用户名: 密码: 验证码:
RY10-4的抗肿瘤血管生成和侵袭研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮(flavonoids)作为一种在植物中广泛存在的化合物,也大量的存在于人们的日常饮食中,其集多种优良的生理、药理,保健活性于一身,默默的维系着人类的身体健康。黄酮类化合物从日常的身体状态的调节到肿瘤以及心血管等重大疾病的预防都发挥着不可忽视的作用。随着研究的深入,在治疗疾病的层面上,近年来,某些黄酮因其低毒、高效、天然的特点而倍受关注。
     普通针毛蕨Macrothelypteris torresiana(Gaud.)Ching,为金星蕨科针毛蕨属的植物,在我国长江以南的各省均存在大量分布。民间普遍认为该植物具有清热解毒,软坚散结的功效,因此在传统中医中其常被用于止血及治疗水肿。通过近几年的深入研究发现,世界上多个实验室均发现,普通针毛蕨中所含的特殊黄酮成分原芹菜素(Protoapigenone)在体内和体外的抗肿瘤活性筛选中均有良好的表现。更加令人惊喜的是,原芹菜素抗肿瘤谱较广,对不同来源的肿瘤细胞都表现出明显的细胞毒作用。通过进一步研究发现,以Protoapigenone为代表的一系列的B环为非芳香环的黄酮类化合物,在体内和体外筛选实验中均表现出良好的抗肿瘤活性;而结构相似的传统黄酮的抗肿瘤作用却很微弱。
     在前人的研究基础上,本课题以Protoapigenone为先导化合物,采用化学全合成的方法开发出了新化合物RY10-4,其具体命名为2-(1-hydroxy-4-oxo-2,5-cyclohexadien-1-yl)-4H-pyran-4-one,其中包括核心基团1-hydroxycyclohexa-2,5-dien-4-one。在初步的体外筛选中采用肝肿瘤细胞,肺肿瘤细胞,乳腺肿瘤细胞,前列腺肿瘤细胞等对RY10-4进行全面抗肿瘤的体外评价,结果显示人源乳腺肿瘤细胞为该化合物最佳的靶向肿瘤细胞。同时在实验中也观察到,该化合物不但展现出了良好的抗肿瘤作用,且其副作用也比较微弱。这种初步的筛选结果为后续的深入研究提供了基础并指明了研究的方向。通过后续研究发现该化合物可以作用于肿瘤细胞中的多条通路,包括经典的PI3K-AKT和MAPK通路。
     在本课题中,针对RY10-4的毒副作用小的特点,采用了抗血管生成和抗细胞迁移两个途径来评价其抗肿瘤的具体作用机制。在抗血管生成的实验中,本实验采用人脐静脉内皮细胞(HUVECs)建立体外模型以模拟RY10-4对血管生长的抑制作用,体外小管形成抑制作用,以及细胞运动能力抑制作用。同时用斑马鱼来模拟细胞的整体的血管生成。通过上述模型,从表观学来评价了RY10-4的抗血管生成的能力。为了探讨具体的药物分子作用机制,实验通过模拟缺氧环境建立AKT-mTOR-HIF-1-VEGF通路评价系统。通过免疫印迹方法在MDA-MB-231和MCF-7两种人源肿瘤细胞中评估RY10-4对该通路的作用。结果发现肿瘤细胞中该通路上关键蛋白磷酸化激活在RY10-4共培养后被弱化,进而使得这条通路被抑制。
     由于肿瘤细胞周边的血管生成行为和肿瘤细胞的侵袭与迁移密切相关,实验中采用人源性乳腺癌肿瘤细胞MDA-MB-231,一种易于迁移的乳腺肿瘤细胞作为细胞实验模型。首先通过细胞粘附,和transwell法在体外模拟肿瘤细胞侵袭和迁徙三个过程:肿瘤细胞粘附于相邻组织上,降解细胞外基质,发生迁徙。然后针对细胞的主要结构支撑蛋白即钙粘蛋白环粘蛋白复合体和细胞外基质采用免疫荧光和免疫印迹的方法来检测其表达和分布。结果显示钙粘蛋白以及在胞内与其构成细胞骨架的环粘蛋白在RY10-4作用以后表达量和表达的位置都发生了明显的变化,主要表现在环粘蛋白在胞内的表达增加,而在核内的表达则减少,钙粘蛋白的表达范围更大而且表达量也增加。MMP-2/9作为主要的细胞外基质降解酶,其表达量的多少与细胞外基质的数量息息相关。因此采用免疫印迹的方法对MMP-2/9以及其上游通路的相关蛋白的表达量来进行评价。结果显示MAPK可能是RY10-4作用于肿瘤细胞的另一条通路,MAPK与PI3K-AKT共同影响着MMP-2/9的表达,而这种通路的激活可以被RY10-4通过降低其上关键蛋白的磷酸化的来阻断。
     作为一个有开发前景的化合物,本课题建立了RY10-4的HPLC-UV分析方法。并采用该方法建立了大鼠体内的分析模型并初步进行了RY10-4在大鼠体内的药物分布研究。结果显示RY10-4无论是在空白样中还是在动物组织内均可以在HPLC-UV下采用常规的流动相进行高灵敏度的检出。组织分布的初步结果显示RY10-4的在组织中的分布和血液量有正相关,该化合物在血流充盈的器官中的分布情况差别不大,在血液中可以较长时间保持一个相对高的浓度,这对于该化合物的后续的药物开发工作是十分有利的。
Flavones are a series of compounds that widely distributed in plants, and existedin our daily diet in a large amount. They rolled physiological, pharmacological andhealth activities into a one, nourished our body silently. They play an essential rolefrom the daily regulation of the body to the prevention of major diseases such astumors and cardiovascular disease. With further research, flavones have attractedmore and more attention in the aspect of disease treatment due to their characteristicsof natural, high efficiency and low toxicity.
