用户名: 密码: 验证码:
川西地区现今地壳运动的大地测量观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川西地区在构造区域上位处青藏高原东缘的川滇、巴颜喀拉和华南三大活动块体的交接部位,同时也是中国大陆南北地震带的中南段。由于印度板块自始新世中期(~55 Ma)以来对欧亚板块的碰撞和持续俯冲,特别是阿萨姆角的北东向楔入和青藏高原中南部物质绕东喜马拉雅构造结流滑式挤出,使川西地区活动断裂异常发育,构造样式复杂,中强地震频发,成为中国大陆现今地壳形变和构造活动最为强烈的地区之一。而由于自然条件的限制,川西地区除鲜水河断裂、安宁河断裂、则木河断裂等一些主要活动断裂有较高程度的野外地质调查研究外,其它一系列次级活动断裂、活动褶皱、形变剪切带和推覆构造的现今运动状况均缺乏完整的研究。最近十几年来川西地区所陆续开展的一系列GPS地壳形变观测,再加之传统水准测量资料的积累,使我们能够借助构造运动与地壳形变之间的关系模型,以高精度、高密度的地壳形变资料为约束,反演确定本区域各类活动构造的现今运动模式和速率,为认知青藏高原东南缘地壳形变与构造运动的地球动力学机理提供独特的途径。
     本文首先以川西地区前人大量的地质、地球物理和大地测量研究成果为基础,建立了区域活动断裂三维几何模型,涉及到甘孜-玉树断裂、鲜水河断裂、安宁河断裂、则木河断裂、大凉山断裂、小江断裂带、马边断裂、华蓥山断裂、龙门山断裂、龙日坝断裂、东昆仑断裂玛曲段、岷江断裂带、中甸断裂、金沙江断裂、巴塘断裂、维西-乔后断裂、红河断裂带、澜沧江断裂、程海断裂、丽江-小金河断裂、理塘断裂、南汀河断裂、龙陵-澜沧断裂、怒江断裂、景洪断裂等25条断裂的空间展布、分段特征、倾向倾角、闭锁深度、运动方式及其量值范围等。在此基础上,以川西地区324个GPS站点的水平地壳运动速度矢量和474个水准点的垂直地壳形变速率为约束,采用Okada半无限空间弹性体三维断裂位错模型和美国地质调查局成熟的专业软件,反演确定了川西地区各主要活动断裂的现今运动速率。所得结果与地质方法的估值在整体上取得了较好的一致,特别为地质方法研究程度不高、运动速率不确定性较大的马边断裂带、巴塘断裂带、金沙江断裂带、中甸断裂带、龙陵-澜沧断裂带等一系列断裂提供了定量的运动速率。其中川滇菱形块体东边界断裂带的甘孜-玉树断裂带、鲜水河断裂带、安宁河断裂带、则木河断裂带、小江断裂带等滑动速率与地质学结果吻合程度较高;反演得到了马边断裂的左旋走滑速率为2.6±0.8 mm/a,挤压速率为0.7±0.7mm/a;巴塘断裂带右旋走滑速率为4.1±1.4 mm/a,拉张速率为0.4±0.9 mm/a;金沙江断裂带巴塘以北的北段的右旋滑动速率为1.8±1.4 mm/a,拉张速率为1.2±0.9 mm/a,金沙江断裂带巴塘以南中甸以北的中段右旋滑动速率为2.5±0.8 mm/a,挤压速率为1.6±0.7 mm/a;中甸断裂带为右旋走滑速率为1.5±0.9 mm/a,拉张速率为0.3±0.7 mm/a;龙陵-澜沧断裂带东段的右旋走滑速率为2.0±1.6 mm/a ,挤压速率为0.9±0.9 mm/a,断裂西段的右旋走滑速率为0.7±0.9 mm/a,挤压速率为1.0±0.9mm/a。这些基于大地测量资料独立获得的断裂活动速率,将为该区域活动断裂研究和地震危险性分析提供重要参考。
     另外,我们所建模型的三维速度场与GPS和水准测量结果的拟合表明,川西地区复杂的地壳形变特征,可以用本区域主要断裂在闭锁层之下的持续运动位给予较好的解释,而个别区域拟合结果的系统性差异,可能起因于川西地区复杂的介质差异和中下地壳的的塑性流滑。作为深断裂位错模型的一种极端简化,本文还尝试建立了川西地区块体运动模型,该模型以区域断裂几何模型为基础,将川西地区划分为11个刚性块体(包括阿坝次级块体、龙门山次级块体、华南块体部分、雅江次级块体、香格里拉次级块体、滇中次级块体、川滇以西流滑带、普洱次级块体、西盟次级块体、马边地块、大凉山地块)利用块体的平移和转动解释了区域地壳形变的运动学特征。结果表明,川西地区的地壳形变特征,似乎更适合用一系列不连续次级块体的刚性运动进行描述。
     为了探讨川西地区地壳形变的动力学机制,本文还尝试采用有限元方法和二维平面应变模式,初步模拟分析了区域地壳运动速度场和应变率场,所得结果在一定程度上反映了GPS实际观测的地壳形变特征。
     另外,作为本文的前期研究基础,我们还系统地综述了青藏高原构造形变的研究历史、现状、主流学说及热点科学问题的研究进展。同时归纳总结了GPS高新技术的发展历史、基本原理,以及GPS大地测量的误差来源、数据处理和国内外应用现状。
     与前人的同类工作相比,我们有两个方面的改进和创新:一是采用更加密集的GPS观测资料,特别是密集的跨断层GPS剖面资料,对川西地区的水平地壳形变进行了更加有效的约束;二是加入了大范围、高精度的水准观测资料,对垂直方向的地壳形变进行了有效约束。这两方面改进使我们关于区域活动断裂运动速率的大地测量约束反演,具有了更高的分辨率和可信度。
Western Sichuan Province is geographically located in the eastern margin of the Tibetan Plateau and the joint area among the Sichuan-Yunnan rhombic block, Bayan Kala block and Southern China block. It also straddles the middle and south sections of the north-south seismic belt in the Chinese mainland.
