用户名: 密码: 验证码:
大豆结瘤固氮及生长发育对土壤环境无机氮含量的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆体内的氮素主要有三个来源,根瘤固氮、土壤氮和肥料氮。由于大豆依靠根瘤固定的氮远远无法满足大豆生长发育及高产的需要。同时土壤中能为大豆直接吸收利用的铵态氮和硝态氮含量不足1%,因此生产上必须施用适量的氮肥。氮肥施入到土壤中以后与土壤本身的无机氮一起统称为土壤环境无机氮,大豆对氮肥的反应实际上是大豆根系及其共生固氮系统对土壤环境无机氮含量的感知和响应。本试验采用盆栽试验方法,选用具有不同土壤环境无机氮含量的土壤,研究大豆结瘤固氮及生长发育对土壤环境无机氮含量的响应。主要研究结果如下:
     1)根瘤固氮对土壤环境无机氮含量的响应
     土壤环境无机氮含量与不同生育时期根瘤干重、数量、根瘤固氮酶活性及豆血红蛋白含量间均具有负相关关系,而不同生育时期的根瘤干重和数量间具有正相关关系。不同供氮方式不同土壤环境无机氮含量对大豆R_6期根瘤干重和数量的(或相对)抑制大小表现为:R_3期> V_2期> R_1期> R_5期>播期>持续供氮。M3处理时(334.31 mg·kg~(-1)),零结瘤;土壤环境无机氮含量≥M4处理(380.43 mg·kg~(-1))时,产生烧苗,大豆致死。R_1期土壤环境无机氮含量达到H3处理(309.09 mg·kg~(-1)),零结瘤。根瘤固氮酶活性和豆血红蛋白含量间具有正相关关系。不同供氮方式不同土壤环境无机氮含量对大豆根瘤豆血红蛋白含量和固氮酶活性的(或相对)抑制表现为:R_3期> R_1期> V_2期> R_5期>持续供氮>播期。土壤环境无机氮含量≥J4处理时(290.20 mg·kg~(-1)),根瘤固氮酶活性和豆血红蛋白含量为零。
     2)大豆生长发育对土壤环境无机氮含量的响应
     干物质积累过程和根系生长过程均呈“S”型曲线。播期不同土壤环境无机氮含量与干物质积累总量呈正相关关系,而持续供氮方式、V_2、R_1、R_3和R_5不同土壤环境无机氮含量与干物质积累总量均呈极显著负相关关系。持续供氮和播期不同土壤环境无机氮含量处理干物质积累总量由R_6期的干物质积累量所决定;而V_2、R_1、R_3和R_5期不同土壤环境无机氮含量处理干物质积累总量由R_8期的干物质积累量所决定。不同供氮方式不同土壤环境无机氮含量处理对大豆干物质积累总量的促进大小表现为:R_5期> R_1期> R_3期>播期>持续供氮> V_2期,其中R_5期不同土壤环境无机氮含量处理的干物质积累总量高于其它不同土壤环境无机氮含量处理。不同土壤环境无机氮含量的根冠比随着生育时期的推进均呈逐渐下降的变化趋势。R_4期以前,CK2处理的根冠比显著高于其它施氮处理,R_6期以后不同土壤环境无机氮含量处理下的根冠比差异不显著。
     不同生育时期根长、根表面积、根体积间均具有正相关关系。持续供氮方式不同土壤环境无机氮含量与根长、根体积间均具有负相关关系。适宜的土壤环境无机氮含量有利于根长、根表面积、根平均直径、根体积的增加。播前不同土壤环境无机氮含量与根长、根表面积、根体积间均具有负相关关系,而与根平均直径呈正相关关系。
     3)大豆干物质积累对土壤环境无机氮含量的响应
     不同的土壤环境无机氮含量与大豆氮素积累总量均具有极显著负相关关系,适量的土壤环境无机氮含量有利于大豆氮素积累总量的增加。非持续供氮方式不同土壤环境无机氮含量处理的氮素积累总量均高于持续供氮处理,但随着土壤环境无机氮含量的增加氮素积累呈逐渐下降的变化趋势。
     4)大豆产量对土壤环境无机氮含量的响应
     播期不同土壤环境无机氮含量大豆产量低于持续供氮不同环境无机氮处理,而V_2期、R_1期、R_3期和R_5期不同土壤环境无机氮含量处理下大豆产量高于持续供氮不同环境无机氮处理。播期、V_2、R_1、R_3和R_5期不同土壤环境无机氮含量对产量影响的大小表现为:R_5期> R_3期> R_1期> V_2期>持续供氮>播期,以R_5期G2处理的产量最大,达13.47 g·pot~(-1)。
The nodule nitrogen fixation, soil nitrogen and fertilizer nitrogen were the main resource of the growth in soybean. Due to the the nitrogen fixation can not satisfy the growth of soybean, so it necessary to applicate some fertilizer. However, the fertilizer can improved the soybean yield, inhibited the ability of nitrogen fixation. Actually the reaction of nitrogen on soybean was the reaction on symbiotic nitrogen-fixing system and root to soil environmental inorganic nitrogen. It means the fertilizer was put into the soil, it was dissolved and changed into the environmental nitrogen and which was together with the intrinsic environmental nitrogen affect the nitrogen fixation and growth of soybean. The content of soil environmental inorganic nitrogen derived from the sand and clay soil with the same N application rate is different. Meanwhile this is the reason for the ability of nitrogen fixation and development of soybean was different with the same N application rate. In this paper, a pot experiment was conducted to study the effects of the content of the environmental inorganic nitrogen content, which derived from different nitrogen application rate and style, on the ability of nitrogen fixation and development of soybean, and quantify their relationship. The main research results are as follows:
     1)Effect of soil environmental inorganic nitrogen content on nitrogen fixation of nodule
     It was found that the nodule dry weight, number, nitrogenase activity and Lb content had the obviously negative related with the soil environmental inorganic nitrogen content, respectively. The nodule weight had the positive related with the nodule number in different growth stage of soybean. The nodule weight and number was lower before R2 stage of the soil environmental nitrogen content in the sowing date than the soil environmental nitrogen content derived from the continuous N supply style. However, it was higher in the R_6 stage. The nodule number and weight was inhibited by different soil environmental inorganic N derived from the uncontinuous N supply style, the trend showed: R_3 > V_2 > R_1 > R_5 > sowing. Meanwhile, the nodule number and weight was inhibited more seriously with the different environmental inorganic nitrogen content at V_2、 R_1、R_3 and R_5 stage than the different environmental inorganic nitrogen content derived from continuous nitrogen supply style and in sowing date. The nodule number and weight was inhibited with the M3 and H4 treatment, by the soil environmental inorganic content was 264.10 and 238.88 mg·kg~(-1) which was named as zero-nodulation content. And≥310.22 mg·kg~(-1) with the M4 treatment causing death.