     Macrothelypteris torresiana (Gaud.) Ching, widely distributed in the provinces insouthwestern China, is a member of genus Mcrothelypteris in familyThelypteridaceae. The plant has the functions of clearing heat and removing toxicityand softening and resolving hard mass. It was often used in traditional Chinesemedicine to stop the bleeding and the treatment of edema.
     In the recent years, several laboratories in the world have found that a particularflavonoid, protoapigenone, which detected in the Macrothelypteris torresiana (Gaud.)Ching have exhibited fine activities both in vivo and in vitro anti-tumor screen. Whatis more commendable to statement is that it has a wide spectrum of anti-tumorsignificant cytotoxicity to several tumor cells from different sources. Protoapigenonerepresent a series of flavonoids with a non aromatic B ring, which can exhibit a goodanti-tumor activity in vivo and in vitro screening experiments are found throughfurther researchs. Meanwhile the traditional flavones with similar structure have littleanti-tumor effects.
     Based on the previous studies, used protoapigenone as a model, we adoptedchemical synthesis methods to develop the new compounds RY10-4. It wasspecifically named as2-(1-hydroxy-4-oxo-2,5-cyclohexadien-1-yl)-4H-pyran-4-one,including a core group:1-hydroxycyclohexa-2,5-dien-4-one. In preliminary in vitroscreening, we adopted a liver tumor cells, lung tumor cells, breast tumor cells,prostate tumor cells as target tumor cells, among which breast were most sensitive to RY10-4. Besides the fine anti-tumor activities, no obvious side effects were observed.The results provided the basis for subsequent in-depth study and indicated thedirection of further research. Through a follow-up study we found that the compoundscan act on multiple pathways of tumor cells, such as the classic PI3K-AKT andMAPK pathways.
     In the task, taken the characteristics of small side effect of RY10-4into account,anti-angiogenic and anti-cell migration are two promising pathway to evaluate thespecific anti-tumor mechanism. In anti-angiogenesis experimental, firstly humanumbilical vein endothelial cells (HUVECs), which were essential cells in tubeformation, were co-cultured with RY10-4, secondly tube formation inhibition andinhibition of cell motility also accomplished using HUVECs, finally transgeniczebrafish was used as a whole angiogenesis model to assess RY10-4. Through theabove model, we evaluate the ability to anti-angiogenic of RY10-4by superficial test,which gave us a direction for further study. In order to explore the specific mechanismand behavior of RY10-4, we simulated hypoxic environment and established anAKT-mTOR-HIF-1-VEGF pathway evaluation system. We evaluated the role ofRY10-4in the signal pathway in two human source tumor cells lines MDA-MB-231and MCF-7by immunoblotting. The results shows that the phosphorylation of keyprotein of the tumor cells in the pathways was inactivated after the tumor cellsco-cultured with RY10-4, which may be the cause of inhibition of the pathway.
     As known that the invasion and migration of tumor cells are closely related to thebehavior of angiogenesis around the tumor cells, so the human resource breast tumorcells MDA-MB-231, which were regarded to prone to migrate were used as cellmodels. Firstly, cell adhesion assay, tumor cell invasion and migration assay by invitro transwell system were used to imitate the three processes of tumorigenesis:adhering to the adjacent tissue, degradation of extracellular matrix, migration.Thenexpression and distribution of the main structural support protein for cells:E-cadherin/β-catenin complex and extracellular matrix were detected by both immunofluorescence and immunoblotting. The results showed expression levels anddistribution of E-cadherin and its corresponding β-catenin that constitute cytoskeletonin intracellular significantly changed after RY10-4treatment. The outcome exhibitedas follows: β-catenin up-regulated in the cytoplasm, while down-regulated in thenucleus. E-cadherin increased in both expression levels and range. MMP-2/9acted asa major extracellular matrix degrading enzyme, their quantity was closely bound up ofthe amount of extracellular matrix. Therefore, we have adopted the Western blotmethod to evaluate MMP-2/9and its related proteins in the upstream pathway. Theresult shows the MAPK may be the other signal pathway RY10-4acts on the tumorcells. MAPK and PI3K-AKT signal pathway contribute to the expression of MMP-2/9,and the activation of the signal pathway can be blocked by reducing thephosphorylation levels of key proteins.
     As a compound with the prospects for the development, the subject established aHPLC-UV analysis method for RY10-4. Then we adopted SD rats to analysis thepreliminary pharmacokinetic in vitro of RY10-4.The results show that whether it is inthe blank or the animal tissues, RY10-4can be detected by HPLC-UV using aconventional mobile phase to get a high sensitivity. The tentative results show thatthere is a positive correlation between the tissue distribution and the amount of bloodof RY10-4. The distribution of the compound exhibited only a little differences amongthe organs with plentiful bloods meanwhile it can sustain a relatively highconcentration in the blood in a longer time. This is very beneficial for us to follow-updrug development work.