     Because of continuous subduction of the India plate beneath the Eurasian plate and collision between the two the plates from the middle Eocene epoch ( about 55 million years ago) , especially the extrusion of the material from the central Tibet Plateau and the indentation of the Asam wedge, this region is one of the most outstanding tectonic areas in Chinese mainland with active faults, complicated structures and frequent major earthquakes. And thus, a lot of investigations and research work have been done in this area. However, because of the difficult natural condition, only few a small number of main active faults have been studied sufficiently in the field work, such as Xianshuihe fault, Anninghe fault, Zemuhe fault. The other active tectonics, like second-class active faults, active folds, shear zones and nappe structures, are still lack of complete studies. Fortunately, with the extensive application of GPS in this region in the last two decades, together with the accumulation of traditional leveling data, it is now possible to infer the movement styles of various active structures using the highly precise and densely distributed crustal deformation observation data, via geophysical models describing the relationship between tectonic movement and crustal deformation such as the Okada’s elastic half-space dislocation model. And this kind of work can provide us a special way to understand the geodynamic mechanism of the crustal deformation and tectonic movement of the southeastern margin of the Tibetan Plateau.
     In this thesis, first a 3D geometric model is established for the main active faults in the western Sichuan Province based on the results of geological reconnaissance, geophysical investigation and geodetic observations of other scientists. This fault model includes the spatial distribution, segmentations, dip directions and angles, locking depth and slip rates of the following 25 faults: Garzê-Yushu fault, Xianshuihe fault, Anninghe fault, Zemuhe fault, Daliangshan fault, Xiaojiang fault, Mabian fault, Huayingshan fault, Longmenshan fault, Longriba fault, Maqu fault, Minjiang fault, Zhongdian fault, Jinshajiang fault, Batang fault, Weixi-Qiaohou fault, Red river fault, Lancang Jiang fault, Chenghai fault, Lijiang-Xiaojinhe fault, Litang fault, Nantinghe fault, Longlin-lancang fault, Nujiang fault, Jinhong fault. Based on this model, this work then inverts the present-day slip rates of the main active faults in the region using the Okada’s 3-D elastic half-space dislocation model with the best fit to the crustal deformation observations of 324 GPS stations and 474 leveling points. The inversion software is modified from the MAIN113 which was programmed by the United States Geological Survey (USGS). The inversion results are well consistent with the ones from geological methods.
     For some faults with big uncertainties in their geological slip rates, we got their slip rates as follows: Mabian fault, 2.6±0.8 mm/a (left-lateral) and 0.7±0.7 mm/a (thrust); Batang fault, 4.1±1.4 mm/a (right-lateral) and 0.4±0.9 mm/a (normal); the northern segment of Jinshajiang fault, 1.8±1.4 mm/a (right-lateral) and 1.2±0.9 mm/a (normal); the middle segment of Jinshajiang fault, 2.5±0.8 mm/a (right-lateral) and 1.6±0.7 mm/a (thrust); Zhongdian fault, 1.5±0.9 mm/a (right-lateral) and 1.5±0.9 mm/a (normal).; the eastern segment of Longling-Lancang fault, 2.0±1.6 mm/a (right-lateral) and 0.9±0.9 mm/a(thrust), the western segment of the fault, 0.7±0.9 mm/a (right-lateral) and 1.0±0.9 mm/a (thrust). These slip rates from Geodetic data give an important reference to the study of the active faults and earthquake hazard analysis.
     In addition, the fitting residuals of the velocities between the model and the observation from the GPS and leveling revealed that the crustal deformation features of the Western Sichuan Province can be well described by the continuous slips of a series active faults below the locking depth, although the fitting residuals of some regions show systematic discrepancy, which may result from the material property discrepancy of different areas and the effects of channel flow in the middle or lower crust in the area.
     As a tentative, this work also tries a block model, which is actually an extremely simplified dislocation model, to explain the features of the regional crustal deformation via the translation and rotation of 11 sub-blocks, i.e. Aba sub-block, Longmenshan sub-block, South-China block, Yajiang sub-block, Shangri-la sub-block, Central Yunnan sub-block, West Sichuan and Yunnan flow zone, Baoshan sub-block, Ximeng sub-block, Mabian sub-block and Daliangshan sub-block. The result shows that the crustal deformation of Western Sichuan Province can also be well described by the rigid movement of a series of sub-blocks bounded by active faults.