     The nitrogenase activity were obviously related with and Lb content. The nitrogenase activity and Lb content was inhibited more seriously with different soil environmental inorganic N derived from the continuous N supply style than the different soil environmental inorganic N derived from the N supply in the sowing date. The nitrogenase activity and Lb content was inhibited by different soil environmental inorganic N derived from the uncontinuous N supply style, the trend showed: R_3 > R_1 > V_2 > R_5 > sowing. It was found that the nitrogenase activity and Lb content was inhibited with the J4 treatment, by the soil environmental inorganic content was 219.99 mg·kg~(-1) which was named as zero- nitrogenase activity and Lb content content.
     2) Effect of the environmental nitrogen content on the development of soybean
     The process of dry matter accumulation and root development showed the same change with“S”. The dry matter accumulation had the negative related with the soil environmental inorganic content derived from the treatment with continuous nitrogen supply style, amd at V_2, R_1, R_3 and R_5 stage, and had positive related with the different soil environmental inorganic nitrogen in sowing date. The dry matter accumulation of different soil environmental inorganic N derived from the continuous N supply style and in sowing date was decided by the dry matter accumulation at R_6 stage, and the dry matter accumulation with the treatment of different soil environmental inorganic N derived from the uncontinuous N supply style was decided by the dry matter accumulation at R8 stage. The total dry matter accumulation was lower with the treatment of different soil environmental inorganic N derived from the continuous N supply style than the treatment of different soil environmental inorganic N derived from the uncontinuous N supply style, and the treatment of different soil environmental inorganic N at V_2, R_1, R_3 and R_5 stage. The dry matter accumulation was increased by different soil environmental inorganic N derived from the uncontinuous N supply style, the trend showed: R_5 > R_1 > R_3 > sowing > V_2. The dry matter accumulation was higher of the treatment at R_5 stage than the other treatment. The R/S was decreased with the growth of soybean increased. The root dry weight was lower with the treatment of N supply in sowing date than the treatment of different soil environmental inorganic N derived from the continuous N supply style. The root dry weight at R_6 stage with the treatment of different soil environmental inorganic N derived from N applicated in V_2, R_1, R_3 and R_5 stage was increased with the soil environmental inorganic N content inceased.
     It was found that the root length, surfarea and root volume had the obviously negative related with each other. The root length and root volume had the obviously negative related with the soil environmental inorganic nitrogen content, respectively. The optimal soil environmental inorganic nitrogen content was benefit to the increase of root length, surfarea and root volume. The root length, root surfare and root volume had the obviously negative related with the soil environmental inorganic nitrogen content, and the root average diameter had positive with the soil environmental inorganic nitrogen content.
     3) Effect of the environmental nitrogen content on N accumulation of soybean
     The total nitrogen accumulation had the obviously negative related with the soil environmental inorganic nitrogen content. The optimal soil environmental inorganic nitrogen content was benefit to the total nitrogen accumulation. The total nitrogen accumulation was higher with the treatment of different soil environmental inorganic N derived from uncontinuous N supply style, however, showed the decreased trend in the growth stage.
     4) Effect of the environmental nitrogen content on the yield of soybean
     The yield was lower with the different environmental nitrogen content in sowing date than the the different environmental nitrogen content of continuous N supply style. Meanwhile, the yield with the different environmental nitrogen content at V_2, R_1, R_3 and R_5 stage was higher than the treatment of different soil environmental inorganic N derived from continuous N supply style. The yield was increase by different soil environmental inorganic N derived from the uncontinuous N supply style, the trend showed: R_5 > R_3 > R_1 > V_2 > sowing. The yield with different soil environmental nitrogen content at the R_5 stage was higher than the other treatment. The G2 treatment was had the highest yield at 13.47 g·pot~(-1) than the other treatment.