引文
1.郭青龙。肿瘤药理学[M]。南京,化学工业出版社,2008。
    2.中国植物志编委会。中国植物志(第4卷第1分册)。北京,科学出版社,1999:79-82.
    3.黄华艺,锡良。黄酮类化合物抗肿瘤作用研究进展。中国新药与临床杂志,2002,21:428-433.
    4.周铜水。蕨类植物的黄酮类成分及其系统学意义。武汉植物学研究,1989,4:377-389.
    5.中国植物志编辑委员会。中国植物志[M],第2卷,科学出版社,1959:78-79.
    6.中华本草编委会。中华本草[M],第2卷,上海科技出版社,1999:162.
    7. Ding HS. Chinese Medicinal spore bearing plants. Shanghai Scientific andTechnical Publishers,1982, China.
    8. Lin AS, Chang FR, Wu CC, et al. New cytotoxic flavonoid from Thelypteristorresiana. Planta Medical,2005,71:867-870.
    9. Huang XH, Xiong PC, Ruan JL, et al. In vitro and in vivo antitumor activity ofMacrothelypteris torresiana and its acute/subacute oral toxicity. Phytomedicine,2010,17:930-934.
    10. Chen WY, Hsieh YA, Wu CC, et al. Protoapigenone, a natural derivative ofapigenin, induces mitogen-activated protein kinase-dependent apoptosis in humanbreast cancer cells associated with induction of oxidative stress and inhibition ofglutathione S-transferase π. Invest New Drug,2011,29:1347-1359
    11. Chang HL, Wu YC, Yuan SF. Protoapigenone, a novel flavonoid, inducesapoptosis in human prostate cancer cells through activation of p38mitogen-activated protein kinase and c-Jun NH2-Terminal kinase1/2. JPharmacol Exp Ther,2008,325:841-849
    12. Folkman J.Tumor angiogenesis: therapeutic implications. N Engl J Med,1971,285(21):1182-1186.
    13. Du, W, Hattori, Y, Yamada, T, et al. Tumor angiogenesis in the bone marrow ofmultiple myeloma patients and its alteration by thalidomide treatment. Pathol. Int,2004,54(5):285-294.
    14. Horak ER, Leek R, Klenk N, et al. Angiogenesis, assessed by platelet/endothelialcell adhesion molecule antibodies, as indicator of node metastasis and survival inbreast cancer. Lancet,1992,340:1120-1124.
    15. Mohammad AR, Masakazu T. Anti-angiogenic therapy in breast cancer. BiomedPharmacother,2003,57:463-470.
    16. Senn HJ. Current status and indications for adjuvant therapy in breast cancer.Cancer Chemother Pharmacol,1982,8:139-150.
    17. Susumu S, Hiromi J, Kenichi W, Masato T. Does primary tumor resectionimprove outcomes for patients with incurable advanced breast cancer? Breast2011,20:543-547.
    18. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease.Nature Medicine,1995,1:27-31.
    19. Yancopoulos GD, Klagsbrun M, Folkman J. Vasculogenesis, angiogenesis, andgrowth factors: ephrins enter the fray at the border. Cell,1998,93:661-664.
    20. Folkman J. What is the evidence that tumors are angiogenesis dependent? J NatlCancer Inst1990,82:4-6.
    21. Yuan QY, Cai SX, Ruan JL et al. A new protoapigenone analog RY10-4inducesapoptosis and suppresses invasion through the PI3K/Akt pathway in humanbreast cancer. Cancer Letters2012,324:210-220.
    22. Yuan QY, Liu ZW, Ruan JL et al. A novel, broad-spectrum antitumor compoundcontaining the1-hydroxycyclohexa-2,5-dien-4-one group: The disclosure of anew antitumor pharmacophore in protoapigenone1. Bioorg Med Chem Lett,2011,21:3427-3430.
    23. Parangi S, O'Reilly M, Christofori G, et al. Antiangiogenic therapy of transgenicmice impairs de novo tumor-growth. Proc Natl Acad Sci USA1996,93:2002-2007.
    24. Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Methods,1983,65:55-63.
    25. Harris AL. Antiangiogenesis for cancer therapy. Lancet,1997,349(suppl II):13-15.
    26. Claffey KP, Robinson GS. Regulation of VEGF/VPF expression in tumor cells:Consequences for tumor-growth and metastasis. Cancer Metast Rev,1996,15:165-176.
    27. Longo R, Gasparini G. Challenges for patient selection with VEGF inhibitors.Cancer Chemother Pharmacol,2007,60:151-170.
    28. Pandit B, Sun YJ, Chen P, et al. Structure-activity-relationship studies ofconformationally restricted analogs of combretastatin A-4derived from SU5416.Bioorgan Med Chem,2006,14:6492-6501.
    29. Xu G, Zhang WH, McLeod H et al. Pharmacogenomic profiling of thePI3K/PTEN-Akt-mTOR pathway in common human tumors. Int J Oncol,2004,24:893-900.
    30. Datta NS, Long MW. Modulation of MDM2/p53and cyclin-activating kinaseduring the megakaryocyte differentiation of human erythroleukemia cells. ExpHematol,2002,30:158-165.