     In order to understand the dynamic mechanism of the crustal deformation in the Western Sichuan Province, this work also tries to use FEM (finite element method) and 2-D plane strain model to simulate the regional crustal velocity field and strain rate of this area. The simulated results reasonably demonstrate the main features of the crustal deformation form GPS observations. In addition, as the base of this research, this thesis gives an overall review to the studies of the tectonic movement and crustal deformation of the Tibetan Plateau, including the research history, current situation, main theories and focused issues. It also review the GPS technology with the emphasis on its applications to geodesy, such as the strategies about GPS data processing,data combination and error reduction, etc.
     Comparing with the similar work in this region of other researchers, this work has two improvements: One is that it uses more dense GPS data, especially the dense GPS profiles, in the dislocation model to inverse the slip rates of active faults. These dense GPS data obviously gave a better constraint on the horizontal deformation. The other is that it uses widely distributed precise leveling data in the dislocation model together with GPS velocity data. The join of these leveling data can give a effective constraint on vertical component. These two improvements make the results more reliable in the inversion of the slip rate of the active faults concerned.
引文
Allen, C. R. Han Y., K. E. Sieh, et al., 1984. Red River and associated faults, Yunnan Province,China, Quaternary geology , slip rates, and seismic harzard, Geol. Soc, Am. Bull., Vol.95,pp.686~700.
    Allen C R, Luo Z L, Qian H, et al. Field study of a highly active fault zone: the Xianshuihe fault of southwestern China. Geol Soc AmBull, 1991, 103: 1178—1199
    Argand E.1924.La teetonique de IAsie:International Geolog—ieal Congress, 13th. Brussels, 1922.Reports,1:170~372.
    Armijo R, Tapponner P, Mercier J P, et al. 1986. Quaternary exten-sion in southern Tibet [J]. J. Geophys. Res., 91: 13 803~13 872.
    Armijo, R., P. Tapponnier, and H. Tonglin (1989), Late Cenozoic Right-Lateral Strike-Slip Faulting in Southern Tibet, J. Geophys. Res., 94(B3), 2787–2838.
    Avouac, J.-P., and P. Tapponnier, Kinematic model of active deformation in Central Asia, geophys. Res. Lett., 20, 895~898, 1993.
    Burchfiel, B.C., Chen., Z., Liu, Y., and Royden, L.H., 1995,Tectonics of the Longmen Shan and adjacent regions:International Geological Review, v. 37, no. 8, p. 661–736.
    Burchfiel B C,Chen Z L,Liu Y P,et al.2004.New technology:new geological challenges.GSA Today.14(2):4~10.
    Chen, Q., J. T. Freymueller, Q. Wang, Z. Yang, C. Xu, and J. Liu (2004), A deforming block model for the present-day tectonics of Tibet, J. Geophys. Res., 109, B01403, doi:10.1029/2002JB002151.
    Chen, Q., J. T. Freymueller, Z. Yang, C. Xu, W. Jiang, Q. Wang, and J. Liu (2004), Spatially variable extension in southern Tibet based on GPS measurements, J. Geophys. Res., 109, B09401, doi:10.1029/2002JB002350.
    Chen Z, Burchfiel B C, Liu Y, et al. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J Geophy Res, 2000, 105: 16215~16227.
    Chinnery, M. A. (1963). The stress changes that accompany strike-slip faulting, Bull. Seism. Soc. Am. 53,921~932.
    Chinnery, M. A. and D. B. Jovanovich {1972). Effect of earth layering on earthquake displacement fields, Bull. Seism. Soc. Am. 62, 1629~1639.
    Cowie, P. A., and C. H. Scholz (1992), Growth of Faults by Accumulation of Seismic Slip, J. Geophys. Res., 97(B7), 11085–11095.
    Counsel man,C.C., Hinteregger H.F., and Shapiro I. I.1972.Astronomical Applications of Differential Interferometry. Science 10 November 1972:Vol. 178. no. 4061, pp. 607– 608
    Counsel man,C.C., and Shapiro I.I.1979. Miniature interferometer terminals for earth surveying. Bull.Geod.53(2),139-163.
    C.C. COUNSELMAN III, I.I.SHAPIRO, R.L. GREENSPAN and D.B. COXJr. : Backpack VLBI. Terminal with Subcentimeter Capability. Radio Interferometry Techniques for Geodesy, NASA Conference Publication, vol.2115,409,414,1979.
    Densmore,A.L., Ellis,M.A., Yong Li, et al.2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau.TECTONICS, VOL. 26, TC4005, doi:10.1029/2006TC001987.
    Dong D, Herring T A and King R W. Estimating regional deformation from a combination of space and terrestrial geodetic data[J]. J Geodesy, 1997, 72: 200-214.
    England, P. C., and G. A. Houseman, Finite strain calculations of continental deformation, 2, Comparison with the India-Asia collision zone, J. Geophys. Res., 91, 3664~3676, 1986.
    England, P. C., and Molnar,P., 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature., 344, 140~142 (08 March 1990); doi:10.1038/344140a0.
    Gan W J, Zhang P Z, Shen Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res, 2007, 112: B08416.