引文
艾应伟. 2006.旱作水稻生长期不同覆盖方式的农田N素平衡评估[J].土壤通报, 37(4): 689-690
    毕远林. 1999.大豆干物质积累与氮、磷、钾与吸收与分配的研究[J].大豆科学. 18(4): 331-335
    才艳,郑殿峰,冯乃杰,等. 2007.氮肥施用量对大豆生长动态及干物质积累的影响[J]. 黑龙江八一农垦大学学报, 19(2): 13-16
    曹燕珍,李阜棣. 1979.紫云英根瘤菌的诱变[J].微生物学通报, 6(4): 7-9
    常铁牛,冯正龙,桑瑜. 1998.麦茬复播大豆生育进程、干物质积累及产量形成规律研究初报[J].山西农业科学, 26(3): 44-48
    陈华癸. 1957.土壤微生物学[M].北京:高等教育出版社
    陈家宙,丘华昌. 1996. 5种旱地土壤的供氮特点及其与土壤性质的关系[J].华中农业大学学报, 1996, 3: 237-242
    陈锦坤,孙正国,徐秀银,等. 2007.播期对专用高蛋白大豆产量和品质的调节效应[J].大豆科学, 26(1): 89-91&99
    陈锦坤. 2004.播期和肥料运筹对专用高蛋白大豆产量和品质的调节效应[D].南京农业大学硕士论文
    陈举鸣,李双霖. 1980.矿质营养对红萍生长的影响[J].土壤学报. 17(4): 390-394
    陈丽华,李杰,刘丽君,等. 2002.大豆蛋白质的积累动态及其与产质量形成的关系[J]. 东北农业大学学报. 33(2): 116-121
    陈然,周连仁,丁运常. 2008.大豆生育期土壤硝态氮的动态变化[J].东北农业大学学报,39(9): 40-43
    陈文新. 1996.土壤和环境微生物学[M].北京农业大学出版社, 8: 172-174
    陈扬,李隆,张福锁. 2005,大豆和蚕豆苗期根系生长特征的比较[J].应用生态学报, 16(11): 2112-2116
    程素贞,罗孝荣. 1990.大豆对钼与氮、磷、钾的吸收分配动态及相互关系的初步研究[J]. 大豆科学, 9(3): 241-246
    戴建军,程岩. 2000.黑龙江省南部黑土不同施氮量对大豆产量的影响[J].东北农业大学学报, 31(2): 225-228
    丁洪,李生秀,李世清. 1998.不同形态无机磷对不同大豆磷利用效率的影响[J].中国油料作物学报, 20 (4):71-75
    董钻. 1982.盆栽条件下大豆冠根比研究初报[J].吉林农业科学. 4: 22-26
    范志强. 2004.氮磷营养及氮形态对水曲柳幼苗生长和生理的影响机制[D].东北林业大学博士论文
    傅金民,董钻. 1987.大豆根系生长及其与产量的关系[J].大豆科学, 4: 261-271
    甘银波,本佳婉. 1996.不同氮肥管理对毛豆共生固氮及产量的影响[J].中国油料, l8(1): 34-37
    郭海龙,马春梅,董守坤,等. 2008.春大豆生长中对不同氮源的吸收利用[J].核农学报, 22(3): 338-342
    韩晓增,严君,李晓慧. 2010.大豆共生固氮能力对土壤无机氮含量的响应与调控[J].大豆科技,1: 6-8
    何建国,严华,贾金川,等. 1999.不同氮肥管理对大豆生长及产量的影响[J].大豆通报. 1期
    贺振昌. 1982.高产大豆的营养与施肥的探讨[J].中国农业科学. 1: 65-70
    黑龙江省统计局,国家统计局黑龙江调查队编. 2010.黑龙江统计年鉴[M],中国统计出版社, 382-385
    胡根海,章建新,唐长青. 2002.北疆春大豆生长动态及干物质积累与分配[J].新疆农业科学,39(5): 264-267
    黄国弟. 2005.现代农业中提高肥料利用率的途径[J].广西热带农业, 1: 21-22
    贾树龙,孟春香,唐玉霞,等. 1995.麦田生态系统中的水肥时空关系与调控途径[J].中国生态农业学报, 3(3): 64-68
    姜存松,李焕珍,葛鲁敏. 1987.滨海盐渍型高产水稻土培肥的土壤氮素矿化势研究[J]. 北方水稻. 2: 10-13
    金剑,刘晓冰,王光华,等. 1998.氮素积累、分配与大豆产量的关系[J].大豆通报, (6): 25
    金喜军,马春梅,董守坤,等. 2007.大豆生育期间土壤铵态氮与硝态氮变化及相关性分析[J].东北农业大学学报, 38(3): 289-293
    金喜军,马春梅,龚振平,等. 2010.大豆鼓粒期对肥料氮的吸收与分配研究[J].植物营养与肥料学报, 16(2): 395-399
    昆野昭展(苗以农译).1981.国外农学-大豆[J]. 1, 3-14
    黎林. 2009.生物固氮的研究现状初探[J].韶关学院学报(自然科学),30(3): 88-91
    李阜棣. 1996.土壤微生物学[M],北京:中国农业出版社出版
    李海亮,郑秀芳. 2011.硝态氮和铵态氮对观赏百合生长发育的影响[J].南方园艺, 22(1): 14-17
    李仁岗,王淑敏,王克武,等. 1982.冬小麦对土壤氮和肥料氮的吸收及氮素平衡的研究[J].土壤通报, 4:21-22
    李淑贞,赵乃新. 1983.不同施肥方法对大豆结瘤固氮和产量的影响[J].大豆科学, 2(3): 217-224
    李向东,吴爱荣. 1992.豆科油料作物根瘤固定氮与生物环境[J].中国油料, 4: 82-84
    李小为. 2004.大豆生长中土壤与肥料的功能作用[J].大豆通报. 4: 20-21
    李永孝,李佩挺. 1995.施肥量和追肥期对夏大豆产量性状的影响[J].大豆科学. 14(2): 119-125
    李勇,周毅,郭世伟,等. 2007.铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响[J].中国水稻科学, 21(3): 294-298
    李酉开. 1983.土壤农业化学常规分析方法[M].北京:科学出版社,272-273
    李宗盛,李展辉,邓建军. 1986.不同时期施氮对大豆产量影响的研究[J].干早地区农业研究. 6: 45-47
    刘春红,敖奎. 2003.不同培肥途径对土壤中氮含量的影响[J].北方园艺, 2: 56-57
    刘芳. 1994.小麦吸收肥料氮和土壤氮的探讨[J].核农学通报, 15(2):81-84