    31. Kimmel CB, Ullmann B, Schilling TF, et al. Stages of embryonic development ofthe zebrafish, Dev Dyn,1995,203:253-310.
    32. Barbazuk WB, Korf I, Kadavi C, et al. The syntenic relation ship of the zebrafishand human genomes, Genome Res,2000,10:1351-1358.
    33. Taraboletti G, Giavazzi, R. Modelling approaches for angiogenesis. Eur J Cancer2004,40:881-889.
    34. Shin DH, Kim JH, Park JW et al. Preclinical evaluation of YC-1, a HIF inhibitor,for the prevention of tumor spreading. Cancer Lett,2007,255:107-116.
    35. Chuang TC, Hsu SC, Wang V et al. Magnolol down-regulates HER2geneexpression, leading to inhibition of HER2-mediated metastatic potential inovarian cancer cells. Cancer Lett,2011,311:11-19.
    36. Lin AS, Yu DL, Lee KH et al. First total synthesis of protoapigenone and itsanalogues as potent cytotoxic agents. J Med Chem,2007,50:3921-3927.
    37. Wei AH, Zhou DN, Ruan JL et al. A novel non-aromatic B-ring flavonoid:Isolation, structure elucidation and its induction of apoptosis in human colonHT-29tumor cell via the reactive oxygen species-mitochondrial dysfunction andMAPK activation. Food Chem Toxicol,2011,49:2445-2452.
    38. Liu HB, Xiao YL, Ruan JL et al. Apoptosis induced by a new flavonoid in humanhepatoma HepG2cells involves reactive oxygen species-mediated mitochondrialdysfunction and MAPK activation. Eur J Pharmacol,2008,654:209-216.
    39. Bradshaw TD, Matthews CS, Cookson J, et al. Elucidation of thioredoxin as amolecular target for antitumor quinols. Cancer Res,2005,65:3911-3919.
    40. Mayumi O, Hiroto I, Michihiko K et al. Angiogenesis as a new target for cancertreatment. Cancer Chemother Pharmacol,1996,38(Suppl): S78-S82.
    41. Zhong XS, Zheng JZ, Jiang BH. SU5416inhibited VEGF and HIF-1a expressionthrough the PI3K/AKT/p70S6K1signaling pathway. Biochem Bioph Res Co,2004,324:471-480.
    42. Comito G, Calvani M, Giannoni E, et al. HIF-1α stabilization by mitochondrialROS promotes Met-dependent invasive growth and vasculogenic mimicry inmelanoma cells. Free Radical Bio Med,2011,51:893-904.
    43. Manolescu B, Oprea E, Busu C, Cercasov C. Natural compounds and thehypoxia-inducible factor (HIF) signalling pathway. Biochimie,2009,91:1347-1358
    44. Semenza GL. Hypoxia, clonal selection, and the role of HIF-1in tumorprogression. Crit Rev Biochem Mol,2000,35(2):71-103.
    45. Neshat MS, Thomas G, Sawyers CL et al. Enhanced sensitivity of PTEN-deficienttumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA2001,98:10314-10319.
    46. Chiang CT, Way TD, Lin JK et al. Diosgenin, a naturally occurring steroid,suppresses fatty acid synthase expression in HER2-overexpressing breast cancercells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett,2007,581:5735-5742.
    47. Liu D, Xu YJ, Chen ZC. Preparation of anti-HER2monoclonalantibody-paclitaxel immunoconjugate and its biological evaluation. J HuazhongUniv Sci Technol,[Med Sci]2011,31(6):735-740.
    48. Chen HJ, Xiong T, Mu D et al. mTOR activates hypoxia-inducible factor-1α andinhibits neuronal apoptosis in the developing rat brain during the early phase afterhypoxia-ischemia. Neurosci Lett,2012,507:118-123.
    49. Susumu S, Hiromi J, Masato Ti. Does primary tumor resection improve outcomesfor patients with incurable advanced breast cancer? The Breast,2011,20:543-547.
    50. Yilmaz M, Christofori G, Lehembre G. Distinct mechanisms of tumor invasion andmetastasis. Trends Mol. Med,2007,13(12):535-541.
    51. Nguyen DX. Bos PD, Massague J. Metastasis: from dissemination toorgan-specific colonization. Nat. Rev. Cancer,2009,9:274-284.
    52. Chen JQ, Russo J. ERalpha-negative and triple negative breast cancer: molecularfeatures and potential therapeutic approaches. Biochim. Biophys. Acta,2009,1796:162-175.
    53. Chen, Y, Yang, L, Lee, TJ. Oroxylin A inhibition of lipopolysaccharide-inducediNOS and COX-2gene expression via suppression of nuclear factor-kappaBactivation. Biochem Pharmacol,2000,59:1445-1457.
    54. Deryugina EI, Quigley JP, Matrix metalloproteinases and tumor metastasis,Cancer Metastasis Rev.2006,25:29-34.
    55. Pierre YS, Themsche CV, Esteve PO. Emerging features in the regulation ofMMP-9gene expression for the development of novel molecular targets andtherapeutic strategies. Curr. Drug Targets,2003,2:206-215.
    56. Egeblad M, Werb Z, New functions for the matrix metalloproteinases in cancerprogression. Nat. Rev. Cancer,2002,2:161-174.
    57. Birchmeier W, Behrens J. Cadherin expression in carcinomas: Role in theformation of cell junctions and the prevention of invasiveness. Biochim BiophysActa,1994,1198:11-26.