    Gan W, Svarc JL, Savage JC, Prescott WH. 2000. Strain accumulation across the Eastern California Shear Zone at latitude 36 degrees 30 'N, Journal of Geophysical Research, Vol 105, pp 16229~16236
    Gan,Weijun, W.H.Prescott. 2001. Crustal Deformation Rates in the Central and eastern U.S.Inferred from GPS. Geophys.Res.Let., 28, 19:3733~3736.
    Gregorius, 1996: Gregorius, T. GIPSY-OASIS II: How it Works, (self-published), Univ. of Newcastle upon Tyne, Newcastle, England, U.K., 1996.
    Harrison,T. M., Copeland, P., Kidd, W. et al., 1992.Rising Tibet. Science,255:1663~1670.
    Herring T A. GLOBK: Global Kalman filter VLBI and GPS analysis program ,Vers 4.1. Massachusetts Institute of Technology, pp.80,1998.
    Hofmann-Wellenhof, B.,H.Lichtenegger, and J.Collins, Global Positioning System:Theory and Practice, New York: Springer-Verlag,1993.
    Holt, W. E., N. Chamot-Rooke, X. Le Pichon, A. J. Haines, B. Shen-Tu, and J. Ren, The velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations, J. Geophys. Res., 105, 19,185-19,209, 2000.
    Iwasaki, T. and R. Sato (1979). Strain field in a semi-infinite medium due to an inclined rectangular fault, J. Phys. Earth 27, 285~314.
    Jiang, X., and Y. Jin (2005), Mapping the deep lithospheric structure beneath the eastern margin of the Tibetan Plateau from gravity anomalies, J. Geophys. Res., 110, B07407, doi:10.1029/2004JB003394.
    Jones. L. m. 1982. Weibin Han,Hauksson E.Focal mechanisms and aftershoek locations of the Songpan earthquake of August 1976 in Sichuan,China[J].J Geophys.1984,89(B9):7 697~7 707.
    King, R. W., F. Shen, B. C. Burchfiel, L. H. Royden, E. Wang, Z. Chen, Y. Liu, X.-Y. Zhang, J.-X. Zhao, and Y. Li, Geodetic measurement of crustal motion in southwest China, Geology, 25, 179~182, 1997.
    King R W, Bock Y. Documentation for The MIT GPS Analysis Software: GAMIT, Version 9.3, Cambridge: Mass. Inst. Technol., 1995.
    Kirby.E, Whipple K X., Burchfiel.B C.,2000. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau, GSA Bulletin.112(3):p. 375~393.
    Kirby, E., P. W. Reiners, M. A. Krol, K. X. et al.,2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from 40Ar/39Ar and (U-Th)/He thermochronology, Tectonics, 21(1), 1001, doi:10.1029/2000TC001246.
    Kirby,E., N.Harkins, E. Wang et al.,2007. Slip rate gradients along the eastern Kunlun fault, Tectonics,26,TC2010,doi:1029/2006TC002033.
    Kong X,Bird P.1996.Neotectonics of Asia:thin—shell finite—element models with faults[A] . In : Yin A , Harrison T M edits . The Tectonic Evolution of Asia[c].Cambridge:Cambridge University Press,18~34.
    Kostrov, B. V. 1974. Seismic moment and energy of earthquakes, and seismic flow of rock. Izvestiya Academy of Sciences of the USSR (Physics of Solid Earth) 1, 23-40.
    Lacassin,P., Replumaz,A.,Leloup, P.H. 1998.Hairpin river loops and slip-sense inversion on southeast Asian strike-slip faults. Geology, v. 26; no. 8; p. 703-706.
    Lai, K., Y. Chen, L. Chung, P. Li and D. Lam (2006), Quaternary basin formation along the Dien Bien Phu fault zone and its neotectonic implication of northwestern Vietnam, EOS Transactions, American Geophysical Union, 87(52; Suppl.).
    Leloup P H, Kienast J R. 1993.High temperature metamorphism in a strike-slip shear zone: the Ailao Shan-Red River(P.R.C). Earth Planet Sci Lett, 118:213~234.
    MacDoran, P.F., Satellite Emission Radio lnterferometric Earth. Surveying SERIES-GPS geodetic system. Bull. Gwd., Vol. 53, pp. 117-138,1979.
    Mansinha, L. and D. E. Smylie (1967). Effect of earthquakes on the Chandler wobble and the secular polar shift, J. Geophys. Res. 72, 4731-4743.
    Mansinha, L. and D. E. Smylie (1971). The displacement fields of inclined faults, Bull. Seism. Soc. Am.61, 1433-1440.
    Niell,A.E; Ong, K.M. MacDoran,PF.,et al.Comparision of a radio interferometric differential baseline measurement with conventional geodesy, Tectonophysics,vol.52,no.1-4,..49-58.1979.
    Ong, K.M.,K.M. MacDoran,Thomas J.B.,et al. 1976.A demonstration of a transportable radio interferometric surveying system with 3-cm accuracy on a 307-m baseline, J.Geophys.Res., vol.81,no.20,3587-3593.
    Steketee, J. A. (1958). On Volterra's dislocation in a semi-infinite elastic medium,Can. J. Phys. 36,192-205.
    Molnar, P. and P. Tapponnier, Cenozoic tectonics of Asia: Effects of a continental collision, Science, 189, 419-426, 1975.