    刘国顺,刘韶松,贾新成,等. 2005.烟田施用有机肥对土壤理化性状和烟叶香气成分含量的影响[J].中国烟草学报, 11(3): 29-33
    刘健. 2010.三种质地土壤氮素淋溶规律研究[D].北京林业大学硕士论文
    刘莉,周俊初,陈华癸. 1998.不同化合态氮含量对大豆根瘤菌结瘤和固氮作用的影响[J].中国农业科学, 31(4): 87-89
    刘丽君,孙聪姝,刘艳,等. 2005.氮肥对大豆结瘤及叶片氮素积累的影响[J].东北农业大学学报,36(2): 133-137
    刘晓冰,金剑,张秋英,等. 2001.不同大豆基因型氮素积累运转研究简报[J].大豆科学, 20(4): 298-300
    刘晓洁. 2001.重迎茬大豆栽培施氮技术试验[J].大豆通报. 2: 8-9
    刘学军,巨晓棠,张福锁. 2001.基施尿素对土壤剖面中无机氮动态的影响[J].中国农业大学学报, 6(5): 63-68
    鲁如坤. 2000.土壤农业化学分析方法[M].北京:中国农业科技出版社, 308-311
    吕世霖,李志. 1963.山西省大豆生态型特点及其分布[J].山西农业科学, 6: 13-16
    吕英华,秦双月. 2002.测土与施肥[M].北京:中国农业出版社
    马春梅,董守坤,张磊,等. 2010.大豆生育期间土壤无机态氮与植株硝态氮变化规律的研究[J].土壤通报, 41(4): 942-946
    苗淑杰,乔云发,韩晓增,等. 2009.缺磷对已结瘤大豆生长和固氮功能的影响[J].作物学报, 35(7): 1344-1349
    倪丽,章建新,金加伟. 2004.氮肥施用对高产大豆根系、干物质积累及产量的影响[J]. 新疆农业大学学报, 27(2): 36-39
    乔云发,苗淑杰,韩晓增. 2006.氮素形态对大豆根系形态性状及释放H+的影响[J].大豆科学, 25 (3): 265-269
    桑原真人. 1986.タィズの多收条件と室素代谢(2).农业ぉょぴ园艺, 61(5): 590-598
    上海植物生理研究所固氮研究室. 1974.固氮研究中乙炔还原定量测定方法的简易化[J].植物学报. 16(4): 382-384
    沈润平,王中孚,郭进耀,等. 1998.氮磷钾营养对春大豆产量品质效应的研究[J].江西农业大学学报, 20(1): 51-55
    史正军,樊小林. 2003.作物对氮素养分高效吸收的根系形态学研究进展[J].广西农业生物科学, 22(3): 225-229
    宋海星,李生秀. 2003.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学, 36(1): 71-76
    宋海星,申斯乐,马淑英,等. 1997.硝态氮和氨态氮对大豆根瘤固氮的影响[J].大豆科学, 16(4): 283-286
    宋海星,王萍,申斯乐,等. 2000.大豆共生固氮与叶片全氮含量之间关系的研究[J].吉林农业科学, 25(6): 9-11
    孙广玉,何庸,张荣华. 1996.大豆根系生长和活性特点的研究[J].大豆科学, 15(4): 317-320
    孙贵荒,刘晓丽,董丽杰,等. 2002.高产大豆干物质积累与产量关系的研究[J].大豆科学, 21(3): 199-203
    孙太靖,龚振平,马春梅. 2004.大豆植株氮素积累与运转动态的研究[J]. 35(5): 517-521
    孙彦浩,陈殿绪,张礼凤. 1998.花生施氮肥效果与根瘤菌固N的关系[J].中国油料作物学报, 20(3): 69-72
    汤树德,徐凤花,隋文志,等. 1995.保护性施氮对大豆生育和产量的影响[J].黑龙江八一农垦大学学报, 8(2): 15-24
    汤树德. 1993.秸杆还田原理及其应用[M].北京农业大学出版社.108-119
    藤田耕之辅. 1986.タィズおよびレンクの生育をリびに室素の固定に对する化合态室素ゃ碳酸力スの影响[J].土壤肥料学杂志, 57 (1): 3-12
    田茂洁. 2004.土壤氮素矿化模型研究进展[J].四川环境, 4: 37-42
    田艳洪. 2007.不同时期施用氮肥对大豆根瘤固氮酶活性及产量的影响[D].东北农业大学硕士论文
    汪霞,徐宇,李广军,等. 2010.大豆百粒重QTL定位[J].作物学报, 36(10): 1674-1682
    王丹英,汪自强. 2001.播期、密度、氮肥用量对菜用大豆产量和品质的效应[J].浙江大学学报. 27(l): 69-72
    王光华,金剑,潘相文,等. 2004.不同茬口大豆根圈土壤pH值和氮营养分布的变化[J]. 中国油料作物学报, 26(1): 56-60
    王红波,章建新,李强. 2008.氮肥施用量对覆膜菜用大豆根系生长的影响[J].甘肃农业大学学报, 43(6):58-62
    王红军,吴奇峰,谢映周. 2006.大豆籽粒干物质积累规律及与产量关系的研究[J].新疆农业科学, 43(4): 268-270
    王金陵. 1982.大豆[M].哈尔滨:黑龙江科学技术出版社, 1: 1-16
    王晶,许修宏. 2008.不同根瘤菌、大豆品种、土壤类型对固氮酶活性的影响[J].东北农业大学学报, 39(9): 36-39
    王立刚,刘景辉,刘克礼,等. 2004.大豆氮素积累、分配与转移规律的研究[J].作物杂志. 5: 20-22
    王立刚,刘景辉,刘克礼,等. 2005.大豆对氮素吸收规律的研究[J].中国农学通报, 20(6): 161-165
    王巧兰,吴礼树,赵竹青. 2007. 15N示踪技术在植物N素营养研究中的应用及进展[J]. 华中农业大学学报, 26(1): 127-132
    王晓巍,郭少华,周喜君. 1998.影响大豆生物固氮的环境因素[J].黑龙江水专学报, 22: 62-64
    王艳杰,邹国元,付桦,等. 2005.土壤氮素矿化研究进展[J].中国农学通报, 21(10): 203-208
    王玉峰. 2005.大豆在白浆土中的吸肥规律及施肥对其产量的影响[J].中国农学通报, 21(11): 220-221
    文启孝,张晓华,杜丽娟,等. 1988.太湖地区主要土壤中的固定态铵及其有效性[J].土壤学报, 1: 22-30
    吴魁斌,沈国清. 1998.对大豆氮素利用率及体内分配规律的研究[J].现代化农业, 12: 9-10
    吴奇峰,何桂红,董志新. 2005.新疆绿洲高产大豆籽粒干物质积累规律及产量表现[J]. 耕作与栽培, 1:22-23