    58. Jiang WG, Robert E. Mansel E-cadherin complex and its abnormalities in humanbreast cancer. Surgical Oncology,2000,9:151-171.
    59. Blaschuk OW, Emmanuelle BD. Cadherins as novel targets for anti-cancertherapy. European Journal of Pharmacology2009,625:195-198.
    60. Chen HJ, Hsu LS, Shia YT. The β-catenin/TCF complex as a novel target ofresveratrol in the Wnt/β-catenin signaling pathway. Biochemi Pharmacolo,2012,84:1143-1153.
    61. Fu DY, Wang ZM, Shao ZM. Sox17, the canonical Wnt antagonist, isepigenetically inactivated by promoter methylation in human breast cancer.Breast Cancer Res Treat,2010119:601-612.
    62. Serafino A, Moroni N, Pierimarchi P. Anti-proliferative effect of atrial natriureticpeptide on colorectal cancer cells: Evidence for an Akt-mediated cross-talkbetween NHE-1activity and Wnt/β-catenin signaling. Biochimica et BiophysicaActa,2012,1822:1004-1018.
    63. Gong YD, Dong MS, Kang NS. A novel3-arylethynyl-substitutedpyrido[2,3,-b]pyrazine derivatives and pharmacophore model as Wnt2/β-cateninpathway inhibitors in non-small-cell lung cancer cell lines. Bioorganic&Medicinal Chemistry,2011,19:5639-5647.
    64. Chen HJ, Hsu LS, Lin CM The β-catenin/TCF complex as a novel target ofresveratrol in the Wnt/β-catenin signaling pathway. Biochemical Pharmacology,2012,84:1143-1153.
    65. Comito G, Calvani M, Chiarugi P, et al. HIF-1α stabilization by mitochondrialROS promotes Met-dependent invasive growth and vasculogenic mimicry inmelanoma cells. Free Radical Biology&Medicine,2011,51:893-904.
    66. Hart, IR, Saini A. Biology of tumour metastasis. Lancet,1992,339:1453-1457.
    67. Laezza C, D’Alessandro A, Bifulco M. Anandamide inhibits the Wnt/β-cateninsignalling pathway in human breast cancer MDA-MB-231cells. EuropeanJournal of Cancer,2012,48:3112-3122.
    68. Jamieson C, Sharma M, Beric R. Henderson Wnt signaling from membrane tonucleus: β-catenin caught in a loop. The International Journal of Biochemistry&Cell Biology2012,44:847-850.
    69. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. NatureReviews Cancer,2002,2:442-454.
    70. Jiang WG, Mansel RE. E-cadherin complex and its abnormalities in human breastcancer Surgical. Oncology,2000,9:151-171.
    71. Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ. E-cadherin's dark side: Possiblerole in tumor progression. Biochimica et Biophysica Acta,2012,1826:23-31.
    72. Torregrosa A, Munoz J, Germa JR. Prognostic value of the expression ofE-cadherin and β-catenin in bladder cancer. European Journal of Cancer,2000,36:357-362.
    73.于建渤,殷平,李志强。结肠癌MMP-9、VEGF的表达和微血管密度的相关研究.肿瘤防治研究。2005,32(1):30-33.
    74.詹平,毛熙光,董述全,等。基质金属蛋白酶-2的表达及微血管密度与宫颈癌侵袭性的相关性。妇科肿瘤,2008,16(2):262-265.
    75. Berry JM, Bradshaw TD, Westwell AD, et al. Quinols as Novel TherapeuticAgents4-(1-Arylsulfonylindol-2-yl)-4-hydroxycyclohexa-2,5-dien-1-ones andRelated Agents as Potent and Selective Antitumor Agents. J Med Chem,2005,48:639-644
    76. Lee KH, Hyun MS, Kim JR.Growth factor-dependent activation of the MAPKpathway in human pancreatic cancer: MEK/ERK and p38MAP kinase interactionin uPA synthesis. Clin. Exp. Metastasis,2003,20:499-505.
    77. Ahn GO, and Brown, JM. Matrix metalloproteinase-9is required for tumorvasculogenesis but not for angiogenesis: Role of bone marrow-derivedmyelomonocytic cells. Cancer Cell,2008,13:193-205.
    78. Virtanen SS, Vaananen HK, Harkonen PL, Lakkakorpi PT. Alendronate inhibitsinvasion of PC-3prostate cancer cells by affecting themevalonate pathway.Cancer Res,2002,62:2708-2714.
    79. Liabakk NB, Talbot I, Smith BF. Matrixmetallo-protease2(MMP-2)andmatrixmetalloprotease9(MMP-9) type IV collagenases in colorectal cancer.Cancer Res,1996,56:190-196.
    80. Chang HL, Wu YC, Yuan SS. Protoapigenone, a novel flavonoid, inducesapoptosis in human prostate cancer cells through activation of p38mitogen-activated protein kinase and c-jun NH2-terminal kinase1/2. The Journalof Pharmacology and Experimental Therapeutics,2008,325:841-849.
    81. Augustin HG. Translating angiogenesis research into the clinic: the challengesahead. The British Journal of Radiology,2003,76:3-10.
    82. Xu G, Zhang WH, McLeod H et al. Pharmacogenomic profiling of thePI3K/PTEN-Akt-mTOR pathway in common human tumors. Int J Oncol,2004,24:893-900.
