
    [302]姚玉波.不同基因型大豆氮素积累规律与构成的研究[D].哈尔滨:东北农业大学农学院,2009.
    [303]康筱湖,韩天富.大豆栽培与病虫草害防治[M].北京:金盾出版社,2008:14-17.
    [304]郭海龙,马春梅,董守坤,等.春大豆生长中对不同氮源的吸收利用.核农学报,2008,22(3):338-342.
    [305]Tomonori Abe, Arata Katayama, Akira Watanabe. Temporal changes in distribution and composition of N from labeled fertilizer in soil organic matter fractions[J]. Biol Fertil Soils, 2007,43:427-435.
    [306]宋琦.国土壤类型中有机态氮的组成及特性[J].土壤学报,1988,25(1):95-100.
    [307]沈润平,王中孚,郭进耀,等.氮磷钾营养对春大豆产量品质效应的研究[J].江西农业大学学报,1998,(1):51-55.
    [308]谢佳贵,张宽,王立春,等.平衡施肥对优质大豆产量和品质的影响[J].高效施肥,2006,17(2):13-16.
    [309]赵丽琴,吉明光,邓永贵,等.施肥对大豆吸收氮磷钾的影响[J].黑龙江八一农垦大学学报,2005,17(3):29-312.
    [310]侯立白,李奇真,孙克用.应用15N示踪法对大豆不同来源氮素吸收与利用的研究[J].作物学报,1985,15(3):181-189.
    [311]倪竹如,陈俊伟,阮美颖,等.氮肥不同施用技术对直播水稻氮素吸收及其产量形成 的影响[J].核农学报,2003,17(2):123-126.
    [312]冯兆忠,王效科,段小男,等.不同氮水平对春小麦光合速率日变化的影响[J].生态学杂志,2003,22(4):90-92.
    [313]杨声澉,陈涛,吴晓伟,等.应用15N示踪技术测定作物氮素的利用率及分配研究进展[J].广西农业科学,2007,38:291-295.
    [314]丁玉川,陈明昌,程滨.不同大豆品种磷吸收利用特性比较研究[J].西北植物学报,2005,25(9):1791-1797.
    [315]丁洪,李生秀.磷素营养与大豆生长和共生固氮的关系[J].西北农业大学学报,1998,26(5):67-70.
    [316]Holford C R. Soil phosphorus:itsmeasurement, and its uptake by plants [J]. Australia Journal of Soil Research,1997,35:227-239.
    [317]丁洪,李生秀.大豆品种耐低磷和对磷肥效应的遗传差异[J].植物营养与肥料学报,1998,4(3):257-263。
    [318]李洪喜,焦占力,王忠.氮和钾肥对大豆的增产效果[J].黑龙江农业科学,2008,(3):66-67.
    [319]Deyin L, Meide X, Shufan L, et al. Effect of potash on growth and morphology of soybean[J]. Potash Review,1987,4.
    [320]Peoples T R, Koch D W. Role of potassium in carbon dioxide assimilation in Medicago sativa L[J]. Plant Physiol,1979,63:878-881.
    [321]Sall K, Sinclair T R. Soybean genotypic diVerences in sensitivity of symbiotic nitrogen fixation to soil dehydration[J]. Plant and Soil,1991,133:31-37.
    [322]Lawlor D W. Limitation to photosynthesis in water-stressed leaves:stomata vs. metabolism and the role of ATP[J]. Ann Bot,2002,89:1-15.
    [323]王芳,朱洪德,李伟.干旱胁迫对不同大豆品系干物质积累的影响[J].黑龙江八一农垦大学学报,2006,(2):23-26.
    [324]刘丽君,林浩,唐晓飞,等.干旱胁迫对不同生育阶段大豆产量形态建成的影响[J].大豆科学,2011,(3):405-412.
    [325]郭相平,张烈君,王琴,等.作物水分胁迫补偿效应研究进展[J].河海大学学报(自然科学版),2005,33(6):634-637.
    [326]丁洪,郭庆元.氮肥对不同品种大豆氮积累和品质的影响[J].土壤通报,1995,26(1):18-21.
    [327]任红玉,崔振才,沈能展等.大豆干物质积累与水分动态变化的关系.中国油料作物学报.2005,27(3):41-44.
    [328]李元芳.固氮菌类肥料的特点及有效使用条件[J].土壤肥料,1994,(1):40.
    [329]武帆,李淑敏,孟令波.土壤科学与农业可持续发展[M].北京:中国农业大学出版社,2008:258-264.
    [330]孔新,罗赓彤,刘胜利,等.根瘤菌肥接种大豆的试验初报[J].大豆通报,2003,2:7.
    [331]李艳杰.快生型根瘤菌(BB-32)对大豆黑交96-1525的增产效果[J].土壤肥料,2004,(2):49-51.
    [332]陶运平,张筱秀,刘素芬,等.两种引进菌剂对大豆生长和产量的影响[J].山西农业科学,2005,33(1):35-36.
    [333]Kiers E T, Hutton M G, Denison R F. Human selection and the relaxation of legume defences against ineffective Rhizobia[J]. Proceedings of The Royal Society/Biological sciences,2007,274(1629):3119-3126.