    肖能遑,李志玉. 1982.苗期施氮对大豆生长发育及产量的影响[J].中国油料作物学报, 40-49.
    肖焱波,李文学,段宗颜,等. 2002.植物对硝态氮的吸收及其调控[J].中国农业科技导报, 4(2): 56-59
    许广领. 1997.麦秸还田配施氮肥对增加土壤有机质和提高夏大豆产量的效应[J].江苏农业科学, 6(1): 50-52
    严君,韩晓增,王守宇,等. 2009.不同形态氮对大豆根瘤生长及固氮的影响[J].大豆科学, (4): 674-677
    严君,韩晓增,王守宇. 2010.不同施氮量及供氮方式对大豆根瘤生长及固氮的影响[J]. 江苏农业学报, 26(1): 75-79
    严君,韩晓增,祖伟. 2011.供氮方式对黑土土壤无机氮浓度的影响[J].水土保持学报, 25(1): 53-57&63
    严君. 2009.施氮对大豆结瘤固氮及生长的影响[D].东北农业大学硕士论文
    杨贵羽,罗远培,李保国,等. 2005.冬小麦根系对水分胁迫期间和胁迫后效的响应[J].中国农业科学, 38(12): 2408-2414
    杨继余,赵爱莉,付艳华,等. 1995.大豆共生固氮及氮肥施用改良方法[J].农业与技术, (3): 29-31
    杨琼博.2007.pH值和化合态氮对紫花苜蓿结瘤和固氮效果的影响[D].东北农业大学硕士学位论文
    杨子文,沈禹颖,谢田玲,等. 2009.外源供氮量对大豆生物固氮效率的影响[J].西北植物学报, 29(3): 0574-0579
    姚玉波,张磊,马春梅,等. 2009.施氮水平对大豆吸收利用氮素及产量的影响[J].东北农业大学学报, 40(4): 6-10
    尤崇杓,里景伟,宋未. 1981.氮素营养对红萍生理特性的影响[J].植物生理学报, 7: 97-104
    张福锁. 1992.土壤与植物营养研究新动态(第一卷)[M].北京:北京农业大学出版社, 73-82
    张含彬.2007.氮肥运筹对套作大豆生长发育影响的研究[D].四川农业大学硕士学位论文
    张宏,张桂芝,王晓明. 1985.施用硫铵和硝铵对大豆根瘤菌共生固氮量及产量的影响[J].吉林农业科学, 4: 43-48
    张金波,宋长春. 2004.土壤氮素转化研究进展[J].吉林农业科学, 29(1): 38-43&46
    张荣铣. 1984.硝态氮对于大豆幼苗生长、根瘤固氮及光合产物运转的影响[J].南京农学院学报, 2
    张瑞朋. 2008.尿素施用量对不同大豆品种产量和品质的影响[D].沈阳农业大学博士论文
    张武,李宝华,李艳杰,等. 2010.施氮对大豆接种根瘤菌的影响[J].黑龙江农业科学, (11): 38-40
    张志勇,王素芳,汤菊香,等. 2009.植物根系形态建成研究进展[J].江苏农业科学, (3): 14-16
    张子金. 1987.中国大豆育种与栽培[M].北京:农业出版社, 122-124
    章建新,倪丽,翟云龙. 2005.施氮对高产春大豆氮素吸收分配的影响[J].大豆科学, 24(1): 38-42
    章建新,翟云龙,薛丽华. 2006.密度对高产春大豆生长动态及干物质积累分配的影响[J].大豆科学, 25(1): 1-5
    赵斌,何绍江. 2002.微生物实验[M].北京:科学出版社
    赵秀芬,房增国. 2005.大豆、花生固氮与施氮关系的研究进展[J].安徽农学通报, 11(3): 48-49
    赵中华,刘德章. 1997.棉花群体干物质生产与分配的数学模型研究[J].棉花学报,9(1): 41-46
    周惠民,林佩真,樊庆笙. 1986.大豆初花期施氮肥效果的研究[J].南京农业大学学报, (4): 62-67
    朱长甫,苗以农,刘学军,等. 1995.野生大豆酰脲含量与根瘤固氮活力的关系[J].植物生理学报, 21(3): 307-312
    朱兆良,文启孝. 1992.中国土壤氮素[M].南京:江苏科技出版社
    朱兆良. 2003.合理使用化肥充分利用有机肥发展环境友好的施肥体系[J].中国科学院院刊, 2
    邹春琴,杨志福. 1994.氮素形态对春小麦根际pH变化的影响[J].土壤通报, 25 (4):175-177
    左元梅,刘永秀,张福锁. 2003.与玉米混作改善花生铁营养对其根瘤形态结构及豆血红蛋白含量的影响[J].植物生理与分子生物学学报, 29(1): 33-38
    Afza R, Hardarson G, ZaPala F, et al. 1987. Effeets of delayed soil and foliar N fertilization on yield and N2 fixation of soybean [J]. Plant and soil. 97(3): 361-368
    Bergersen F J and Turner G L. 1968. Comparative studies of nitrogen fixation by soybean root nodules, bacteroid suspensions and cell-free extracts [J]. J. General Micoro., 53(2): 205-220
    Bergersen F J. 1969. Nitrogen fixation in legume root nodules: biochemical studies with soybean[J]. Proceeding of Royal Society of Lond. Series B, Biological sciences, 172(1029): 401-416
    Bhat K K S. 1983. Nutrient inflows into apple roots[J]. Plant and soil, 71(1&3): 371-380
    Brian G F, Clarkson D T. 1999. Nitrate and ammonium nutrition in plants: Physiological and molecular perspectives[J]. Advances in Botanical Research, 30: 1-90