    83. Garcia MG, Alaniz LD, Hajos SE et al. PI3K/Akt inhibition modulatesmultidrugresistance and activates NF-kB inmurine lymphoma cell lines. Leukemia Res,2009,33:288-296.
    84. Hartmann W, Digon-sontgerath B, Koch A, et al. Phosphatidylinositol3-kinase/AKT signaling is activated in medulloblastoma cell proliferation and isassociated with reduced expression of PTEN. Clin Cancer Res,2006,12:3019-3027.
    85.裴利霞,杜冠华。药物代谢动力学研究进展。中国医药导刊,2006,8(5):328-329.
    86.曾苏。药物代谢学。杭州:浙江大学出版社,2004.178-180.
    1.汤钊猷,现代肿瘤学[M]。2011,上海,复旦大学出版社。
    2.高杰,章静波。癌的侵袭与转移[M]。2003,北京,科学出版社。
    3. Risau W. Mechanisms of angiogenesis. Nature1997,386:671-674.
    4. Partridge CR, Hawker JR, Forough R. Overexpression of a secretory form ofFGF-1promotes MMP-1-mediated endothelial cell migration. J Cell Biochem,2000,78(3):487-499.
    5.屠哲玮,陶一飞,董缙,徐云根。细胞毒药物与肿瘤血管生成。中国现代应用药学,2011,7(28):7-12.
    6. Lai KC, Huang AC, Hsu SC, et al. Benzyl isothiocyanate (BITC) inhibitsmigration and invasion of human coloncancer HT29cells by inhibiting matrixmetalloproteinase2/9and urokinase plasminogen (uPA) through PKC and MAPKsignaling pathway. J Agric Food Chem,2010,58(5):2935-2942.
    7. Weng CJ, Chau CF, Hsieh YS, et al. Lucidenic acid inhibits PMA inducedinvasion of human hepatoma cells through inactivating MAPK/ERK signaltransduction pathway and reducing binding activities of NF kappaB and AP-1.Carcinogenesis,2008,29(1):147-156.
    8. Endo H, Watanabe T, Sugioka Y, et al. Activation of two distinct MAPKpathways governs constitutive expression of matrix metalloproteinase1in humanpancreatic cancer cell lines. Int J Oncol,2009,35(6):1237-1245.
    9.戴婷婷,华海清。中药抗肿瘤侵袭转移的分子机制研究进展。肿瘤防治研究2010,37(3):37-39.
    10. FOLKMAN J. Tumor angiogenesis: therapeutic implications. N Engl J Med,1971,285(21):1182-1186.
    11. Shirakawa K, Kobayashi H, Heike Y, et al. Hemodynamics in vasculogenicmimicry and angiogenesis of inflammat ory breast cancer xenograft. Cancer Res,2002,62(2):560-566.
    12. Ruf W, Seftor EA, Petrovan RJ, et al. Differential role of tissue factor pathwayinhibitors1and2in melanoma vasculogenic mimicry. Cancer Res,2003,63(17):5381-5389.
    13. ClementeM, PérezM, Illera J, et al. Histological, immunohist ological andultrastructural description of vascul ogenic mimicry in canine mammary cancer.Vet Pathol,2009,7:1131-1142
    14. Sigstedt SC, Hooten CJ, Callewaert MC, et al. Evaluation of aqueous extracts ofTaraxacum officinale on growth and invasion of breast and prostate cancer cells.Int J Oncology,2008,32(5):1085-1090.
    15. Claffey KP, Robinson GS. Regulation of VEGF/VPF expression intumor-cells-consequences for tumor-growth and metastasis. Cancer MetastasisRev1996;(15):165-166.
    16. Auerbach R, Akhtar N, Lewis RL, et al. Angiogenesis assays: problems andpitfalls. Cancer Metastasis Rev,2000,19(1-2):167-172.
    17. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targetsfor anti-angiogenesis and normalization. Microvasc Res,2007,74(2-3):72-84.
    18. Jain RK, Finn AV, Kolodgie FD, et al. Antiangiogenic therapy for normalizationof atherosclerotic plaque vasculature: a potential strategy for plaque stabilization.Nat Clin Pract Cardiovasc Med,2007,4(9):491-502.
    19. Sathornsumetee S, Rich JN. Antiangiogenic therapy in malignant glioma: promiseand challenge. Curr Pharm Des,2007,13(35):3545-3558.
    20. Bischof M, Abdollahi A, Gong P, et al. Triple combination of irradiation,chemotherapy (pemetrexed), and VEGFR inhibition (SU5416) in humanendothelial and tumor cells. Int J Radiat Oncol Biol Phys,2004,60(4):1220-1232.
    21. Fukumura D, Duda DG, Munn LL, Jain RK. Tumor microvasculature andmicroenvironment: novel insights through intravital imaging in pre-clinicalmodels. Microcirculation,2010,17(3):206-225.
    22.龙淼云,郑启昌,宋自芳,等.血管生成抑制因子arresten抑制huvec细胞增殖和迁移的实验研究。中国药理学通报,2007,23(1):64-66.
    23. Frenkel S, Barzel I, Levy J, et al. Demonstrating circulation in vasculogenicmimicry patterns of uvealmelanoma by confocal indocyanine green angiography.Eye,2008,22(7):948-952.