    Molnar, P., and H. Lyon-Caen, Fault plane solutions of earthquakes and active tectonics of the northern and eastern parts of the Tibetan Plateau, Geophys. J. Int., 99, 123-153, 1989.
    Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan plateau and the Indian monsoon. Reviews of Geophysics, 1993, 31: 357-396.
    Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am, 1985, 75: 1135-1154.
    Okada,Y. Internal deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am, 1992, 82: 1018-1040.
    Peltzer, G., and F. Saucier, Present-day kinematics of Asia derived from geologic fault rates, J. Geophys. Res., 101, 27,943-27,956, 1996.
    Replumaz A,Tapponnier P.Reconstruction of the deformed collision zone between India and Asia by backward motion of lithosphere blocks.J.Geophys.Res.,2003,108(B6).
    Rogers,A.E.,Knight C.A.,Hinteregger. H. F.,et al.1978.Geodesy by radio interferometry.Determination of a 1.24 km baseline vector with 5 millimeter repeatability. J.Geophys.Res. 83,325-333.
    Royden I,.1996.Coupling and decoupling of crust and mantle in convergent orogens:implications for strain partitioning in the crust[J].J Geophys Res,101(B12):17679-17705.
    Royden, L. H., B. C. Burchfiel, R. W. King, E. Wang, Z. Chen, F. Shen, and Y. Liu, Surface deformation and lower crustal flow in eastern Tibet, Science, 276, 788-790, 1997.
    Savage, J.C., 1987. Effect of crustal layering upon dislocation modeling. Journal of Geophysical Research, 92, 10595-10600.
    Savage, J.C., J.L. Svarc, and W.H. Prescott. 1999. Geodetic estimates of fault slip rates in the San Francisco Bay area. Journal of Geophysical Research, 104, 4995-5002
    Schoenbohm, L.M., Burchfiel, B.C., Chen Liangzhong.2006.Propagation of surface uplift, lower crustal flow and Cenozoic tectonics of the southeast margin of the Tibetan Plateau . Geology; October. v. 34; no. 10; p.813-816.
    Shen F,Royden L H,Burchfiel B C.2001.Large-scale crustal deformation of the Tibetan Plateau[J].J Geophys Res.106(B4):6 793~6 816
    Shen, Z.-K., M. Wang, Y. Li, D. D. Jackson, A. Yin, D. Dong, and P. Fang, Crustal deformation associated with the Altyn Tagh fault system, western China, from GPS, J. Geophys. Res., 30607-30621, 2001.
    Shen, Z.-K., J. Lu, M. Wang, and R. Burgmann (2005), Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau, J. Geophys. Res., 110, B11409, doi:10.1029/2004JB003421.
    Smith I.D., Satellite hyperbolic navigating System. U.S.Patent Office, Patent No.3,126,545,1964.
    Smylie, D. E. and L. Mansinha (1971). The elasticity theory of dislocations in real earth models and changes in the rotation of the earth, Geophys. J. R. Astr. Soc. 23, 329-354.
    Tapponnier, P. and P. Molnar, Slip-line field theory and large-scale continental tectonics, Nature, 264, 319-324, 1976.
    Tapponnier, P. and P. Molnar, Active faulting and tectonics of China, J. Geophys. Res., 82, 2905-2930, 1977.
    Tapponnier, P., G. Peltzer, A. Y. Le Dain, R. Armijo, and P. Cobbold(1982), Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine, Geology, 10, 611–616.
    Thatcher,W.2007.Microplate model for the present-day deformation of Tibet., J.Geophys.Res.,112,B01401,doi:10.129/2005JB004244.
    Van der Woerd J., Ryerson. F. J., Tapponnier. P., et al. 2000.Uniform slip-rate along the Kunlun Fault:Implications for seismic behavior and large-scale tectonics. Geophs Res Lett , 27:2353~2356.
    Van der Woerd, J; Owen, LA; Tapponnier, P; Xu, XW; et al. 2004.Giant, similar to M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan, northern Tibet: Characteristics, nature and dynamics. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 116 (3-4): 394-406.
    Wang E, Burchfiel B C. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geol Soc Am Bull, 2000, 112: 413—423.
    Wang, Q., P. Zhang, etc. Present-day Crustal Deformation in China Constrained by Global Positioning System Measurements, Science, 294: 574-577,2001.
    Ward S N. 1994. A multidisciplinary approach to seismic hazard in Southern California. Bull Seism Soc Amer, 84:l293~l309.
    Webb F H, Zumberge J F. An Introduction to GIPSY/OASIS-II, JPL-D11088. Jet Propulsion Laboratory, Pasadena, 1995.
    Working Group on California Earthquake Probabilities (WGCEP) .1995 . Seismic hazards in southern California: probable earthquakes, 1994-2024, Bull. Seism. Soc. Am. 85,379-439.
    Yang, X. M. and P. M. Davis (1986). Deformation due to a rectangular tension crack in an elastic half-space, Bull. Seism. Soc. Am. 76, No. 3, 865-881.
    Youqing Yang and Mian Liu.2002.Cenozoic deformation of the Tarim plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan. Tectonics, 21(6), 1059, doi:10.1029/2001TC001300.