    Cheng Q. 2008. Perspectives in biological nitrogen fixation research[J]. J. Integarative Plant Biology, 50(7) :786-798
    Christophe S, Nathalie G, Duc G, et al. 2001. Grain legume seed filling in relation to nitrogen acquisition: Areviewand prospectswith particular reference to pea [J]. Agron. Sustain. Dev., 21(6&7): 539-552
    Costa C, Dwyer L M, Hamilton R I, et al. 2000. A sampling method for measurement of large root systems with scannerbased image analysis[J]. J. Agron., 92(4): 621-627
    Crawford, Glass. 1998. Molecular and physiology aspects of nitrate uptake in plants[J]. Trends in plant science, 3(10): 389-395
    Dakora D F, Appleby C A, Atkins C A. 1991. Effects of pO2 on the formation and status of leghaemoglobin[J]. Plant Physiol., 95(3): 723-730
    Dakora Felix D.1998. Nodule function in symbiotic bambara groundnut (Vigna subterranea L.) and kersting’s bean (Maerotyloma geoearpum L) is to lerant of nitrate in the root medium[J].Annals of Botany. 82(5): 687-690
    Denison R F, Hunt S, Layzell D B. 1992. Nitrogenase activity, nodule respiration, and O2 permeability following detopping of alfalfa and birdsfoot trefoil[J]. Plant Physiol, 98(3): 894-990
    Denison R F, Layzell D B. 1991. Measurement of legume nodule respiration and O2 permeability by noninvasive spectrophotometry of leghemoglobin[J]. Plant Physiol., 96(1): 137-143
    Egli D B, Bruening W E. 2007 Accumulation of nitrogen and dry matter by soybean seeds with genetic differences in protein concentration[J]. Crop sci., 47:359-366
    Egli D B. 2006. The role of seed in the determination of yield of grain crops[J]. Australian Journal of Agricatural Research, 57(12): 1237-1247
    Escuredo P R. 1996. Involvement of activated oxygen in nitrate indueed senescence of Pea root nodules[J]. Plant Physiol. 110(4): 1187-1195
    Fehr W R, Cavines C E, Burmood D T, et al. 1971. Stage of developmnts descriptions for sooybean-Glycine max. (L.) Merrill[J]. Crop Sci. 11(6): 929-931
    Fixen P E and West F B. 2002. Nitrogen fertilizers: Meeting contemporary challenges [J]. Ambio, 31(2):169-176
    Fujitak, Masudat, Ogatas. 1988. Dinitrogen fixation, ureide concern tration in xylem exudates and translocation of photosynthates in soybean as in fluenced by pod removal and defoliation[J]. Soil Sci Plant Nutri, 34(2):265-275
    Gadimov A G, Safaraliev P M. 1999. Changes in nitrogen status of soybean under influence of symbiotically fixed and bound nitrogen [J]. Tr. J. Agric. For., 23:389-392
    Gan Y B, Stulen I, Posthumus F, et al. 2002. Effect of N management on growth, N2 fixation and yield of soybean. Nutr. Cycl. Agroecosyst, 62(2): 163-174
    Gan Y B, Stulen I, Van Keulen H, et al. 2003. Effect of N fertilizer top-dressing at variousre productive stages on growth, N2 fixation and yield of three soybean (Glycinemax (L.)Merr.) genotypes[J]. Field Crops Res., 80(2): 147-155.