    24.霍介格,顾勤。周仲瑛治疗肿瘤的临证思路探析。上海中医药杂志2007,41(1)5-6.
    25.邱建武,郭薇,申丽娟。P38MAPK在肝细胞癌中的研究进展。世界华人消化杂志,2009,16(5):503-509.
    26. Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk betweenMAPK signaling pathways in the regulation of cell survival. FASEB J,2008,22(4):954-965.
    27. Yang XC, Luo PH, Yang B. Anti-angiogenesis response of endothelial cells tothe anti-tumour drug10-methoxy-9-nitrocamptothecin. PharmacologicalResearch2006,54:334-340.
    28. Harris AL. Angiogenesis as a new target for cancer control. Eur J Cancer2003,1:1-2.
    29. Donovan D, Brown NJ, Bishop ET, Lewis CE. Comparison of the three invitrohuman‘angiogenesis’assayswith capillaries formed in vivo. Angiogenesis,2001,4(2):113-121.
    30. Auerbach R, Lewis R, Shinners B, et al. Angiogenesis assays: a critical overview.Clin Chem,2003,49(1):32-40.
    31. Wang YK, Huang ZQ. Protective effects of icariin on human umbilical veinendothelial cell injury induced by H2O2in vitro. Pharm Res2005;52:174-182.
    32. Ucuzian AA, Greisler HP. In vitro models of angiogenesis. World J Surg,2007,31(4):654-663.
    33. Annelii NY, Monica A, Peter C. Zebrafish and Xenopus tadpoles: Small animalmodels to study angiogenesis and lymphangiogenesis. Experimental CellResearch,2006,312:684-693.
    34. Kimmel CB, Ballard WW, Kimmel SR, et al. Stages of embryonic developmentof the zebrafish. Dev. Dyn,1995,203:253-310.
    35.王思锋,刘可春,王希敏等。抗血管生成药物筛选及其新模型-斑马鱼。山东科学,2007,20(4):12-15.
    36. Auerbach R, Lewis R, Shinners B, et al. Angiogenesis assays: a critical overview.Clin Chem,2003,49(1):32-40.
    37. Donovan D, Brown NJ, Bishop ET, LewisCE. Comparison of the three in vitrohuman ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis,2001,4(2):113-121.
    38. Sanz L, Pascual M, Munoz A, et al. Development of a computer-assistedhigh-throughput screening platform for anti-angiogenic testing. Microvasc Res,2002,63(3):335-339.
    39. Chen Y, Li D, Liu H, et al. Notch-1signaling facilitates survivin expression inhuman non-small cell lung cancercells. Cancer Biol Ther,2011,111:14-21.
    40. Bao B, Wang Z, Ali S, et al. Notch-1induces epithelial-mesenchymal transitioncoteansistent with cancer stem cell phenotype in pancreatic cancer cells. CancerLett,2011,307(1):26-36.
    41. Wang Z, Banerjee S, Ahmad A, et al. Activated K-ras and INK4a/Arf deficiencycooperate during the development of pancreatic cancer by activation of Notch andNF-kappB signaling pathways. PLoS One,2011,6,6: e20537.
    42. Mita MM, Mita A, Rowinsky EK. Mammalian target of rapamycin: anewmolecular target for breast cancer. Clin Breast Cancer,2003,4:126-137.
    43. Roforth MM, Tan C. Combination of rapamycin and17-allylamino-17-demethoxygeldanamycin abrogates Akt activation and potentiates mTORblockade in breast cancer cells. Anti cancer Drugs,2008,19:681-688.
    44. Zhu WH, Nicosia RF. The thin prep rataortic ring assay: Amodified method forthe characterization of angiogenesis in whole mounts. Angiogenesis,2002,5(1-2):81-86.
    45. Bernardini G, Ribatti D, Spinetti G, et al. Analysis of the role of chemokines inangiogenesis. J Immunol Methods,2003,273(1-2):83-101.
    46. Baker JH, Huxham LA, Kyle AH, et al. Vascular-specific quantification in aninvivoMatrigel chamber angiogenesis assay. Microvasc Res,2006,71(2):69-75.
    47. Brooks PC. Cell-adhesion molecules in angiogenesis. Cancer Metastasis Rev1996;15:187-194.
    48. Ademuyiwa FO, Miller KD. Incorporation of antiangiogenic therapies in thetreatment of metastatic breast cancer. Clin Breast Cancer2008,8(Suppl4):S151-156.
    49. Moreno SF, Paloma JB. Therapeutic anti-VEGF in age related maculardegeneration: Ranibizumab and Bevacizumab controversy. Br J Ophthalmol,2008,92(6):866-867.
    50. Wang Y,Fei D,Vanderlaan M, Song A. Biological activity of bevacizumab,ahumanized anti-VEGF antibody in vitro. Angiogenesis,2004,7(14):335-345.
    51. Staton CA, Brown NJ, Rodgers GR, et al. Alphastatin a24amino-acid fragmentofhuman fibrinogen, is a potentnew inhibitor of activated endothelial cells in vitroand in vivo. Blood,2004,103(2):601-606.
    52. Brown NJ, Staton CA, Rodgers GR, et al. Fibrinogen efragment selectivelydisrupts the vasculature and inhibits the growth of tumors in a syngeneic murinemodel. Br J Cancer,2002,86(11):1813-1816
    53. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab asmonotherapy or in combination with cytotoxic therapy in preclinical studies.Cancer Res,2005,65(3):671-680.