    Zhao W L,Morgan W J.1987.Injection of Indian crust into Tibetan lower crust:a two—dimensional finite element model study[J].Tectonics,6:489~504
    Zhang, P., Z. Shen, M. Wang, W. Gan, R. Burgmann, P. Molnar, Q. Wang, Z. Niu, J.Sun, J. Wu, H. Sun, and X. You (2004), Continuous deformation of the Tibetan Plateau from Global Positioning System data, Geology,32, 809–812.
    陈国光,计凤桔,周荣军等.2007.龙门山断裂带晚第四纪活动性分段的初步研究[J].地震地质,29(3): 657-673.
    陈社发,邓起东,赵小麟.1994.龙门山中段推覆构造带及相关构造的演化历史和变形机制(一)[J].地震地质,16(4):404—412.
    陈晓斌.2007.中国陆地现今水平形变状况及其驱动机制[J].中国科学,37(8):1056~1064.
    陈智梁,沈凤,刘宇平,等.青藏高原东部地壳运动的GPS测量[J].中国地质, 1998, 5: 32~35.
    陈智梁,张选阳,沈凤,等.中国西南地区地壳运动的GPS监测[J].科学通报, 1999, 44(8): 851~854.
    成尔林.1981.四川及其邻区现代构造应力场和现代构造运动特征[J].地震学报, 3(3):231-241.
    程万正.2002.论雅江一盐源一永胜地震构造带的新活动与分段危险性[J].四川地震,102:1~8.
    邓起东,陈社发,赵小麟.1994.龙门山及其邻区的构造和地震活动及动力学[J].地震地质,16(4):389~403.
    邓起东主编,2007.中国活动构造图-(1:400万) [K].北京,地震出版社.
    丁志峰,何政勤,孙为国,等,1999,青藏高原东部及其边缘地区的地壳上地幔三维结构[J]. 地球物理学报,42(2):197~205.
    杜平山. 2000.则木河断裂带的走滑位移及滑动速率[J].四川地震, (1-2): 49~64.
    方颖,江在森,牛安福.2005.川滇菱形块体东边界地壳形变研究[J].大地测量与地球动力学,25(3):81~85.
    虢顺民,向宏发,计凤桔,等.1996.红河断裂带第四纪右旋走滑与尾端拉张转换关系研究[J].地震地质, 18(4): 301—3.
    虢顺民,向宏发,周瑞崎,等.滇西南龙陵-澜沧断裂带:大陆地壳上一条新生的破裂带. 科学通报, 1999, 44(19): 2118~2121.
    虢顺民,向宏发,徐锡伟等.2000.滇西南龙陵一澜沧第四纪新生断裂带特征和形成机制研究[J].地震地质,22(3):277~284.
    国家地震局地质研究所。1990.滇西北地区活动断裂[M],北京:地震出版社. 国家地震局震源机制研究小组,1973.中国地震震源机制的研究(第一集).
    何宏林,宋方敏,李传友.1999.四川则木河断裂带微断层地貌的地形测量和走滑速率的估计(英文)[J].地震地质,21(4): 361~369.
    何宏林,池田安隆,何玉林等.2008.新生的大凉山断裂带—鲜水河—小江断裂系中段的裁弯取直.中国科学D辑:38(5):564-574
    何文贵,袁道阳,熊振等.2006.东昆仑断裂带东段玛曲断裂新活动特征及全新世滑动速率研究.地震,26(4):67~75.
    何建坤,刘金朝.2002.下地壳流变与造山带同挤压期地壳伸展的动力学关系.地球物理学报[J],45(4):483~496p.
    黄金莉,宋晓东,王素云. 2003.川滇地区上地幔顶部P波速度结构[J].中国科学,(D辑),33(增刊):14~15.
    黄立人,王敏.中国大陆现今地壳水平运动[J].地震学报,2002, 22(3): 257~262.
    江在森,马宗晋,牛安福等.2003. GPS技术应用于中国地壳运动研究的方法及初步结果[J].地学前缘,10(1):71~79.
    赖锡安,黄立人,徐菊生,等.中国大陆现今地壳运动[M].北京:地震出版社,2004. 李坪.鲜水河-小江断裂带.北京:地震出版社,1993,74.
    李天袑,游泽李,杜其方,等. 1985.鲜水河断裂带的地质特征及其运动方式[A].鲜水河断裂带地震学术讨论会文集,《北京:地震出版社》.
    李吉均,文世宣,张青松等.1997.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学,6:608~616.
    李吉均,方小敏.1998.青藏高原隆起与环境变化研究[J].科学通报,43(15):1569~1574.
    李延兴,杨国华,李智,等.中国大陆活动地块的运动与应变状态[J].中国科学(D辑),2003,33(增):65~81.
    梁尚鸿,束沛镒,李幼铭,等. 1986.攀西地区地震分布和构造应力场特征[J].地球物理学报,29(6):557~566.
    龙思胜,赵珠. 2000.鲜水河、龙门山和安宁河三大断裂交汇地区震源应力场特征.地震学报[J],22(5):457~464.
    吕江宁,沈正康,王敏.川滇地区现代地壳运动速度场和活动块体模型研究[J].地震地质, 2003, 25(4): 543~554.
    马保起,苏刚,侯治华,等.2005.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J].地震地质,27(2):234~242.