    Gazzarrini S, Lejay L, Gojon A, et al. 1999. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots[J]. Plant Cell. 11(5): 937-948
    Geoffrey N A. 1978. Soybean Physiology, Agronomy, and Utilization[M]. Academic Press.
    Graham R D, Gregorio G. 1984. Breeding for nutritional characteristics in cereals[J]. Adv plant Nutri., 1: 57-102
    Granato T C, Raper C D, 1989. Proliferation of maizer roots in response to localized supply of nitrate[J]. J Exp Bot, 40: 263-275
    Granto T C, Raper C D. 1989. Proliferation of maize (Zea may L.) roots in response tolocalized supply of nitrate[J]. J. Experimental Botany. 40(211): 263-275
    Guzzo F, Portaluppi P, Grisi R, et al. 2005. Reduction of cell size induced by enod40 in Arabidopsis thaliana [J]. J. Experimental Botany, 56(412): 507-513
    Hanway J J, Weber C R. 1971. Accumulation of N, P and K by soybean (Glycine max (L.)Merill.) plants[J]. J. Agron., 63(3): 406-408
    Hardy R W F and Havelka U D. 1975. Nitrogen fixation research: A key to world food?[J]. Science. 188 (4188): 633-643
    Hattingh M J, Louw H A. 1964. The antagonistic effects of soil micro-organisms, isolated from the root region of clovers, on Rhizobium trifolii[J]. South African Journal of Agricultural Sciences, 9: 239-252
    Herridge D F, Brockwell J. 1988. Contribution of fixed nitrogen and soil nitrate to the nitrogen economy of irrageted soybean[J]. Soil Biology &Biochemistry, 20(5):711-717
    Jin J, Wang G H, Liu X B, et al. 2005. Phosphorus regulates root traits and phosphorus uptake to improve soybean adaptablity to water deficit at initial flowering and full pod stage in a pot experiment[J]. Soil science and plant nutrition, 51(7): 953-960
    Kleczkowska J. 1957. A study of distribution and effects of bacteriophage of root nodule bacteria in the soil[J]. Canadian Journal of Microbiology. 3(2): 171-180
    Knoepp J D, Turner D P, Tingey D T. 1993. Effects of ammonium and nitrate on nutrient uptake and activity of nitrogen assimilating enzymes in western hmlock[J]. Foresty Ecology and Management, 59(3&4): 179-191
    Kumudini S V, Pallikonda P K, Steele C. 2007. Photoperiod and E-genes influence the duration of the reproductive phase in soybean [J]. Crop Science society of America, 47(4): 1510-1517
    Liedgens M, Soldati A, Stamp P, et al. 2000. Root development of maize (Zea mays L.) as observed with Minirhizotrons in Lysimeters[J]. Crop Science, 40(6): 1665-1672
    Liu L, Zhou J C, Chen H K. 1998. The effect of the compound nitrogen concerntration on the nodulation and nitrogen fixation in soybean[J]. Scientia agricultura Sinica. 31(4): 87-89
    Lowther W L, Loneragan J F. 1968. Calcium and Nodulation in subterranean clover (Trifolium subterraneum L.) [J]. Plant Physiol., 43(9): 1362-1366
    Lowther W L, Loneragan J F. 1970. Calcium in the nodulation of legumes. Proceedings 11th int. Grassld Congr., Surfers Paradise, 446-450
    Marschner H, Kirkby E A, Cakmak T. 1996. Effect of mineral nutritional status on shoot-root partitioning of photoassilates and cycling of mineral nutrients[J]. J Exp Bot. 47: 1255-1263
    Marschner H. 1986. Mineral Nutrition of higher plant[M]. Academic Press, Inc., London, UK, 674
    Miah M Y,Kanazawa S, Chino M. 1998. Nutrient distribution across wheat rhizosphere with oxamide and ammonium sulfate as N source [J]. Soil Sci Plant Nutrition, 44(4): 579-587
    Minchin F R, Summefield R J, Newes M C P. 1980. Carbon metabolism, nitrogen assimilation, and seed yield of cowpea (Vignaunguiculata L. Walp.)grown in an adverse temperature regime[J]. J Exp Bot. 31: 1327-1347
    Nastasija M, Jelena M. 2008. Effect of fertilizer application on growth and yield of inoculated soybean [J]. Not. Bot. Hort. Agrobot. Cluj., 36(1):45-81
    Nutman P S. 1975. Rhizobium in the soil[M]. p111-131. in N. Walker(ed.), Soil microbiology. John Wiley & Sons, Inc., New York
    Ohwaki Y, Sugahara P. 1997. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.) [J]. Plant Soil, 189(1): 49-55.