    [334]马中雨.大豆根瘤菌与大豆品种共生匹配性研究[D].北京:中国农业科学院,2008.
    [335]Wilson R F. Seed composition. In:Borema HR, Specht JE(eds) Soybeans:improvement, production and uses. ASA-CSSA-SSSA, Madison, WI.621-677,2004.
    [336]王立刚,刘景辉,刘克礼,等.大豆氮素积累、分配与转移规律的研究[J].作物杂志,2004,(5):20-22.
    [337]Kumudini S, Hume D J and Chu G. Genetic Improvement in Short-Season Soybeans: II. Nitrogen accumulation, remobilization, and partitioning[J]. Crop Science,2002,42: 141-145.
    [338]Egli D B, Leggett J E, and Duncan W G. Influence of N stress on leaf senescence and N redistribution in soybean[[J]. Agron. J.1978,74:375-379.
    [339]Egli, D B, Meckel L, Phillips R E, et al. Moisture stress and N redistribution in soybean[J]. Agron. J,1983,75:1027-1031.
    [340]Jeppsen R G, Johnson R R, Hadley H H.Variation in mobilization of plant nitrogen to the grain in nodulating and non-nodulating soybean genotypes[J]. Crop Sci,1978,18: 1058-1062.
    [341]Zeiher C, Egli D B, Leggett J E, et al.Cultivar differences in N redistribution in soybeans[J]. Agron. J,1982,74:375-379.
    [342]Hanway J J, Weber C R.Drymatter accumulation in eight soybean (Glycine max (L.)Merrill) varieties[J]. Agron. J,1971,63:227-230.
    [343]Piper E L, Boote K J. Temperature and cultivar effects on soybean seed oil and protein concentrations[J]. J. Am. Oil Chem. Soc,1999,76:1233-1241.
    [344]Collins F I, Cartter J L. Variability in chemical composition of seed from different portions of the soybean plant[J]. Agron. J,1956,48:216-219.
    [345]Bennett J O, Krishman A H, Wiebold W J, et al. Positional effect on protein and oil content and composition of soybeans[J]. J. Agric. Food Chem,2003,51:6882-6886.
    [346]Streeter J G. Effect of N starvation of soybean plants at various stage of growth on seed yield and N concentration of plant parts at maturity[J]. Argon.J,1978,70:74-76.
    [347]Crozat Y, Aveline A, Coste F, et al. Yield performance and seed production pattern of field-grownpea and soybean in relation to N nutrition[J]. Eur. J. Agron,1994,3:135-144.
    [348]李永孝,李佩珽.施肥量和追肥期对夏大豆产量性状的影响[J].大豆科学,1995,14(2):119-125.
    [349]甘银波,涂学文,田任久.大豆的最佳氮肥施用时期研究[J].大豆科学,1998,17:287-291.
    [350]金喜军.大豆氮素积累转移规律与氮素同化关键酶活性的研究[D].哈尔滨:东北农业大学,2010.
    [351]王树起,韩晓增,严君,等.缺磷胁迫对大豆根系形态和氮磷吸收积累的影响[J].土壤通报,2010,41(3):644-650.
    [352]Ruben L, Daniel M, Estibaliz L, et al. Reduced Carbon Availability to Bacteroids and Elevated Ureides in Nodules, But Not in Shoots, Are Involved in the Nitrogen Fixation Response to Early Drought in Soybeanl[OA][J]. Plant Physiology,2007,145:539-546.
    [353]Geoffrey N A. Soybean Physiology, Agronomy, and Utilization[M]. Academic Press.1978.
    [354]VENKATESWARLU B, RAO A V, LAHIRIA N. Effect of water stress on nodulation and nitrogenase activity of guar (Cyamopsis tetragonoloba (L.) Taub.) [J]. Proc. Indian Acad. Sci. (Plant Sci.),1983,92(3):297-301.
    [355]姚玉波,张磊,马春梅,等.施氮水平对大豆吸收利用氮素及产量的影响[J].东北农业大学学报,2009,40(4):6-10.
    [356]丁洪,郭庆元,刘昌智.不同熟期大豆品种吸收和利用氮肥的差异[J].中国油料,1994,16(2):7-10.
    [357]汪自强,王美娥.春大豆氮利用效率的基因型变异和性状间的相关研究[J].生物数学学报,2002,17(2):221-228.
    [358]董守坤,龚振平,祖伟.氮素营养水平对大豆氮素积累及产量的影响[J].植物营养与肥料学报,2010,16(1):65-70.
    [359]邸伟,金喜军,马春梅,等.施氮水平对大豆氮素积累与产量影响的研究[J].核农学报,2010,24(3):612-617.
    [360]何建国,严华,贾金川,等.不同氮肥管理对大豆生长及产量的影响[J].大豆通报,1999,(1):11.
    [361]李春杰,王建国,许艳丽,等.钾对大豆产量及品质的影响[J].农业系统科学与综合研究,2005,21(2):154-160.
    [362]闫春娟,韩晓增,王树起,等.钾对大豆干物质积累、产量及品质的影响[J].大豆科学,2008,27(1):113-117.
    [363]韩晓增,乔云发,张秋英,等.不同土壤水分条件对大豆产量的影响[J].大豆科学,2003,(4):269-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700