    54. Bellmunt JN, Escudier B, et al. The medical treatment of metastatic renal cellcancer in the elderly: position paper of a SIOG Task force. Crit Rev OncolHematol,2009,69(1):64-72.
    55. Zhang Y, Jiang X, Qin X, et al. RKTG inhibits angiogenesis by suppressingMAPKmediated autocrine VEGF signaling and is downregulated in clearcellrenal cell carcinoma. Oncogene,2010,29(39):5404-5415.
    56.陈锡强,刘可春,王思锋,何秋霞。天然产物抗血管生成的研究进展。山东科学,2010,23(6):33-38.
    57.陈世壮,计磊,王玉萍,等。红素对大鼠肝脏内皮细胞的体外杀伤作用。前卫医药杂志,1999,16(6):337-339.
    58.卢锦娥,梁立治,瘳灿,等。MMP2及其抑制物TIMP2在宫颈癌发展中的作用。现代医院,2008,7(8):31-33.
    59.颜大海,朱树林,宝忠。鸡胚法筛选具有血管生成抑制作用中药.黑龙江医药,1998,11(2):94-98.
    60.王志玲。饮茶抑制血管生成。国外医学卫生学分册,2000,27(3):190-192.
    61.张明林,许建明,梅俏。结肠癌中MMP-2和MMP-9蛋白表达与微血管计数的关系。安徽医药,2007,11(2):146-148.
    62.刘韬,马岩,张锐。基质金属蛋白酶与恶性肿瘤侵袭和转移关系的研究进展。2004,30(4):662-664.
    63. Vaupel P, Kallinowski F, Okunieff P. Blood flow oxygen and nutrient supply andmetabolic microenvironment of human tumors a review. Cancer Res1989,49(23):6449-6465.
    64. Zuo S, Ji Y, Wang J, et al. pression and clinical implication of HIF-1alpha andVEGF-C in non-small cell lung cancer, J Huazhong Univ Sci Technolog Med Sci,2008,28(6):674-676.
    65. Katayama A, Bandoh N, Kishibe K, et al. Expressions of matrixmetalloproteinases in early-stage oral squamous cell carcinoma as predictiveindicators for tumor metastases and prognosis. Clin Cancer Res,2004,10(2):634-640.
    66. Tanioka Y, Yoshida T, Yagawa T, et al. Matrix metalloproteinase-7and matrixmetalloproteinase-9are associated with unfavorable prognosis in superficialoesophageal cancer. Br J Cancer,2003,89(11):2116-2121.
    67. Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin B and MMP-9gene expression in glioblastoma cell line via RNA interference reduces tumor cellinvasion tumor growth and angiogenesis. Oncogene,2004,23(27):4681-4689.
    68. Tang Y, Nakada MT, Kesavan P, et al. Extracellular matrix metalloproteinaseinducer stimulates tumor angiogenesis by elevating vascular endothelial cellgrowth factor and matrix metalloproteinases. Cancer Res,2005,65(8):3193-3199.
    69. Hendrix MJ, Seftor EA, Kirschmann DA, et al. Molecular biology of breastcancermetastasis. Molecular expression of vascular markers by aggressive breastcancer cells. Breast Cancer Res,2000,2(6):417-422.
    70. Seftor RE, Seftor EA, Koshikawa N, et al. Cooperative interactions of laminin5gamma2chain, matrix metalloproteinase-2, and membrane type2matrix/metalloproteinase are required for mimicry of embryonic vasculogenesisby aggressive melanoma. Cancer Res,2001,61(17):6322-6327.
    71. Hess AR, Seftor EA, Seftor RE, et al. Phosphoinositide3-kinase regulatesmembrane type1-matrix metalloproteinase (MMP) and MMP-2activity duringmelanoma cell vasculogenic mimicry. Cancer Res,2003,63(16):4757-4762.
    72. Incorvaia, L, Badalamenti, G, Rini, G, Arcara, C, Fricano, S, Sferrazza, C, DiTrapani, D, Gebbia, N, Leto, G,2007. MMP-2, MMP-9and activin A blood levelsin patients with breast cancer or prostate cancer metastatic to the bone. AnticancerRes2002,27:1519-1525.
    73. Delassus GS, Cho H, Park J, Eliceiri GL. New pathway links from cancerprogression determinants to gene expression of matrix metalloproteinases inbreast cancer cells. J Cell Physiol,2008,217:739-744.
    74. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancerprogression. Nat Rev Cancer,20022:161-174.
    75. Ogura S, Ohdaira T, Hozumi Y, Omoto Y, Nagai H. Metastasis-related factorsexpressed in pT1pN0breast cancer: assessment of recurrence risk. J Surg Oncol,2007,96:46-53.
    76. Vincenti MP. The matrix metalloproteinase (MMP) and tissue inhibitor ofmetalloproteinase (TIMP) genes. Transcriptional and posttranscriptionalregulation, signal transduction and cell-type-specific expression. Methods Mol.Biol2001,151:121-148.
    77.张志超,孙亚欣,贾明库。基质金属蛋白酶含量及表达与肝细胞癌浸袭转移的关系吉林大学学报(医学版),2006,32(1):116-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700