    Parker C A, Grove P L.1970. Bdellovibrio bacteriovorus parasitizing Rhizobium in Western[J]. J Appl Bacteriol. 33(1): 253-255
    Parker M B, Harris H B. 1977. Yield and leaf nitrogen of nodulationg and non-nodulationg soybeans as affected by nitrogen and molybdemum[J]. Agro J. 69(4): 551-554
    Purcell L C, Serraj R, Sinclair T R, et al. 2004. Soybean N2 fixation estimates, ureide concentration, and yield responses to drought[J]. Crop Sci. 44(2): 484-492
    Raab T K and Terry N. 1994. Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. [J]. Plant Physiol. 105(4): 1159-1166
    Riley I T, Dilworth M J. 1985. Cobalt requirement for nodule development and function in lupinus angustifolius L. [J]. New Phytologist, 100 (3): 347-359
    Robinson J M, Baysdorfer C. 1985. Interrelationships between carbon and nitrogen metabolism mature soybean leaves and isolated mesophyll cells. In: RL Health and J Preiss (eds) Regulation Carbon Partitioning Photosynthetic Tissues, pp333-357. American Society of Plant Phydiologists, Rockville, MD
    Rygiewicz P T, Bledsoe C S. 1986. Effects of pretreatment conditions on ammonium and nitrate uptake by Douglas-fir seedlings[J]. Tree Physiology, 1(2): 145-150
    Salvagotti F, Cassman K G, Specht J E, et al. 2008. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review [J]. Fieled Crops Research, 108(1):1-13
    Schonbeck M W, Hsu F C, Carlsen T M. 1986. Effect of pod number on dry matter and nitrogen accumulation and disturibution in soybean[J]. Crop Sci, 26(4): 783-788
    Seneviratne G, Van Holm L H J, Ekanayake E M H G S. 2000. Agronomic benefits of rhizobial inoculant use over nitrogen fertilizer application in tropical soybean[J]. Field crop research, 68(3):199-203
    Sheokand S, Babber S, Swaraj K. 1998. Nodule structure and functioning in Cicer arietinumas affected by nitrate. Biologia Plantarum, 41(3): 435-443
    Shleev S V, Rozov F N, Topunov A F. 2001. A method for producing multiple forms of merleghemoglobin reductase and leghemoglobin components from Lupin nodules[J]. Applied Biochemistry and Microbiology. 37(2): 195-200
    Sinclair T R, Wit C T. 1975. Photosynthate and nitrogen requirements for seed production by various crops[J]. Science, 189(4202): 565-567
    Smeekens S. 2000. Sugar-induced signal transduction in plants[J]. Annual Review of plant Physiology and Plant Molecular Biology. 51(1): 49-81
    Sohlenkamp C, Craig C W, Gerhard W R, et al. 2002. Characterization of Arabidopsis At AMT2, a High-Affinity Ammonium Transporter of the Plasma Membrane[J]. Plant Physiology, 130(4):1788-1796
    Stevenson. 1982. Organic forms of soil nitrogen[M]. Madison, Wisconsin USA: Am Soc of Agron Inc, 67-122
    Tang C, Hinsinger P, Drevon J J, et al. 2001. Phosphorus Deficiency Impairs Early Nodule Functioning and Enhances Proton Release in Roots of Medicago truncatula L.[J]. Annals of Botany, 88(1): 131-138
    Ullrich. 1992. Transport of nitrate and ammonium through plant membranes, In Nitrogen Metabolisms in plants (Mengel, Pilbeam) [M]. Oxford university press: Oxford, Great Britain, 121-137
    Uziakowa A. 1959. The in?uence of different forms of nitrogen nutrition upon the growth and symbiosis of soybeans[J]. Acta Microbiology, 8: 315–318
    Vamerali T, Saccomani M, Bona S, et al. 2003. A comparison of root characteristics in relation to nutritient and water stress in two maize hybrids[J]. Plant and Soil, 255(1):157-167
    Vessey J K, Waterer J. 1992. In search of the mechanism of nitrate inhibition of nitrogeanase activity in legume nodules: recent developments[J]. Physiologia Plantarum. 84(1): 171-176
    Vidmar J J, Zhou D, Siddiqi M Y, et al. 2000. Regulation of high-affinity nitrate transpoter genes and high-affinity nitrate influx by nitrogen pools in roots of barley[J]. Plant Physio., 123(1): 307-318
    Wagner B W, Beck E. 1993. Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status[J]. Planta, 190(4): 511-518
    Wang M Y, Siddiqi M Y, Ruth T J. 1993. Ammonium uptake by rice roots (II. Kinetics of 13NH4+ influx across the plasmalemma)[J]. Plant Physiol, 103(4):1259-1267
    Watababe T, Tabuchi K, Nadano H. 1986. Response of soybean to supplemental nitrogen after floweing[M]. In: Soybean in Tropical and subtropical cropping system. Eds: S shanmugas-undaram, E W Sulzherger and BT Mclean., 308-310
    Weber C R. 1966. Nodulating and non-nodulating soybean isolines. II. Response to applied N and modified field conditions[J]. J. Agron. 58, 46-49
    Werner D. 1992. Physiology of nitrogen-fixing legume nodules: Compartments and functions [M]. In: Stacey G, Burris R, Evans H, eds. Biological nitrogen fixation. New York: Chapman and Hall, 399-431
    Wu P,Tao Q N. 1995. Genotypic response and selection pressure on nitrogen use efficiency in rice under the nitrogen regimes[J]. J. Plant Nutr., 18(3): 487-500
    Youssef R A, Chino M. 1989. Root induced changes in the rhizoshere of plants: I. pH changes in the relation to the bulk soil [J]. Soil Sci Plant Nutrition, 35(3): 461-468
    Zhang H, Andera J, Peter W, et al. 1999. Dual pathways for regulation of root branching by nitrate [J]. Plant Biology, 96(11): 6592-6534

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700