    马寅生,施炜,张岳桥等.2005.东昆仑活动断裂带玛曲段活动特征及其东延[J].地质通报,24(1):30~35.
    马宗晋,陈鑫连,叶叔华,等.中国大陆现今地壳运动的GPS研究[J].科学通报,2001,46(13): 1118-1120.
    潘桂棠,徐耀荣,王培生.1983.青藏高原东部边缘新生代构造[A].青藏高原地质文集(12).北京:地质出版社.129~141.
    彭华,马秀敏,白嘉启等.2006.甘孜玉树断裂带第四纪活动特征[J].地质力学学报,12(3):295~304.
    董兴权,张俊昌,何希虎,等.南汀河断裂带的地震地质特征.见:地震地质报告集(2).1982.
    冉勇康,程建武,宫会玲等.2008.安宁河断裂紫马跨一带晚第四纪地貌变形与断层位移速率.地震地质.30(1):
    沈军,汪一鹏,任金卫.2001.中国云南德钦-中甸-大具断裂带第四纪右旋走滑运动[M]. 见:马宗晋,等编.青藏高原岩石圈现今变动与动力学(3).北京:地震出版社, 2001. 123—135
    李京昌;滇西怒江断裂带新构造特征[J];地震地质; 1998年04期.
    任俊杰,陈虹.2004.东昆仑断裂带地震复发周期与发震概率研究[J].大地测量与地球动力学,24(3)52~56.
    申旭辉,陈正位,许任德,等+2000凉山活动构造带晚新生代变形特征与位移规模CJ}地震地质,22(3):232~238.
    申重阳,王琪,吴云,等.2002.川滇菱形块体主要边界运动模型的GPS数据反演分析[J]. 地球物理学报,45(3):352~361.
    沈正康,王敏,甘卫军等.2003.中国大陆现今构造应变率场及其动力学成因研究[J].地学前缘,10(增刊):93~100.
    施雅风,刘东生.1964.希夏邦马峰地区科学考察报告[J].科学通报.10:928~938.
    宋方敏,汪一鹏,俞维贤等.小江活动断裂带[M].北京:地震出版社, 1998.
    宋方敏,李如成,徐锡伟.2002.四川大凉山断裂带古地震研究初步结果[J].地震地质,24(1):27~34.
    孙洁,徐常芳,江钊等. 1989.滇西地区地壳上地幔电性结构与地壳构造运动的关系.地震地质[J], 11(1): 35~45.
    唐荣昌,韩渭宾. 1993.四川活动断裂与地震[M].北京:地震出版社.
    唐文清,陈智梁,刘宇平等.2005.青藏高原东缘鲜水河断裂与龙门山断裂现今的构造活动[J].地质通报,24(12):1169~1172.
    王椿镛,W. D. Mooney,王溪莉等. 2002.川滇地区地壳上地幔三维速度结构研究[J].地震学报,24(1),1~16.
    王二七,孟庆任,陈智,陈良忠.2001.龙门山断裂带印支期左旋走滑运动及其大地构造成因.地学前缘,8(2):375~384.
    王晋南.维西-乔后断裂带[A].见:滇西北地区活动断裂[M],北京:地震出版社,1990.
    王凯英.2003.川滇地区现今应力场与断层相互作用研究.《博士论文》.
    王敏,沈正康,牛之俊,等. 2003.现今中国大陆地壳运动与活动块体模型,中国科学D辑[J], 33 (增刊):21~32.
    王琪,赖锡安,游新兆,王启梁.红河断裂的GPS监测与现代构造应力场[J];地壳形变与地震; 1998年02
    王庆良,崔笃信,王文萍等.2008.川西地区现今垂直地壳运动研究[J].中国科学D辑,38(5):598~610.
    王绍晋,秦嘉政,李忠华,等.2007.澜沧江断裂带环境剪应力场与地震活动分析.地震研究,30(2):127~132.
    王新民,张成贵,裴锡瑜.1997.晚第四纪安宁河断裂的新活动与特征.四川地震.1997年第3期:8~16.
    王阎昭,王恩宁,沈正康等.2008.基于GPS资料约束反演川滇地区主要断裂现今活动速率[J].中国科学(D辑),38(5):582~597.
    闻学泽,黄圣睦,江在雄.1985.甘孜-玉树断裂带的新构造特征及地震危险性估计.地震地质, 73(3):23~32.
    闻学泽,Allen C.R.,罗灼礼等.1989.鲜水河全新世断裂带的分段性、几何特征及其地震构造意义.地震学报,11(4):362~372.
    闻学泽;则木河断裂的第四纪构造活动模式[J];地震研究; 1983年01期.
    文德华.1994.龙门山北段断裂活动特征[J].四川地震,1994年第1期:53~57.
    向宏发,徐锡伟,虢顺民,等.丽江-小金河断裂第四纪以来的左旋逆推运动及其构造地质意义—陆内活动地块横向构造的屏蔽作用.地震地质, 2002, 22(2): 188~198.
    向宏发,韩竹军,虢顺民,等. 2004.红河断裂带大型右旋走滑运动与伴生构造地貌变形. 地震地质, 26(4): 598~610
    向宏发,万景林,韩竹军,等.2006.红河断裂带大型右旋走滑运动发生时代的地质分析与FT测年.中国科学D辑,36 (11): 977~987.
    肖序常,王军.1998.青藏高原构造演化及隆升的简要评述[J].地质论评,44(4):372~381.
    徐绍铨.2003.GPS测量原理与应用[M].武汉:武汉测绘科技大学出版社.
    徐锡伟,闻学泽,郑荣章等.2003.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学D辑,33(增刊):151—162.
    徐锡伟,闻学泽,于贵华等.2005a.川西理塘断裂带平均滑动速率、地震破裂分段与复发特征.中国科学(D辑),2005,35(6):540~551
    徐锡伟,张培震,闻学泽,等.川西及其邻近地区活动构造基本特征与强震复发模型.地震地质, 2005, 27(3): 446—461
    徐锡伟,闻学泽,陈桂华等.2008.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J].中国科中国科学D辑,38(5):529~542.
    徐仁,陶君容,孙湘君等.1973.希夏邦马峰高山栎化石层的发现及其在植物学和地质上的意义[J].植物学报,1973,15(1):103~119.
    许志琴等着.中国松潘一甘孜造山带的造山过程[M].北京地质出版社,1992.
    杨少敏游新兆杜瑞林等.2002.用双三次样条函数和GPS资料反演现今中国大陆构造形变场[J].大地测量与地球动力学,22(1):68~75.
    杨晓平,蒋溥,宋方敏,等.1999.龙门山断裂带南段断错晚更新世以来地层的证据[J].地震地质,21(4):341~345.
    杨智娴,陈运泰,郑月军等. 2003.双差地震定位法在我国中西部地区地震精确定位中的应用[J].中国科学,(D辑),33(增刊):129~134.
    叶叔华.2001.青藏高原岩石圈现今变动与动力学[M].北京:地震出版社.
    易桂喜,闻学泽,徐锡伟等.2002.川滇地区若干活动断裂带整体的强地震复发特征研究[J].中国地震,18(3):267~276.
    游新兆,王启梁.1994.青藏高原1993年GPS观测成果的精度分析[J].地壳形变与地震, 14(3): 27-33.
    余绍立,季建清,陈建军等.2006.下地壳流变层对青藏高原及其周边大尺度地貌的制约[J].地质科技情报,25(5):1~7.
    赵国光.1996.青藏高原北部的第四纪断层运动[J].中国地震,12(2):107~118.
    赵小麟,邓起东,陈社发.1994.龙门山逆断裂带中段的构造地貌学研究[J].地震地质,16(4):422~428.
    赵珠,张润生.1987.四川地区地壳上地幔速度结构的初步研究.地震学报[J],9(2):154~166.
    张培震郑德文尹功明,等,2006.有关青藏高原东北缘晚新生代扩展与隆升的讨论.第四纪研究[J],26(1):5~13p.
    张培震,邓起东,张国民,等.2003.中国大陆的强震活动与活动地块[J].中国科学(D辑),33(增刊):12~20.
    张世民,聂高众,刘旭东,等.荥经-马边-盐津逆冲构造带断裂运动组合及地震分段特征[J].地震地质, 2005, 27(2): 221—233
    张国伟,郭安林,姚安平. 2004.中国大陆构造中的西秦岭-松潘大陆构造结.地学前缘,11(3):24~32.
    钟大赉,丁林.1996.青藏高原的隆升过程及其机制探讨.中国科学(D),26(4):289~295.
    钟锴,徐鸣洁,王良书,等. 2005.川滇地区重力场特征与地壳变形研究.高校地质学报,2005,11(1):111~117.
    周德敏,甘卫军,任金卫等.2005.基于GPS观测资料反演庄浪河断裂带、马衔山北缘断裂带的滑动速率.地震地质,27(4):706~714.
    周本刚,周庆.2005.对现今地壳变形资料在地震区划中应用的初步探讨.中国地震,21(2):156~164.
    周荣军,马声浩,蔡长星.1996.甘孜-玉树断裂带的晚第四纪活动特征.中国地震,12(3):250~260.
    周荣军,蒲晓虹,何玉林等.2000.四川岷江断裂带北段的新活动、岷山断块的隆起及其与地震活动的关系.地震地质,22(3):285~294.
    周荣军何玉林黄祖智.2001.鲜水河断裂带乾宁—康定段的滑动速率与强震复发间隔.地震学报,23(3):250~261.
    周荣军,陈国星,李勇,等. 2005.四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7 级震群发震构造研究.地震地质,27(1): 31—43.
    周荣军,李勇,Alexander L Densmore等.2006.青藏高原东缘活动构造.矿物岩石,26(2):40~51.
    周荣军,黎小刚,黄祖智,等.2003.四川大凉山断裂带的晚第四纪平均滑动速率.地震研究,26(2):197~196.
    周荣军,叶友清,李勇,等.2007.理塘断裂带沙湾段的晚第四纪活动性.第四纪研究,27(1):45~53.
    朱艾斓,徐锡伟,周永胜,等.川西地区小震重新定位及其活动构造意义.地球物理学报, 2005, 48(3): 629~636.
    朱守彪,蔡永恩,石耀霖.2005.青藏高原及邻区现今地应变率场的计算及其结果的地球动力学意义.地球物理学报,48(5):1053~1061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700